Esame di Probabilità e Statistica Anno Accademico 2018/2019, 3^a sessione, 1^o appello (03/09/2019) Corso di laurea triennale in Ingegneria Elettronica e Informatica Dipartimento di Ingegneria e Architettura Università degli Studi di Trieste

- 1) Siano X ed Y variabili aleatorie indipendenti: la prima con legge uniforme discreta sull'insieme $\{0,1,3\}$; la seconda con legge uniforme discreta sull'insieme $\{2,4\}$.
 - a) Calcolare E[4X Y] e Var[3X 2Y].
 - b) Calcolare $P((X-1)^2 + (Y-1)^2 \le 4)$.
 - c) Determinare la densità discreta della variabile aleatoria T = X + Y.
 - d) Calcolare $E[T^2]$ e Var[2T 3Y].
- 2) Siano X ed Y variabili aleatorie indipendenti: la prima con legge esponenziale di parametro 2; la seconda con legge esponenziale di parametro 3.
 - a) Calcolare E[3X 4Y] e Var[4X 3Y].
 - b) Calcolare P(X + Y < 2).
- c) Determinare la densità di probabilità e la funzione di ripartizione della variabile aleatoria T=2X+Y.
 - d) Calcolare $E[T + X^2]$ e Var[2T 3Y].
- 3) Sia $(X_1,...,X_5)$ un campione casuale estratto da una legge normale di parametri $\mu,\,\sigma^2$ e sia

una sua realizzazione; inoltre, siano \overline{X} ed S^2 rispettivamente la variabile aleatoria media campionaria e la variabile aleatoria varianza campionaria.

- a) Determinare un intervallo di confidenza bilaterale per μ al livello di confidenza del 98%.
 - b) Nel caso $\mu = 0$, $\sigma^2 = 1$, calcolare $E[S^4]$ e $Var\left[\frac{\overline{X}}{S}\right]$.