Exercises Lecture III:
 Random numbers with non uniform distributions; simulations of simple random processes

1. Random numbers with non uniform distributions: Inverse Transformation Method
(a) With the Inverse Transformation Method we can generate random numbers according to the exponential distribution $f(z)=\lambda e^{-\lambda z}$, starting from random numbers with uniform distribution: if x is the random variable with uniform distribution in $[0,1]$, then $z=$ $-\ln (x)$ is distributed according to e^{-z}. Write a code implementing the algorithm. An example is given in expdev.f90.
(b) Check-doing a histogram-that the random variate z generated with that algorithm is actually exponentially distributed.
(What is convenient to plot in order to check this behavior? Hint: with gnuplot you can print the log of your data (e.g., suppose you saved the values of z in column 1 and its frequency in column 2, plot with $\mathrm{u} 1:(\log (\$ 2))$ or $\mathrm{u} 1:(\log 10(\$ 2)))$.
(c) With gnuplot you can also do the fit of the histogram with an exponential function using the least-square method, with λ as fitting parameter. Check whether you get the expected value of λ. (It is convenient to make a semilog plot as suggested above and then make a least-square linear fit; the slope is λ)

Remember that with the method of the least-square fit we get for a linear regression: $y=a x+b$:

$$
a=\frac{\overline{x y}-\overline{y y}}{(\Delta x)^{2}} ; \quad b=\bar{y}-a \bar{x}
$$

where $(\Delta x)^{2}=\overline{x^{2}}-\bar{x}^{2}$ (other definitions are trivial \ldots).

2. Random numbers with non uniform distributions: comparison between different algorithms

Suppose you want to generate a random variate x in (-1,1) with distribution

$$
p(x)=\frac{1}{\pi}\left(1-x^{2}\right)^{-1 / 2} .
$$

Consider both methods suggested below, do the histograms and check that both methods give correct results.
(a) From the Inverse Transformation Method: generate a random number U with uniform distribution in $[0,1]$ and consider $x=\sin \pi(2 U-1)$.
(b) Generate two random numbers U and V with uniform distribution in $[0,1]$. Disregard them if $U^{2}+V^{2}>1$. Otherwise consider

$$
x=\frac{U^{2}-V^{2}}{U^{2}+V^{2}}
$$

Note 1: the last method has the advantage of using only elementary operations.
Note 2: since x is also negative, pay attention to the algorithm used to make the histogram; you should notice the difference between the intrinsic functions int and nint; see also floor. From Chapman's book:

AINT(A,KIND): Real elemental function

- Returns A truncated to a whole number.

AINT(A) is the largest integer which is smaller than $|A|$, with the sign of A. For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

- Argument A is Real; optional argument KIND is Integer

ANINT(A,KIND): Real elemental function

- Returns the nearest whole number to A.

For example, ANINT(3.7) is 4.0, and AINT(-3.7) is -4.0 .

- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND): Integer elemental function

- Returns the largest integer < or = A.

For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.

- Argument A is Real of any kind; optional argument KIND is Integer
- Argument KIND is only available in Fortran 95

NINT(A[,KIND])

- Integer elemental function
- Returns the nearest integer to the real value A.
- A is Real

3. Random numbers with gaussian distribution: Box-Muller algorithm

Consider the Box-Muller algorithm to generate a random number gaussian distribution (see for instance boxmuller.f90; the gasdev subroutine used inside is similar to what you can find in "Numerical Recipes": it gives a gaussian distribution with $\sigma=1$ and average $\mu=0$). Do a histogram of the data generated, calculate numerically from the sequence the average value and the variance, check with the expected results.

4. Simulation of radioactive decay

(a) Write a program for a numerical simulation of the radioactive decay, with a decay parameter λ in input. (See for instance decay.f90).
(b) Use the code with "reasonable" values of the parameters (e.g., $N(0)$ about 1000) and save $N(t)$ in a data file. Check whether $N(t)=$ $N(0) e^{-\lambda t}$ as expected. (Hint: As for the exercise 1, you could make use of a least-square fit by considering $\ln N(t)$ vs. t, i.e. the relationship in a semilog form in order to manage a linear fit.)
(c) Change $N(0)$ (100 or less; 10000 or more). What do you see?

Notice that in decay.f90 the upper bound of the inner loop (nleft) is changed within the execution of the loop; but in the execution the loop goes on up to the nleft set at the beginning of the loop; this ensures that the implementation of the algorithm is correct. See the programs checkloop.f90 and decay_checkloop.f90 in the same directory.
5. Random deviates with other distributions (Optional)

You can try t_random.f90 which uses the module random.f90 to generate random deviates with other distributions. Remember to compile first the module: g95 (or gfortran) random.f90 t_random.f90

```
! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
! expdev.f90
program test_expdev
    implicit none
    real :: lambda,delta,x
    integer :: i,n,nbin,ibin, sizer
    integer, dimension(:), allocatable :: histo, seed
    print*, " Generates random numbers x distributed as exp(-lambda*x)"
    call random_seed(sizer)
    allocate(seed(sizer))
    print *,'Here the seed has ',sizer,' components; insert them (or print "/") >\'
    read(*,*)seed
    call random_seed(put=seed)
```

```
    print *," length of the sequence >"
    read *, n
    print *," exponential decay factor (lambda)>"
    read *, lambda
    print *," Collecting numbers generated up to 2/lambda (disregard the others)"
    print *," and normalizing the distribution in [0,+infinity[ "
    print *," Insert number of bins in the histogram>"
    read *, nbin
    delta = 2./lambda/nbin
        allocate (histo(nbin))
    histo = 0
    do i = 1,n
        call expdev(x)
        ibin = int (x/lambda/delta) + 1
        if (ibin <= nbin)histo(ibin) = histo(ibin) + 1
    end do
    open (unit=7,file="expdev.dat",status="replace",action="write")
    do ibin= 1 ,nbin
        write(unit=7,fmt=*)(ibin-0.5)*delta,histo(ibin)/float(n)/delta
    end do
contains
    subroutine expdev(x)
        REAL, intent (out) :: x
        REAL :: r
        do
            call random_number(r)
            if(r > 0) exit
        end do
        x = - log(r)
    END subroutine expdev
end program test_expdev
! ССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССССС
! boxmuller. }9
! uses the Box-Muller algorithm to generate
! a random variate with a gaussian distribution (sigma = 1)
!
program boxmuller
    implicit none
    real :: rnd,delta
    real, dimension(:), allocatable :: histog
    integer :: npts,i,ibin,maxbin,m
```

```
    print*,' input npts, maxbin >'
    read*, npts,maxbin
    allocate(histog(-maxbin/2:maxbin/2))
    histog = 0
    delta = 10./maxbin
    do i = 1, npts
        call gasdev(rnd)
        ibin = nint(rnd/delta)
        if (abs(ibin) < maxbin/2) histog(ibin) = histog(ibin) + 1
    end do
    open(1,file='gasdev.dat',status='replace')
    do ibin = -maxbin/2 , maxbin/2
        write(1,*)ibin*delta, histog(ibin)/real(npts)/delta
    end do
    close(1)
    deallocate(histog)
    stop
contains
    SUBROUTINE gasdev(rnd)
        IMPLICIT NONE
        REAL, INTENT(OUT) :: rnd
        REAL :: r2,x,y
        REAL, SAVE :: g
        LOGICAL, SAVE :: gaus_stored=.false.
        if (gaus_stored) then
            rnd=g
            gaus_stored=.false.
        else
            do
                    call random_number(x)
                    call random_number(y)
                    x=2.*x-1.
                    y=2.*y-1.
                    r2=x**2+y**2
                            if (r2 > 0. .and. r2 < 1.) exit
                end do
                r2=sqrt(-2.*log(r2)/r2)
                rnd=x*r2
                    g=y*r2
                gaus_stored=.true.
        end if
    END SUBROUTINE gasdev
end program boxmuller
```

```
! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
! decay.f90
! Simulation of radioactive decay
!
PROGRAM decay
    IMPLICIT none
    REAL, PARAMETER :: lambda=0.2
    REAL :: r
    INTEGER :: i, t, nleft, start, sizer
    integer, dimension(:), allocatable :: seed
    !
    call random_seed(sizer)
    allocate(seed(sizer))
    print *,'Here the seed has ',sizer,' components; insert them (or print "/") >'
    read(*,*)seed
    call random_seed(put=seed)
    ! initial values
    print *,"initial number of nuclei >"
    read *, start
    t = 1 ! initialize time
    nleft = start ! at the beginning N(t=0)=start
    ! N(t) nuclei left at time t,
    ! that have a given probability lambda of decay
    ! in the time interval t:t+dt
    !
OPEN(unit=7, FILE="decay.dat", status="replace",action="write")
    WRITE (unit=7,fmt=*) "# t , N(t)"
    WRITE (unit=7,fmt=*) "0 ", nleft !REAL(nleft)/start
    !
DO ! time loop
        DO i = 1, nleft ! loop on the nuclei left
                call random_number(r)
                IF (r <= lambda) THEN
                    nleft = nleft - 1 ! update the number of nuclei left
                ENDIF
        END DO
        !
        WRITE (unit=7,fmt=*) t , nleft ! or REAL(nleft)/start
        if (nleft == 0) exit
        t = t + 1
    END DO
    !
    close(7)
    stop
END program decay
```

