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Motivations

Bayesian models can be evaluated and compared in several ways. Most
simply, any model or set of models can be taken as an exhaustive set, in
which case all inference is summarized by the posterior distribution.

The fit of model to data can be assessed using posterior predictive checks,
prior predictive checks or, more generally, mixed checks for hierarchical
models.

However, we may need a pure comparison set of tools: when several
candidate models are available, they can be compared and averaged using:

@ Bayes factors (which is equivalent to embedding them in a larger
discrete model)

e Predictive information criteria (AIC, DIC, BIC, WAIC,...)
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Hypothesis testing

In the classical framework we compare two alternatives:

HO:GGGO;H1:0€@1,
where ©y and ©7 form a partition of the parameter space.

@ In the classical approach, data are used to verify whether they are
compatible with the null hypothesis through the calculation of the
p-value, that is the probability that, under the null hypothesis, we may
observe a sample which would give a result which is even less
convincing under the null hypothesis (compared with the one we
observe).

Leonardo Egidi oV
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Hypothesis testing

@ In a Bayesian framework, the most natural way to proceed is to
quantify the posterior weights of the two competing hypootheses, that
is, Pr(Holy), defined as:

Pr(Holy) = Pr(@oly) = /e =(6]y)db,

0

where we assume that the random variable © is continuous.

Leonardo Egidi 550
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The simplest case: Two simple hypotheses

This is the most elementary case (enough to present the irreconcilability)

Ho:0 =06y, H;:0=0,
We may elicit the following prior distributions:

mo = Pr(Hp), m =Pr(Hi) =1—myp.
Likelihood:

p(yl0o), p(yl6h)
The relative weights of the two hypotheses is then given by the ratio:

Pr(Holy)  7(boly)  mo p(y|6o)

Pr(Fily) ~ 7(@ily) 1 p(ylon) )

Leonardo Egidi 2,50
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The simplest case: Two simple hypotheses

The posterior odds are the product of two terms:

e 7o /m is the relative weight of the two hypotheses before observing
the data.
@ the second factor is usually denoted as:

_ pylbo) 5
p(yl01)

and is called Bayes factor: it represents the multiplicative factor which

transforms the prior odds into the posterior odds. BFg; represents a

measure of evidence in favour of Hy, where BFp; > 1(< 1) indicates

that data favour Hy (H).

BFo1

Leonardo Egidi 75
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Toy example

Observe y ~ N(0,02), with o = 0.7, we want to test:
H01(9:90:—1, VS. H129:91:1.

o Frequentist approach: fix a = 0.01 and calculate the rejection region
as % > 2.32, that is y > 0.624.

o Bayesian approach: the data information is summarized by the Bayes
factor BFg1 = p(y|6o)/p(y]61)-

Leonardo Egidi 5,50
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Toy example

Comments;

@ Frequentist approach tends to accept Hy even for values which are
more likely under H; (see what happens between 0 and 0.624...).

o Bayesian approach tends to accept Hy only if the posterior probability
of Hp is higher than the posterior probability of Hy. If 19 = m =1/2,
Hy is ‘accepted’ if the marginal likelihood under Hy is higher than the
marginal likelihood under Hj.

Leonardo Egidi ) 7
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The general case

Hp:0€0©p; vs. Hy:0 € 06y,

where ©g and ©1 form a partition of the parameter space.
Prior: two steps

@ Prior probabilities:

o = Pr(©qg), m =Pr(01).
@ For H;, i = 0,1, gi(0) is the prior density of 6. Then the global prior is:

(0) = m08o(0) 0 € O
(1 — 7T0)g1(¢9) 0 € 64

T o T
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The general case

The beliefs about the two hypotheses are summarized by the posterior odds
ratio:

Pr(6 € ©oly)  Jo, m(OlY)d0  my [, P(y]0)g0(0)d0
Pr(f € ©1ly) Jo, ©(01y)do S 1-mp Jo, P(y|0)g1(0)do”

0)go(0)d0
@ The Bayes factor BFy; = % is a ratio between marginal
©1

likelihoods. Their evaluation is central in testing hypotheses and
model selection!

@ Prior information plays a minor role through the densities gy and gi.

Leonardo Egidi )
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Bayes factors and improper priors

Bayes factor cannot be used with improper priors. This happens because
the marginal distribution of the data is not well defined.

Example Suppose an iid sample y1,...,y, ~ N(p,03), with o3 known
and 7(u) = c. Then:

p() = [ pUln)r(n)dp = ¢ x constant

If Hy: p= o =0 and Hy : = p1 # 0, the Bayes factor will depend on
c! In fact:

p(y|6o)
¢ Jozq, P(Y10)d0

This has caused a great effort in producing new methods for proper priors
for testing.

Leonardo Egidi 5
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Jeffreys-Lindley’s paradox

Jeffreys-Lindley's paradox describes a counterintuitive situation in which
the Bayesian and frequentist approaches to a hypothesis testing problem
give opposite results for certain choices of the prior distribution, which
favor Hy weakly.

The paradox occurs when: the frequentist test indicates sufficient evidence
to reject Hp, say, at the 5% level, and P(Hp|y) is high, say, 95%, indicating
strong evidence that Hy is in fact true.

Leonardo Egidi ) 7



e Hypothesis testing e Testing and model selection e Predictive information criteria e Implementation i

Jeffreys-Lindley’s paradox

Let us assume again y1, ..., Y, ~ N (i, o2), with 0 known, and let

Ho : 60 =6y, Hy : 0 # 0y. Let assume as a prior for m(f1) under H; a
normal A/ (6p, 72) with large 7 (or any other flat enough or vague or diffuse
prior).

It can be shown that:

YD exp(—n(y — 60)?/202)

BFoy = —=/ .
Tz P(—n(y — 60)?/2(0 + n72))
Let u=+/n(y — 6p)/o and let p = 72/0?. Then:
2 2
BFo1 = /1 + np? exp(— = —°
01 + np? exp( 5 1+np2)

For n — oo, the BF indicates strong evidence for Hp.

Leonardo Egidi )
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Testing and model selection with Bayes factors
Rather than verifying a particular value for a parameter, we are often more
interested in assessing some model comparisons. In such a viewpoint,

distinct models represent distinct hypotheses, and data y are assumed to
have arisen from one of several models:

My iy ~ pi(y|6r)
My iy ~ pa(y|02)

M; :y ~ pi(yl0;)
Mq Ly~ Pq(ywq)

Assign prior probabilities, Pr(M;) to each model
Leonardo Egidi 18 / 74
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Testing and model selection with Bayes factors

Under model M;:
e Prior density of 6: m;(6;).
e Marginal density of y:

P = [ B0163)m(6,)8,

which measures how likely is y under model M;.
@ Posterior density:

mi(05ly) = “ELEE (ejgj 'Z’y()y %)

e Bayes factor of M; to M; is defined as the ratio between posterior
odds and prior odds for the two competing models:

BFji = pi(y)/pi(y)- (3)
Leonardo Egidi 0 70
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Testing and model selection with Bayes factors

Posterior probability of a model:

-1
Pr(M;)p;(
Pe(M1y) = =g [Zl o ] (@

If Pr(M;) =1/q,
-1

Pr(M;ly 25.27 BFy;

(M) =p = s~ o Z J

Reporting: it is useful to separately report the p;(y)’s and the Pr(M;)’s.
Knowing the p;j(y)'s allows computation of the posterior probabilities for
any prior probabilities.

Leonardo Egidi B
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Bayes factors

Posterior odds of model M; relative to model M:

Pr(Mily) _ Pr(M;)  ply|M) (5)
Pr(Mily) — Pr(My) = p(y[My)
, N—— N——

Posterior odds Prior odds  Bayes factor

The Bayes Factor is the weighted likelihood ratio of M; relative to My or a
ratio of marginal (wrt the prior) likelihoods.

Jeffreys (1961) recommends the use of the following rule of thumb to
decide between models M; and M:

BFj > 100 decisive evidence against M;; 10 < BFj < 100 strong
evidence against My; 3 < BFj < 10 substantial evidence against M.

Leonardo Egidi B
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Example: soccer goals models.

Major League Soccer model

Suppose we are interested in assessing the average number of goals scored
by a given team in Major League Soccer, and denote the goals for n games
as yi1,...,Yn. Since goals are relatively rare events, we assume that:

yi ~ Poisson(X), i=1,...,n.
Four different priors, then, four possible models:

QO )\ ~ Gamma(4.57,1.43)
Q log()\) ~ N (1, .5%)
Q log(\) ~ N(2,.5%)
Q log()\) ~ N(1,2?)

Leonardo Egidi Y
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Example: soccer goals

Once we know how to compute marginal likelihoods, we could compute the

Bayes factors for each pair of models. The Bayes factor in support of Prior
1 over Prior 2 is:

Cp(y) e, P(yI0)T1(0)dO

B2 = 0 0) T Jo, P I0)m(0)d0

M, M, Ms M,
M; 1.00 0.78 35.63 1.89
M, 128 1.00 4566 242
M; 0.03 0.02 1.00 0.05
My 053 0.41 1890 1.00

Prior 2 is always favored over the other priors. Generally, the marginal
probability for a prior decreases as the prior density becomes more diffuse.

Leonardo Egidi B
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Bayesian model selection

The basic ingredient for model selection is then the marginal density:

pi(y) = /P(YWJ)WJ(QJ)C]‘QJ

that is the normalizing constant of the posterior distribution under model
M;, also seen as the likelihood of the model M;.

o —T——— e

For any given model it can be written as:

Ej[p(y10)],

where the expectation is taken wrt the prior 7;(6;). Several aproximations
are available: normal, Laplace, Monte Carlo, Importance sampling,
composition method...

Leonardo Egidi o
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Computation of the marginal density

Evaluation of the integral in p(y) can be performed using Monte Carlo
computing methods or asymptotic expansions.

The Laplace expansion plays a central role in Bayesian inference since not
only p(y) but also many posterior summaries are expressible in terms of
integrals (or as ratio of integrals) of the form:

1= [ Ho)x©plyie)de.
for suitable functions h(#). For /, the Laplace expansion gives:

GG
BT R

~

with & MLE of 6, p the parameter vector dimension and J(0) the observed
information matrix.

Leonardo Egidi B



C o Hipethessresting e Testing and model selection o Predictive information criteria ¢ lrplereniation |
Indice

© Predictive information criteria

S s e T T . s | 7



e Hypothesis testing e Testing and model selection e Predictive information criteria e Implementation i

Evaluate predictive accuracy

One way to evaluate a model is through the accuracy of its predictions.
Sometimes we care about this accuracy for its own sake, as when
evaluating a forecast. In other settings, predictive accuracy is valued not
for its own sake but rather for comparing different models. We are
interested in prediction accuracy for two reasons:

@ to measure the performance of a model that we are using;
@ second, to compare models.

If we consider data y1,...,y, modelled as independent given parameters 6,
thus p(y|0) = [/, p(¥il0). A general summary of predictive fit is the log
predictive density, log(p(y|€)). When comparing models of differing size, it
is important to make some adjustment for the natural ability of a larger
model to fit data better, even if only by chance.

Leonardo Egidi B
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Evaluate predictive accuracy

The general form for the predictive information criteria that we will
encounter is the following:

crit = —2lpd + penalty

@ |pd is a measure of the log predictive density of the fitted model.

@ penalty is a penalization accounting for the effective number of
parameters of the fitted model.

The interpretation is the following: the lower is a particular value for an
information criteria, and the better is the model fit. Moreover, if two
competing models share the same value for the log predictive density, the
model with less parameters is favored.

This is the Occam’s Razor occurring in statistics:

Frustra fit per plura quod potest fieri per pauciora

Leonardo Egidi S0 o
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Evaluate predictive accuracy

o Difficulty All the proposed measures are attempting to perform what
is, in general, an impossible task: to obtain an unbiased and accurate
measure of out-of-sample prediction error that will be valid over a
general class of models and that requires minimal computation.

Leonardo Egidi S
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Akaike Information Criteria (AIC)

Let
@ p be the number of parameters estimated in the model.

o O be the maximum likelihood estimate for 6.

The simplest bias correction is based on the asymptotic normal posterior
distribution. In this limit (or in the special case of a normal linear model
with known variance and uniform prior distribution), subtracting p from the
log predictive density given the MLE is a correction for how much the
fitting of p parameters will increase predictive accuracy, by chance alone:

log(p(y|0)) — p.

As defined by Akaike (1973), Akaike Information Criteria (AIC) is the
above multiplied by -2, thus:

AIC = —2log(p(y|d)) + 2p- (6)
esmarda Egidl e
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AIC

@ It makes sense to adjust the deviance for fitted parameters, but once
we go beyond linear models with flat priors, we cannot simply subtract
p.

@ Informative prior distributions and hierarchical structures tend to
reduce the amount of overfitting, compared to what would happen
under simple least squares or maximum likelihood estimation.

@ For models with informative priors or hierarchical structure, the
effective number of parameters strongly depends on the variance of
the group-level parameters.

@ Under the hierarchical model in the eight schools example, we would
expect the effective number of parameters to be somewhere between 8
(one for each school) and 1 (for the average of the school effects).

Leonardo Egidi S
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Deviance Information Criteria (DIC)

A very popular approach has been proposed recently by Spiegelhalter et al
(2002). It replaces the MLE @ in (6) with the posterior mean

éBayes = E(f|y) and p with a data-based bias correction. The new measure
of predictive accuracy is:

Iog(p(Y‘éBayes)) — PDIC,

where ppc is the effective number of parameters, defined as:

poic = 2(1og(p(y|0ayes)) — Eq|, [log(p(¥10)],

where the expectation in the second term is an average of § over its
posterior distribution, and is usually computed through the S draws from
the posterior distribution. Then:

DIC = -2 |0g(P(Y‘§Bayes)) + 2ppic (7)

Leonardo Egidi SRy
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Bayes Information Criteria (BIC)

A simple way to approximate a marginal density, and thus the BF, is by the
Laplace method. For one of the hypotheses, we apply the Laplace

expansion to p(y). Then, for large sample size n and up to order O(1), we
have:

—2log(p(y)) = BIC = —2log(p(y|f)) + plog n,

that is the Bayes Information Criterion (BIC), which is used for rough

comparison of competing models, with 0 MLE of 0, p the parameter vector
dimension.

BIC is splitted in two components:

o —2log(p(y|A)): this is the deviance, or the log predictive density of
the data given a point estimate of the fitted model, multiplied by -2;

@ plogn: a penalty term, which is bigger as p and n increase.

Leonardo Egidi SRR
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BIC

Consider two models:

My (y1,---,¥0) ~ p1(y|6h), 61 € ©1 C R
M2 : (.yla"’ 7yn) ~ p2(y|02)502 € @2 C sz)

and let (A1) and 7(6>) be the priors. Then:

2log BF13 = ABIC =W — (p — p1) log n,

with W = 2(log(p(y|02)) — log(p(y|f1))) the usual log-likelihood ratio test
statistic.

Comment The lower is the BIC for model 1 (2) when compared to model 2
(1) and the better is considered model 1 (2).

Leonardo Egidi e
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BIC

@ BIC and its variants differ from the other information criteria
considered here in being motivated not by an estimation of predictive
fit but by the goal of approximating the marginal probability density of
the data, p(y), under the model, which can be used to estimate
relative posterior probabilities in a setting of discrete model
comparison.

@ It is completely possible for a complicated model to predict well and
have a low AIC, DIC, and WAIC, but, because of the penalty function,
to have a relatively high (that is, poor) BIC. Given that BIC is not
intended to predict out-of-sample model performance but rather is
designed for other purposes, we do not consider it further here.

Leonardo Egidi i o
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Watanabe-Akaike Information Criteria (WAIC)

We define the log pointwise predictive density for a single value y;:

lppd =) " log(p(yily)) Zlog/ (vil0)m(8]y)do. (8)

i=1
To compute the lppd in practice, we can evaluate the expectation using

draws from 7(6|y), the usual posterior simulations, which we label
005), s =1,...,S, defining the computed log pointwise predictive density:

n S
Ippd = > _log (é Zp(y,-w(s))) (9)
=1 s=1

Leonardo Egidi e o
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WAIC

Then, we define the WAIC as follows:

WAIC = —2lppd + 2pwaic, (10)

where the quantity pwaic is defined as:

pwaic = Y _ Varg, (log(p(yi|6)),
i—1

which computes the variance separately for each data point. We can
practically compute this quantity by using:

> " Varg_, (log(p(yil0®)),
i=1

where Varle represents the sample variance,
S _ 1 S =\2
Varg_jas = 51 > _5—1(as — a)°.
Leonardo Egidi 43 / 74
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WAIC

@ Compared to AIC and DIC, WAIC has the desirable property of
averaging over the posterior distribution rather than conditioning on a
point estimate.

@ This is especially relevant in a predictive context, as WAIC is
evaluating the predictions that are actually being used for new data in
a Bayesian context. AlIC and DIC estimate the performance of the
plugin predictive density, but Bayesian users of these measures would
still use the posterior predictive density for predictions.

e WAIC works also with singular models and thus is particularly helpful
for models with hierarchical and mixture structures in which the
number of parameters increases with sample size and where point
estimates often do not make sense.

Leonardo Egidi 5 o
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Leave-one-out cross-validation

In Bayesian cross-validation, the data are repeatedly partitioned into a
training set Virain and a holdout set yholgout, and then the model is fit to
Yirain (thus yielding a posterior distribution 7(0|yirain)), with this fit
evaluated using an estimate of the log predictive density of the holdout
data, log(ptrain (Vholdout)) = |0gf Ppred(Yholdoutw)ﬂ'train(e)de- The Bayesian
leave-one-out cross-validation (LOO-CV) estimate of out-of-sample
predictive fit is:

10pdocy = > log(p(yily_1) Zlog / ilo)r(6ly_r)d6, (1)
=1

where y_; represents the data Wlthout the i-th data point. This quantity is
usually calculated as:

Z log (_19 Z p(yfIQ(S))>

Leonardo Egidi 5 o
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Leave-one-out cross-validation

@ Each prediction is conditioned on n — 1 data points, which causes
underestimation of the predictive fit. For large n the difference is
negligible, but for small n (or when using K-fold cross-validation) we
can use a first order bias correction.

o Cross-validation is like WAIC in that it requires data to be divided into
disjoint, ideally conditionally independent, pieces. This represents a
limitation of the approach when applied to structured models.

@ In addition, cross-validation can be computationally expensive except
in settings where shortcuts are available to approximate the
distributions p(yi|y—;)-

@ The purpose of using LOO or WAIC is to estimate the accuracy of the
predictive distribution p(¥;i|y).

Leonardo Egidi R
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Importance sampling LOO (IS-LOO)

If the n points are conditionally independent in the data model we can then
evaluate p(y;|y_;) with draws () from the full posterior 7(6]y) using
importance ratios:

() _ 1 (8“)]y-)

r = x

" p(ilo®) — w(0G)]y)
to get the importance sampling leave-one-out (IS-LOO) predictive
distribution,

Zsszl ri(s)P()N/i"g(s))

S
Zs:l ri(S)
Evaluating this LOO log predictive density at the held-out data point y;, we
get

p(Jily—i) ~ (12)

1

p(yi|y—f) ~ 1 S 1
§ Lo=1 55,100

Leonardo Egidi R
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PSIS-LOO

A direct use of r; induces instability because the importance ratios can have
high or infinite variance. We can improve the LOO estimate using Pareto
smoothed importance sampling (PSIS), which applies a smoothing
procedure to the importance weights. Here the main steps:

© Since the distribution of the importance weights used in LOO may
have a long right tail, we fit a generalized Pareto distribution to the
tail (20% largest importance ratios r(*)). The computation is done
separately for each held-out data point J.

@ Stabilize the importance ratios by replacing the largest ratios by the

expected values of the order statistics of the fitted generalized Pareto
(s)

distribution. Label these values as &;
© To guarantee finite variance of the estimate, truncate each vector of
weights at $3/4W;, where w; is the average of the S smoothed weights

corresponding to the distribution holding out data point / . Finally,
(s)

label these truncated weights as w;

Leonardo Egidi e
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The PSIS estimate of the LOO expected log pointwise predictive density
(PSIS-LOO) is the same as in (12), but with the new weights w; in place of
ri. The LOOIC criteria is then defined as:

n S gs) ~ 9(5)
LOOIC = -2 log (Zs_l - p((ys’)‘ )> (13)
i=1 D em1 W

The estimated shape parameter k of the generalized Pareto distribution
can be used to assess the reliability of the estimate:

@ k < 1/2: the variance of the raw importance ratios is finite, the
central limit theorem holds, and the estimate converges quickly.

@ k > 1/2: the variance of the PSIS estimate is finite but may be large.

Leonardo Egidi o o
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Simple applied example: election forecasting (Hibbs, 2008)

Forecast elections based on economic growth

We propose now a simple model to forecast elections based solely on
economic growth. Better forecasts are possible using additional information
such as incumbency and opinion polls, but what is impressive here is that
this simple model does pretty well all by itself. Next table shows the
year-by-year data, whereas next figure shows a quick summary of economic
conditions and presidential elections over the past several decades. There is
a clear linear relationship between economic growth and incumbent party’s
share of the popular vote. For simplicity, we predict y (inc. party's share)
solely from x (economic performance), using a linear regression,

y ~N(a+ bx,0?),

with a noninformative prior distribution, p(a, b, logo) o 1, so that the
posterior distribution is normal-inversey?.

Leonardo Egidi S



Lo e il s o e il e celeen o Pradfel iftamettn el ol
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Growth Vote share for Candidate of Candidate of
Year rate incumbent party  incumbent party other party
1952 2.40 44.60 Stevenson Eisenhower
1956 2,80 57.76 Eisenhower Stevenson
1960 0.85 49.91 Nixon Kennedy
1964 4.21 61.34 Johnson Goldwater
1968 3.02 4960 Humphirey Nixon
1972 362 61.79 Nixon MeGovern
1976 1L.08 48.95 Ford Carter
1980 -0.39 44.70 Carter Reagan
1984 3.86 59.17 Reagan Maondale
1988 227 5394 Bush, Sr. Dukakis
19492 0.38 46.55 Clinton
1996 14 54.74 Daole
20000 2.36 50.27 Bush, Jr.
2004 1.72 51.24 Bush, Jr. Kerry
2008 0.10 46.32 MeCain Obama
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Simple applied example: election forecasting (Hibbs, 2008)

Forecasting elections from the economy

Income growth Incumbent party's share of the popular vote

Johnson vs. Goldwater (1964) more than 4% ! .
Reagan vs. Mondale (1984) I .
Nixon vs. McGovern (1972) 3% to 4% : .
Humphrey vs. Nixon (1968) ..
Eisenhower vs. Stevenson (1956) . .
Stevenson vs. Eisenhower (1952) . !

2% to 3% !

Gore vs. Bush, Jr. (2000) .
Bush, Sr. vs. Dukakis (1988)

Bush, Jr. vs. Kerry (2004)

Ford vs. Carter (1976) 1% to 2% .

Clinton vs. Dole (1996)

I
i
'
I
!
.
|
|
Carter vs. Reagan (1980) negative . |
0

Nixon vs. Kennedy (1960)
Bush, Sr. vs. Clinton (1992) 0% to 1% .
McCain vs. Obama (2008) .
45% 50% 55% 60%
Above matchups are all listed as it party's vs. other party's

Income growth is a weighted measure over the four years preceding the election. Vote share excludes third parties.

T o
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Simple applied example: election forecasting (Hibbs, 2008)

e Fit to all 15 data points in Figure, the posterior mode (4, b, d) is
(45.9, 3.2, 3.6).

@ Although these data form a time series, we are treating them here as a
simple regression problem.

@ In our regression example, the log predictive probability density of the
data is 312, log(N(a + bx;,02)), with an uncertainty induced by the
posterior distribution 7(a, b, a?|y), which is a Normal-Inversex?.
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Simple applied example: election forecasting (Hibbs, 2008)

Let's manually compute the predictive information criteria:

e AIC The MLE is (4, 1376) = (45.9,3.2,3.6). The estimated parameters
are 3. Thus:

15
AIC = -2 " log(N(45.9 + 3.2x;,3.6%)) + 2 x 3 = 86.6.
i=1

T o
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Simple applied example: election forecasting (Hibbs, 2008)

@ DIC The relevant formula is
poic = 2(log(p(y|0Bayes) — Egjy[log(p(y]0)]. The second of these
terms is invariant to reparameterization, we calculate it with S draws.
The first term is not invariant:

Eg),[log(p(y0)] Zng (a®) + bB)x;, (00))?) = —42

s=1 i=1
log(p Y|‘98ayes Z log(N(E(aly) + E(b|y)xi, (E (a|y))2) = —40.5,
which gives ppjc = 2(—40.5 — (—42.0)) = 3.0. Finally:

DIC = —2log(p(y|fpayes) + 2ppic = —2 x (42 + 1.5) = 87

Leonardo Egidi 5 o
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Simple applied example: election forecasting (Hibbs, 2008)

e WAIC

15 S
1
lppd = E log <5 g log(N(a'®) + bB)x;, (a(s))2)> = —40.9.
i=1 s=1

The effective number of parameters can be calculated as:

n
PWAIC = Z Var2_, log(N(a®) + b¥)x;, (6())2) = 2.7
i=1
Thus:

WAIC = —2lppd + 2pwaic = 81.8 +5.4 = 87.2.

Leonardo Egidi £ o
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Simple applied example: election forecasting (Hibbs, 2008)

e LOOIC We fit the model 15 times, leaving out a different data point
each time. For each fit of the model, we sample S times from the
posterior distribution of the parameters and compute the log predictive
density. The cross-validated pointwise predictive accuracy is:

15
Ippdloo—cv = Z log < Z |og /S —|— b(/s) ( (/5))2)> — 438
1=1

Then:

LOOIC = —2lppd,yy., = 87.6

Finally, the effective number of parameters is:

Ploo-cv = EIppd - Elppdloo—cv =29

Leonardo Egidi SR



e Hypothesis testing e Testing and model selection e Predictive information criteria e Implementation i

Simple applied example: election forecasting (Hibbs, 2008)

Value Eff. par.
AlC 86.6 3
DIC 87 3
WAIC  87.2 2.7
LOOIC 87.6 2.9

@ Given that this model includes two linear coefficients and a variance
parameter, these all look reasonable as an effective number of
parameters.

@ The four criteria tend to be similar due to the model simplicity: as the
complexity grows, AIC and DIC tend to loose power in predictive
accuracy.

Leonardo Egidi 5 o
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Implementation in Stan

We illustrate how to write Stan code that computes and stores the
pointwise log-likelihood using the eight schools example. The model is
unchanged, we only need to store the pointwise log-likelihood (the
log_lik object) in the generated quantities block:

generated quantities {
vector[J] log_lik;
for (j in 1:1){
log_1ik[j] = normal_lpdf(y[jl| thetaljl, sigmaljl);
}
3

Leonardo Egidi W
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The 1oo package

The 1oo R package provides the functions 1oo() and waic() for efficiently
computing PSIS-LOO and WAIC for fitted Bayesian models using the
methods described before.

These functions take as their argument an S x n loglikelihood matrix,
where S is the size of the posterior sample (the number of retained draws)
and n is the number of data points.

The 1o0() function returns PSIS-LOOIC and pLoo. The waic() function
computes the analogous functions for WAIC.

Leonardo Egidi 5 o
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Using the loo package

y <- c(28,8,-3,7,-1,1,18,12)

sigma <- ¢(15,10,16,11,9,11,10,18)

J <- 8

data <- list(y = y, sigma=sigma, J = J)

fit_1 <- stan("8schools.stan",
data = data, iter=200,
cores = 4, chains =4)

#computing psis-looic

log_lik_1 <- extract_log_lik(fit_1)

loo_1 <- loo(log_lik_1)

print(loo_1)

Estimate SE

elpd_loo -30.8 0.9
p_loo 1.3 0.3
looic 61.7 1.8

T o



Eight schools example: model comparison

Model:

yj ~ N(6),07)

Yy
0; ~ N (p, %)
Three possible priors (then, three models):

QO 7Tx1
@ 72 ~ InvGamma(0.001,0.001)
© 7 ~ HalfCauchy(0,2.5)

Let’s compare the model through LOOIC and WAIC.

s e T T, <1 | 7
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Eight schools example: model comparison. LOOIC

loo_diff <- compare(loo_1, loo_2, loo_3)

loo_diff

elpd_diff se_diff elpd_loo p_loo looic
loo_2 0.0 0.0 -30.6 0.8 61.1
loo_3 -0.1 0.0 -30.6 0.8 61.2
loo_1 -0.4 0.3 -31.0 1.4 61.9

Model 2 (inverse gamma) is slightly favorite in terms of lower LOOIC.
Model (1) reports the lowest LOOIC. Anyway, differences between models
are quite negligible.
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e Hypothesis testing

o Testing and model selection

e Predictive information criteria

Eight schools example: model comparison. WAIC

waic_1 <-
waic_2 <-
waic_3 <-

waic(log_lik_1)
waic(log_lik_2)
waic(log_lik_3)

waic_diff
waic_diff

elpd_diff se_diff

waic_2 0.0 0.0
waic_3 0.0 0.0
waic_1 -0.3 0.3

<- compare(waic_1, waic_2, waic_3)

elpd_waic p_waic waic

-30.6 0.8 61.1
-30.6 0.8 61.2
-30.9 1.3 61.8

© Implementation i

Model 2 (inverse gamma) is slightly favorite in terms of lower WAIC. The
number of effective parameters, pwaic, is 0.8 for model 2 and 3, and 1.3

for model 1 (uniform prior).

Leonardo Egidi
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Major League Soccer models: model comparison

Let’s compute the PSIS-LOO for the Major League Soccer models:

library(LearnBayes)

data(soccergoals)

y <- soccergoals$goals

mls_data <- list(y=y, N=length(y))

mls_fit_1 <- stan('mls_gamma.stan', data =mls_data,
iter =500, cores = 4 )

mls_data <- list(y=y, N=length(y), mu=1, tau=0.5)

mls_fit_2 <- stan('mls_normal.stan', data =mls_data,
iter =500, cores = 4 )

mls_data <- list(y=y, N=length(y), mu=2, tau=0.5)

mls_fit_3 <- stan('mls_normal.stan', data =mls_data,
iter =500, cores = 4 )

mls_data <- list(y=y, N=length(y), mu=1, tau=2)

mls_fit_4 <- stan('mls_normal.stan', data =mls_data,
iter =500, cores = 4 )
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Major League Soccer models

log_1lik_1 <- extract_log_lik(mls_fit_1)
loo_1 <- loo(log_lik_1)
log_1lik_2 <- extract_log_lik(mls_fit_2)
loo_2 <- loo(log_lik_2)
log_lik_3 <- extract_log_lik(mls_fit_3)
loo_3 <- loo(log_lik_3)
log_lik_4 <- extract_log_lik(mls_fit_4)
loo_4 <- loo(log_lik_4)

loo_diff <- compare(loo_1, loo_2, loo_3, loo_4)

elpd_diff se_diff elpd_loo p_loo looic

loo_2 0.0 0.0 -63.2 0.7 106.3
loo_1 0.0 0.0 -563.2 0.7 106.4
loo_4 -0.1 0.2 -63.3 0.8 106.6
loo_3 -0.3 0.4 -53.5 0.8 107.0
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Hibbs model: forecasting elections

data {
int N;
vector[N] y;
vector[N] X;
}
parameters {
real a;
real b;
real<lower=0> sigma;
}
model {
target+= normal_lpdf (y|a+X*b, sigma); // data model
target+=-log(sigma) ; // log prior for p(sigma) propto 1/sigma
}
generated quantities {
vector[N] log_lik; // pointwise log-likelihood
for (n in 1:N)
log_lik[n] = normal_lpdf(y[n]| a+X[n]l*b, sigma);

}
s e T T . <o | 7
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Hibbs model: forecasting elections

log_lik_hibbs <- extract_log_lik(fit_hibbs)
loo_hibbs <- loo(log_lik_hibbs)
print(loo_hibbs)

Estimate SE

elpd_loo -43.6 3.4
p_loo 2.7 1.0
looic 87.3 6.8

waic(log_lik_hibbs)

Estimate SE

elpd_waic -43.5 3.4
p_waic 2.6 1.0
waic 87.0 6.7
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Hibbs model: forecasting elections

@ We retrieved the same results obtained analytically.

o If we had other covariates, we could add them in the model and
compare the LOOIC and the WAIC of this extended model with those
for the basic model.

Leonardo Egidi o
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Some considerations

In comparing nested models, the key questions of model comparison are
typically: (1) is the improvement in fit large enough to justify the
additional difficulty in fitting, and (2) is the prior distribution on the
additional parameters reasonable?

The second scenario of model comparison is between two or more
nonnested models-neither model generalizes the other. One might compare
regressions that use different sets of predictors to fit the same data. In
these settings, we are typically not interested in choosing one of the
models-it would be better, both in substantive and predictive terms, to
construct a larger model that includes both as special cases, including both
sets of predictors and also potential interactions in a larger regression,
possibly with an informative prior distribution if needed to control the
estimation of all the extra parameters.
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Some considerations

Formulas such as AIC, DIC, and WAIC fail in various examples: AlC does
not work in settings with strong prior information, DIC gives nonsensical
results when the posterior distribution is not well summarized by its mean,
and WAIC relies on a data partition that would cause difficulties with
structured models such as for spatial or network data. Cross-validation is
appealing but can be computationally expensive and also is not always well
defined in dependent data settings.

But there are times when it can be useful to compare highly dissimilar
models, and, for that purpose, predictive comparisons can make sense. In
addition, measures of effective numbers of parameters are appealing tools
for understanding statistical procedures
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Further readings

Further reading:

e Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding
predictive information criteria for Bayesian models. Statistics and
Computing, 24(6), 997-1016. Here the

o Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian
model evaluation using leave-one-out cross-validation and WAIC.
Statistics and Computing, 27(5),1413-1432. Here the
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