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Motivations

Bayesian models can be evaluated and compared in several ways. Most
simply, any model or set of models can be taken as an exhaustive set, in
which case all inference is summarized by the posterior distribution.

The �t of model to data can be assessed using posterior predictive checks,
prior predictive checks or, more generally, mixed checks for hierarchical
models.

However, we may need a pure comparison set of tools: when several
candidate models are available, they can be compared and averaged using:

Bayes factors (which is equivalent to embedding them in a larger
discrete model)

Predictive information criteria (AIC, DIC, BIC, WAIC,...)
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Hypothesis testing

In the classical framework we compare two alternatives:

H0 : θ ∈ Θ0;H1 : θ ∈ Θ1,

where Θ0 and Θ1 form a partition of the parameter space.

In the classical approach, data are used to verify whether they are
compatible with the null hypothesis through the calculation of the
p-value, that is the probability that, under the null hypothesis, we may
observe a sample which would give a result which is even less

convincing under the null hypothesis (compared with the one we
observe).
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Hypothesis testing

In a Bayesian framework, the most natural way to proceed is to
quantify the posterior weights of the two competing hypootheses, that
is, Pr(H0|y), de�ned as:

Pr(H0|y) = Pr(Θ0|y) =

∫
Θ0

π(θ|y)dθ,

where we assume that the random variable Θ is continuous.
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The simplest case: Two simple hypotheses

This is the most elementary case (enough to present the irreconcilability)

H0 : θ = θ0, H1 : θ = θ1

We may elicit the following prior distributions:

π0 = Pr(H0), π1 = Pr(H1) = 1− π0.

Likelihood:

p(y |θ0), p(y |θ1)

The relative weights of the two hypotheses is then given by the ratio:

Pr(H0|y)

Pr(H1|y)
=
π(θ0|y)

π(θ1|y)
=
π0
π1

p(y |θ0)

p(y |θ1)
(1)
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The simplest case: Two simple hypotheses

The posterior odds are the product of two terms:

π0/π1 is the relative weight of the two hypotheses before observing
the data.

the second factor is usually denoted as:

BF01 =
p(y |θ0)

p(y |θ1)
(2)

and is called Bayes factor: it represents the multiplicative factor which
transforms the prior odds into the posterior odds. BF01 represents a
measure of evidence in favour of H0, where BF01 > 1(< 1) indicates
that data favour H0 (H1).
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Toy example

Observe ȳ ∼ N (θ, σ2), with σ = 0.7, we want to test:

H0 : θ = θ0 = −1, vs. H1 : θ = θ1 = 1.

Frequentist approach: �x α = 0.01 and calculate the rejection region
as ȳ−θ0

σ > 2.32, that is ȳ > 0.624.

Bayesian approach: the data information is summarized by the Bayes
factor BF01 = p(y |θ0)/p(y |θ1).
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Toy example
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Toy example: classical testing
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Toy example: classical testing. If ȳ = 0.3...
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Toy example

Comments:

Frequentist approach tends to accept H0 even for values which are
more likely under H1 (see what happens between 0 and 0.624...).

Bayesian approach tends to accept H0 only if the posterior probability
of H0 is higher than the posterior probability of H1. If π0 = π1 = 1/2,
H0 is `accepted' if the marginal likelihood under H0 is higher than the
marginal likelihood under H1.
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The general case

H0 : θ ∈ Θ0; vs. H1 : θ ∈ Θ1,

where Θ0 and Θ1 form a partition of the parameter space.
Prior: two steps

1 Prior probabilities:

π0 = Pr(Θ0), π1 = Pr(Θ1).

2 For Hi , i = 0, 1, gi (θ) is the prior density of θ. Then the global prior is:

π(θ) =

{
π0g0(θ) θ ∈ Θ0

(1− π0)g1(θ) θ ∈ Θ1
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The general case

The beliefs about the two hypotheses are summarized by the posterior odds
ratio:

Pr(θ ∈ Θ0|y)

Pr(θ ∈ Θ1|y)
=

∫
Θ0
π(θ|y)dθ∫

Θ1
π(θ|y)dθ

=
π0

1− π0

∫
Θ0

p(y |θ)g0(θ)dθ∫
Θ1

p(y |θ)g1(θ)dθ
.

The Bayes factor BF01 =

∫
Θ0

p(y |θ)g0(θ)dθ∫
Θ1

p(y |θ)g1(θ)dθ
is a ratio between marginal

likelihoods. Their evaluation is central in testing hypotheses and
model selection!

Prior information plays a minor role through the densities g0 and g1.
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Bayes factors and improper priors

Bayes factor cannot be used with improper priors. This happens because
the marginal distribution of the data is not well de�ned.

Example Suppose an iid sample y1, . . . , yn ∼ N (µ, σ20), with σ20 known
and π(µ) = c . Then:

p(y) =

∫
µ
p(y |µ)π(µ)dµ = c × constant.

If H0 : µ = µ0 = 0 and H1 : µ = µ1 6= 0, the Bayes factor will depend on
c! In fact:

BF01 =
p(y |θ0)

c
∫
θ 6=θ0 p(y |θ)dθ

This has caused a great e�ort in producing new methods for proper priors
for testing.
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Je�reys-Lindley's paradox

Je�reys-Lindley's paradox describes a counterintuitive situation in which
the Bayesian and frequentist approaches to a hypothesis testing problem
give opposite results for certain choices of the prior distribution, which
favor H0 weakly.

The paradox occurs when: the frequentist test indicates su�cient evidence
to reject H0, say, at the 5% level, and P(H0|y) is high, say, 95%, indicating
strong evidence that H0 is in fact true.
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Je�reys-Lindley's paradox

Let us assume again y1, . . . , yn ∼ N (µ, σ2), with σ2 known, and let
H0 : θ = θ0, H1 : θ 6= θ0. Let assume as a prior for π(θ1) under H1 a
normal N (θ0, τ

2) with large τ (or any other �at enough or vague or di�use
prior).

It can be shown that:

BF01 =

√
n

σ
√
2π

exp(−n(ȳ − θ0)2/2σ2)
√
n√

σ2+nτ2
√
2π

exp(−n(ȳ − θ0)2/2(σ2 + nτ2))
.

Let u =
√
n(ȳ − θ0)/σ and let ρ = τ2/σ2. Then:

BF01 =
√
1 + nρ2 exp(−u2

2

nρ2

1 + nρ2
)

For n→∞, the BF indicates strong evidence for H0.
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Testing and model selection with Bayes factors

Rather than verifying a particular value for a parameter, we are often more
interested in assessing some model comparisons. In such a viewpoint,
distinct models represent distinct hypotheses, and data y are assumed to
have arisen from one of several models:

M1 : y ∼ p1(y |θ1)

M2 : y ∼ p2(y |θ2)

. . .

Mj : y ∼ pj(y |θj)
. . .

Mq : y ∼ pq(y |θq)

Assign prior probabilities, Pr(Mj) to each model
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Testing and model selection with Bayes factors

Under model Mj :

Prior density of θj : πj(θj).

Marginal density of y :

pj(y) =

∫
pj(y |θj)πj(θj)dθj ,

which measures how likely is y under model Mj .

Posterior density:

πj(θj |y) =
πj(θj)pj(y |θj)

pj(y)
.

Bayes factor of Mj to Mi is de�ned as the ratio between posterior
odds and prior odds for the two competing models:

BFji = pj(y)/pi (y). (3)
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Testing and model selection with Bayes factors

Posterior probability of a model:

Pr(Mj |y) =
Pr(Mj)pj(y)∑q

k=1 Pr(Mk)pk(y)
=

[
q∑

k=1

Pr(Mk)

Pr(Mj)
BFkj

]−1
(4)

If Pr(Mj) = 1/q,

Pr(Mj |y) = p̄j =
pj(y)∑q

k=1 pk(y)
=

[
q∑

k=1

BFkj

]−1
Reporting: it is useful to separately report the p̄j(y)'s and the Pr(Mj)'s.
Knowing the p̄j(y)'s allows computation of the posterior probabilities for
any prior probabilities.
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Bayes factors

Posterior odds of model Mj relative to model Mk :

Pr(Mj |y)

Pr(Mk |y)︸ ︷︷ ︸
Posterior odds

=
Pr(Mj)

Pr(Mk)︸ ︷︷ ︸
Prior odds

×
p(y |Mj)

p(y |Mk)︸ ︷︷ ︸
Bayes factor

(5)

The Bayes Factor is the weighted likelihood ratio of Mj relative to Mk or a
ratio of marginal (wrt the prior) likelihoods.

Je�reys (1961) recommends the use of the following rule of thumb to
decide between models Mj and Mk :

BFjk > 100 decisive evidence against Mk ; 10 < BFjk ≤ 100 strong
evidence against Mk ; 3 < BFjk ≤ 10 substantial evidence against Mk .
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Example: soccer goals models.

Major League Soccer model

Suppose we are interested in assessing the average number of goals scored
by a given team in Major League Soccer, and denote the goals for n games
as y1, . . . , yn. Since goals are relatively rare events, we assume that:

yi ∼ Poisson(λ), i = 1, . . . , n.

Four di�erent priors, then, four possible models:

1 λ ∼ Gamma(4.57, 1.43)

2 log(λ) ∼ N (1, .52)

3 log(λ) ∼ N (2, .52)

4 log(λ) ∼ N (1, 22)
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Example: soccer goals models. Priors
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Example: soccer goals

Once we know how to compute marginal likelihoods, we could compute the
Bayes factors for each pair of models. The Bayes factor in support of Prior
1 over Prior 2 is:

BF12 =
p1(y)

p2(y)
=

∫
Θ1

p(y |θ)π1(θ)dθ∫
Θ2

p(y |θ)π2(θ)dθ
.

M1 M2 M3 M4

M1 1.00 0.78 35.63 1.89
M2 1.28 1.00 45.66 2.42
M3 0.03 0.02 1.00 0.05
M4 0.53 0.41 18.90 1.00

Prior 2 is always favored over the other priors. Generally, the marginal
probability for a prior decreases as the prior density becomes more di�use.
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Bayesian model selection

The basic ingredient for model selection is then the marginal density:

pj(y) =

∫
p(y |θj)πj(θj)dθj ,

that is the normalizing constant of the posterior distribution under model
Mj , also seen as the likelihood of the model Mj .

For any given model it can be written as:

Ej [p(y |θj)],

where the expectation is taken wrt the prior πj(θj). Several aproximations
are available: normal, Laplace, Monte Carlo, Importance sampling,
composition method...
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Computation of the marginal density

Evaluation of the integral in p(y) can be performed using Monte Carlo
computing methods or asymptotic expansions.

The Laplace expansion plays a central role in Bayesian inference since not
only p(y) but also many posterior summaries are expressible in terms of
integrals (or as ratio of integrals) of the form:

I =

∫
h(θ)π(θ)p(y |θ)dθ,

for suitable functions h(θ). For I , the Laplace expansion gives:

Î =
h(θ̂)π(θ̂)p(y |θ̂)(2π)p/2

|j(θ̂)|1/2
{1 + O(n−1)},

with θ̂ MLE of θ, p the parameter vector dimension and j(θ) the observed
information matrix.
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Evaluate predictive accuracy

One way to evaluate a model is through the accuracy of its predictions.
Sometimes we care about this accuracy for its own sake, as when
evaluating a forecast. In other settings, predictive accuracy is valued not
for its own sake but rather for comparing di�erent models. We are
interested in prediction accuracy for two reasons:

to measure the performance of a model that we are using;

second, to compare models.

If we consider data y1, . . . , yn modelled as independent given parameters θ,
thus p(y |θ) =

∏n
i=1 p(yi |θ). A general summary of predictive �t is the log

predictive density, log(p(y |θ)). When comparing models of di�ering size, it
is important to make some adjustment for the natural ability of a larger
model to �t data better, even if only by chance.

Leonardo Egidi Introduction 29 / 74



• Hypothesis testing • Testing and model selection • Predictive information criteria • Implementation in Stan: the loo package •

Evaluate predictive accuracy

The general form for the predictive information criteria that we will
encounter is the following:

crit = −2lpd + penalty

lpd is a measure of the log predictive density of the �tted model.

penalty is a penalization accounting for the e�ective number of
parameters of the �tted model.

The interpretation is the following: the lower is a particular value for an
information criteria, and the better is the model �t. Moreover, if two
competing models share the same value for the log predictive density, the
model with less parameters is favored.

This is the Occam's Razor occurring in statistics:

Frustra �t per plura quod potest �eri per pauciora
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Evaluate predictive accuracy

Di�culty All the proposed measures are attempting to perform what
is, in general, an impossible task: to obtain an unbiased and accurate
measure of out-of-sample prediction error that will be valid over a
general class of models and that requires minimal computation.
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Akaike Information Criteria (AIC)

Let

p be the number of parameters estimated in the model.

θ̂ be the maximum likelihood estimate for θ.

The simplest bias correction is based on the asymptotic normal posterior
distribution. In this limit (or in the special case of a normal linear model
with known variance and uniform prior distribution), subtracting p from the
log predictive density given the MLE is a correction for how much the
�tting of p parameters will increase predictive accuracy, by chance alone:

log(p(y |θ̂))− p.

As de�ned by Akaike (1973), Akaike Information Criteria (AIC) is the
above multiplied by -2, thus:

AIC = −2 log(p(y |θ̂)) + 2p. (6)
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AIC

It makes sense to adjust the deviance for �tted parameters, but once
we go beyond linear models with �at priors, we cannot simply subtract
p.

Informative prior distributions and hierarchical structures tend to
reduce the amount of over�tting, compared to what would happen
under simple least squares or maximum likelihood estimation.

For models with informative priors or hierarchical structure, the
e�ective number of parameters strongly depends on the variance of
the group-level parameters.

Under the hierarchical model in the eight schools example, we would
expect the e�ective number of parameters to be somewhere between 8
(one for each school) and 1 (for the average of the school e�ects).
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Deviance Information Criteria (DIC)

A very popular approach has been proposed recently by Spiegelhalter et al
(2002). It replaces the MLE θ̂ in (6) with the posterior mean
θ̂Bayes = E(θ|y) and p with a data-based bias correction. The new measure
of predictive accuracy is:

log(p(y |θ̂Bayes))− pDIC,

where pDIC is the e�ective number of parameters, de�ned as:

pDIC = 2(log(p(y |θ̂Bayes))− Eθ|y [log(p(y |θ)],

where the expectation in the second term is an average of θ over its
posterior distribution, and is usually computed through the S draws from
the posterior distribution. Then:

DIC = −2 log(p(y |θ̂Bayes)) + 2pDIC (7)
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Bayes Information Criteria (BIC)

A simple way to approximate a marginal density, and thus the BF, is by the
Laplace method. For one of the hypotheses, we apply the Laplace
expansion to p(y). Then, for large sample size n and up to order O(1), we
have:

−2 log(p(y)) ≡ BIC = −2 log(p(y |θ̂)) + p log n,

that is the Bayes Information Criterion (BIC), which is used for rough
comparison of competing models, with θ̂ MLE of θ, p the parameter vector
dimension.

BIC is splitted in two components:

−2 log(p(y |θ̂)): this is the deviance, or the log predictive density of
the data given a point estimate of the �tted model, multiplied by -2;

p log n: a penalty term, which is bigger as p and n increase.
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BIC

Consider two models:

M1 : (y1, . . . , yn) ∼ p1(y |θ1), θ1 ∈ Θ1 ⊂ Rp1

M2 : (y1, . . . , yn) ∼ p2(y |θ2), θ2 ∈ Θ2 ⊂ Rp2 ,

and let π(θ1) and π(θ2) be the priors. Then:

2 logBF12 = 4BIC = W − (p2 − p1) log n,

with W = 2(log(p(y |θ̂2))− log(p(y |θ̂1))) the usual log-likelihood ratio test
statistic.

Comment The lower is the BIC for model 1 (2) when compared to model 2
(1) and the better is considered model 1 (2).
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BIC

BIC and its variants di�er from the other information criteria
considered here in being motivated not by an estimation of predictive
�t but by the goal of approximating the marginal probability density of
the data, p(y), under the model, which can be used to estimate
relative posterior probabilities in a setting of discrete model
comparison.

It is completely possible for a complicated model to predict well and
have a low AIC, DIC, and WAIC, but, because of the penalty function,
to have a relatively high (that is, poor) BIC. Given that BIC is not
intended to predict out-of-sample model performance but rather is
designed for other purposes, we do not consider it further here.
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Watanabe-Akaike Information Criteria (WAIC)

We de�ne the log pointwise predictive density for a single value yi :

lppd =
n∑

i=1

log(p(yi |y)) =
n∑

i=1

log

∫
p(yi |θ)π(θ|y)dθ. (8)

To compute the lppd in practice, we can evaluate the expectation using
draws from π(θ|y), the usual posterior simulations, which we label
θ(s), s = 1, . . . ,S , de�ning the computed log pointwise predictive density:

l̂ppd =
n∑

i=1

log

(
1

S

S∑
s=1

p(yi |θ(s))

)
(9)
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WAIC

Then, we de�ne the WAIC as follows:

WAIC = −2lppd + 2pWAIC, (10)

where the quantity pWAIC is de�ned as:

pWAIC =
n∑

i=1

Varθ|y (log(p(yi |θ)),

which computes the variance separately for each data point. We can
practically compute this quantity by using:

n∑
i=1

VarSs=1(log(p(yi |θ(s))),

where VarSs=1 represents the sample variance,
VarSs=1as = 1

S−1
∑S

s=1(as − ā)2.
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WAIC

Compared to AIC and DIC, WAIC has the desirable property of
averaging over the posterior distribution rather than conditioning on a
point estimate.

This is especially relevant in a predictive context, as WAIC is
evaluating the predictions that are actually being used for new data in
a Bayesian context. AIC and DIC estimate the performance of the
plugin predictive density, but Bayesian users of these measures would
still use the posterior predictive density for predictions.

WAIC works also with singular models and thus is particularly helpful
for models with hierarchical and mixture structures in which the
number of parameters increases with sample size and where point
estimates often do not make sense.
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Leave-one-out cross-validation

In Bayesian cross-validation, the data are repeatedly partitioned into a
training set ytrain and a holdout set yholdout, and then the model is �t to
ytrain (thus yielding a posterior distribution π(θ|ytrain)), with this �t
evaluated using an estimate of the log predictive density of the holdout
data, log(ptrain(yholdout)) = log

∫
ppred(yholdout|θ)πtrain(θ)dθ. The Bayesian

leave-one-out cross-validation (LOO-CV) estimate of out-of-sample
predictive �t is:

lppdloo-cv =
n∑

i=1

log(p(yi |y−i )) =
n∑

i=1

log

∫
p(yi |θ)π(θ|y−i )dθ, (11)

where y−i represents the data without the i-th data point. This quantity is
usually calculated as:

n∑
i=1

log

(
1

S

n∑
i=1

p(yi |θ(s))

)
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Leave-one-out cross-validation

Each prediction is conditioned on n − 1 data points, which causes
underestimation of the predictive �t. For large n the di�erence is
negligible, but for small n (or when using K-fold cross-validation) we
can use a �rst order bias correction.

Cross-validation is like WAIC in that it requires data to be divided into
disjoint, ideally conditionally independent, pieces. This represents a
limitation of the approach when applied to structured models.

In addition, cross-validation can be computationally expensive except
in settings where shortcuts are available to approximate the
distributions p(yi |y−i ).
The purpose of using LOO or WAIC is to estimate the accuracy of the
predictive distribution p(ỹi |y).
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Importance sampling LOO (IS-LOO)

If the n points are conditionally independent in the data model we can then
evaluate p(yi |y−i ) with draws θ(s) from the full posterior π(θ|y) using
importance ratios:

r
(s)
i =

1

p(yi |θ(s))
∝ π(θ(s)|y−i )

π(θ(s)|y)

to get the importance sampling leave-one-out (IS-LOO) predictive
distribution,

p(ỹi |y−i ) ≈
∑S

s=1 r
(s)
i p(ỹi |θ(s))∑S
s=1 r

(s)
i

(12)

Evaluating this LOO log predictive density at the held-out data point yi , we
get

p(yi |y−i ) ≈
1

1
S

∑S
s=1

1
p(yi |θ(s))
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PSIS-LOO

A direct use of ri induces instability because the importance ratios can have
high or in�nite variance. We can improve the LOO estimate using Pareto
smoothed importance sampling (PSIS), which applies a smoothing
procedure to the importance weights. Here the main steps:

1 Since the distribution of the importance weights used in LOO may
have a long right tail, we �t a generalized Pareto distribution to the
tail (20% largest importance ratios r (s)). The computation is done
separately for each held-out data point i .

2 Stabilize the importance ratios by replacing the largest ratios by the
expected values of the order statistics of the �tted generalized Pareto

distribution. Label these values as ω̃
(s)
i .

3 To guarantee �nite variance of the estimate, truncate each vector of
weights at S3/4w̄i , where w̄i is the average of the S smoothed weights
corresponding to the distribution holding out data point i . Finally,

label these truncated weights as ω
(s)
i .
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PSIS-LOO

The PSIS estimate of the LOO expected log pointwise predictive density
(PSIS-LOO) is the same as in (12), but with the new weights ωi in place of
ri . The LOOIC criteria is then de�ned as:

LOOIC = −2
n∑

i=1

log

(∑S
s=1 ω

(s)
i p(ỹi |θ(s))∑S
s=1 ω

(s)
i

)
(13)

The estimated shape parameter k̂ of the generalized Pareto distribution
can be used to assess the reliability of the estimate:

k < 1/2: the variance of the raw importance ratios is �nite, the
central limit theorem holds, and the estimate converges quickly.

k > 1/2: the variance of the PSIS estimate is �nite but may be large.
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Simple applied example: election forecasting (Hibbs, 2008)

Forecast elections based on economic growth

We propose now a simple model to forecast elections based solely on
economic growth. Better forecasts are possible using additional information
such as incumbency and opinion polls, but what is impressive here is that
this simple model does pretty well all by itself. Next table shows the
year-by-year data, whereas next �gure shows a quick summary of economic
conditions and presidential elections over the past several decades. There is
a clear linear relationship between economic growth and incumbent party's
share of the popular vote. For simplicity, we predict y (inc. party's share)
solely from x (economic performance), using a linear regression,

y ∼ N (a + bx , σ2),

with a noninformative prior distribution, p(a, b, log σ) ∝ 1, so that the
posterior distribution is normal-inverseχ2.
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Simple applied example: election forecasting (Hibbs, 2008)
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Simple applied example: election forecasting (Hibbs, 2008)
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Simple applied example: election forecasting (Hibbs, 2008)

Fit to all 15 data points in Figure, the posterior mode (â, b̂, σ̂) is
(45.9, 3.2, 3.6).

Although these data form a time series, we are treating them here as a
simple regression problem.

In our regression example, the log predictive probability density of the
data is

∑15
i=1 log(N (a + bxi , σ

2)), with an uncertainty induced by the
posterior distribution π(a, b, σ2|y), which is a Normal-Inverseχ2.
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Simple applied example: election forecasting (Hibbs, 2008)

Let's manually compute the predictive information criteria:

AIC The MLE is (â, b̂, σ̂) = (45.9, 3.2, 3.6). The estimated parameters
are 3. Thus:

AIC = −2
15∑
i=1

log(N (45.9 + 3.2xi , 3.6
2)) + 2× 3 = 86.6.
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Simple applied example: election forecasting (Hibbs, 2008)

DIC The relevant formula is
pDIC = 2(log(p(y |θ̂Bayes)− Eθ|y [log(p(y |θ)]. The second of these
terms is invariant to reparameterization, we calculate it with S draws.
The �rst term is not invariant:

Eθ|y [log(p(y |θ)] =
1

S

S∑
s=1

15∑
i=1

log(N (a(s) + b(s)xi , (σ
(s))2) = −42

log(p(y |θ̂Bayes)) =
15∑
i=1

log(N (E(a|y) + E(b|y)xi , (E(σ|y))2) = −40.5,

which gives pDIC = 2(−40.5− (−42.0)) = 3.0. Finally:

DIC = −2 log(p(y |θ̂Bayes) + 2pDIC = −2× (42 + 1.5) = 87
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Simple applied example: election forecasting (Hibbs, 2008)

WAIC

lppd =
15∑
i=1

log

(
1

S

S∑
s=1

log(N (a(s) + b(s)xi , (σ
(s))2)

)
= −40.9.

The e�ective number of parameters can be calculated as:

pWAIC =
n∑

i=1

Var
S
s=1 log(N (a(s) + b(s)xi , (σ

(s))2) = 2.7.

Thus:

WAIC = −2lppd + 2pWAIC = 81.8 + 5.4 = 87.2.
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Simple applied example: election forecasting (Hibbs, 2008)

LOOIC We �t the model 15 times, leaving out a di�erent data point
each time. For each �t of the model, we sample S times from the
posterior distribution of the parameters and compute the log predictive
density. The cross-validated pointwise predictive accuracy is:

lppdloo-cv =
15∑
l=1

log

(
1

S

S∑
s=1

log(N (a(ls) + b(ls)xl , (σ
(ls))2)

)
= −43.8

Then:

LOOIC = −2lppdloo-cv = 87.6

Finally, the e�ective number of parameters is:

ploo-cv = Elppd − Elppdloo-cv
= 2.9
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Simple applied example: election forecasting (Hibbs, 2008)

Value E�. par.

AIC 86.6 3
DIC 87 3
WAIC 87.2 2.7
LOOIC 87.6 2.9

Given that this model includes two linear coe�cients and a variance
parameter, these all look reasonable as an e�ective number of
parameters.

The four criteria tend to be similar due to the model simplicity: as the
complexity grows, AIC and DIC tend to loose power in predictive
accuracy.
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Implementation in Stan

We illustrate how to write Stan code that computes and stores the
pointwise log-likelihood using the eight schools example. The model is
unchanged, we only need to store the pointwise log-likelihood (the
log_lik object) in the generated quantities block:

...

generated quantities {

vector[J] log_lik;

for (j in 1:J){

log_lik[j] = normal_lpdf(y[j]| theta[j], sigma[j]);

}

}
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The loo package

The loo R package provides the functions loo() and waic() for e�ciently
computing PSIS-LOO and WAIC for �tted Bayesian models using the
methods described before.

These functions take as their argument an S × n loglikelihood matrix,
where S is the size of the posterior sample (the number of retained draws)
and n is the number of data points.

The loo() function returns PSIS-LOOIC and pLOO. The waic() function
computes the analogous functions for WAIC.
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Using the loo package

y <- c(28,8,-3,7,-1,1,18,12)

sigma <- c(15,10,16,11,9,11,10,18)

J <- 8

data <- list(y = y, sigma=sigma, J = J)

fit_1 <- stan("8schools.stan",

data = data, iter=200,

cores = 4, chains =4)

#computing psis-looic

log_lik_1 <- extract_log_lik(fit_1)

loo_1 <- loo(log_lik_1)

print(loo_1)

Estimate SE

elpd_loo -30.8 0.9

p_loo 1.3 0.3

looic 61.7 1.8
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Eight schools example: model comparison

Model:

yj ∼ N (θj , σ
2
y )

θj ∼ N (µ, τ2)

Three possible priors (then, three models):

1 τ ∝ 1

2 τ2 ∼ InvGamma(0.001, 0.001)

3 τ ∼ HalfCauchy(0, 2.5)

Let's compare the model through LOOIC and WAIC.
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Eight schools example: model comparison. LOOIC

loo_diff <- compare(loo_1, loo_2, loo_3)

loo_diff

elpd_diff se_diff elpd_loo p_loo looic

loo_2 0.0 0.0 -30.6 0.8 61.1

loo_3 -0.1 0.0 -30.6 0.8 61.2

loo_1 -0.4 0.3 -31.0 1.4 61.9

Model 2 (inverse gamma) is slightly favorite in terms of lower LOOIC.
Model (1) reports the lowest LOOIC. Anyway, di�erences between models
are quite negligible.
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Eight schools example: model comparison. WAIC

waic_1 <- waic(log_lik_1)

waic_2 <- waic(log_lik_2)

waic_3 <- waic(log_lik_3)

waic_diff <- compare(waic_1, waic_2, waic_3)

waic_diff

elpd_diff se_diff elpd_waic p_waic waic

waic_2 0.0 0.0 -30.6 0.8 61.1

waic_3 0.0 0.0 -30.6 0.8 61.2

waic_1 -0.3 0.3 -30.9 1.3 61.8

Model 2 (inverse gamma) is slightly favorite in terms of lower WAIC. The
number of e�ective parameters, pWAIC, is 0.8 for model 2 and 3, and 1.3
for model 1 (uniform prior).
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Major League Soccer models: model comparison

Let's compute the PSIS-LOO for the Major League Soccer models:

library(LearnBayes)

data(soccergoals)

y <- soccergoals$goals

mls_data <- list(y=y, N=length(y))

mls_fit_1 <- stan('mls_gamma.stan', data =mls_data,

iter =500, cores = 4 )

mls_data <- list(y=y, N=length(y), mu=1, tau=0.5)

mls_fit_2 <- stan('mls_normal.stan', data =mls_data,

iter =500, cores = 4 )

mls_data <- list(y=y, N=length(y), mu=2, tau=0.5)

mls_fit_3 <- stan('mls_normal.stan', data =mls_data,

iter =500, cores = 4 )

mls_data <- list(y=y, N=length(y), mu=1, tau=2)

mls_fit_4 <- stan('mls_normal.stan', data =mls_data,

iter =500, cores = 4 )
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Major League Soccer models

log_lik_1 <- extract_log_lik(mls_fit_1)

loo_1 <- loo(log_lik_1)

log_lik_2 <- extract_log_lik(mls_fit_2)

loo_2 <- loo(log_lik_2)

log_lik_3 <- extract_log_lik(mls_fit_3)

loo_3 <- loo(log_lik_3)

log_lik_4 <- extract_log_lik(mls_fit_4)

loo_4 <- loo(log_lik_4)

loo_diff <- compare(loo_1, loo_2, loo_3, loo_4)

elpd_diff se_diff elpd_loo p_loo looic

loo_2 0.0 0.0 -53.2 0.7 106.3

loo_1 0.0 0.0 -53.2 0.7 106.4

loo_4 -0.1 0.2 -53.3 0.8 106.6

loo_3 -0.3 0.4 -53.5 0.8 107.0
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Hibbs model: forecasting elections
data {

int N;

vector[N] y;

vector[N] X;

}

parameters {

real a;

real b;

real<lower=0> sigma;

}

model {

target+= normal_lpdf(y|a+X*b, sigma); // data model

target+=-log(sigma); // log prior for p(sigma) propto 1/sigma

}

generated quantities {

vector[N] log_lik; // pointwise log-likelihood

for (n in 1:N)

log_lik[n] = normal_lpdf(y[n]| a+X[n]*b, sigma);

}
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Hibbs model: forecasting elections

log_lik_hibbs <- extract_log_lik(fit_hibbs)

loo_hibbs <- loo(log_lik_hibbs)

print(loo_hibbs)

Estimate SE

elpd_loo -43.6 3.4

p_loo 2.7 1.0

looic 87.3 6.8

waic(log_lik_hibbs)

Estimate SE

elpd_waic -43.5 3.4

p_waic 2.6 1.0

waic 87.0 6.7
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Hibbs model: forecasting elections

We retrieved the same results obtained analytically.

If we had other covariates, we could add them in the model and
compare the LOOIC and the WAIC of this extended model with those
for the basic model.
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Some considerations

In comparing nested models, the key questions of model comparison are
typically: (1) is the improvement in �t large enough to justify the
additional di�culty in �tting, and (2) is the prior distribution on the
additional parameters reasonable?

The second scenario of model comparison is between two or more
nonnested models-neither model generalizes the other. One might compare
regressions that use di�erent sets of predictors to �t the same data. In
these settings, we are typically not interested in choosing one of the
models-it would be better, both in substantive and predictive terms, to
construct a larger model that includes both as special cases, including both
sets of predictors and also potential interactions in a larger regression,
possibly with an informative prior distribution if needed to control the
estimation of all the extra parameters.
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Some considerations

Formulas such as AIC, DIC, and WAIC fail in various examples: AIC does
not work in settings with strong prior information, DIC gives nonsensical
results when the posterior distribution is not well summarized by its mean,
and WAIC relies on a data partition that would cause di�culties with
structured models such as for spatial or network data. Cross-validation is
appealing but can be computationally expensive and also is not always well
de�ned in dependent data settings.

But there are times when it can be useful to compare highly dissimilar
models, and, for that purpose, predictive comparisons can make sense. In
addition, measures of e�ective numbers of parameters are appealing tools
for understanding statistical procedures
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Further readings

Further reading:

Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding
predictive information criteria for Bayesian models. Statistics and
Computing, 24(6), 997�1016. Here the pdf

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian
model evaluation using leave-one-out cross-validation and WAIC.
Statistics and Computing, 27(5),1413�1432. Here the pdf
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