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Fabio Romanelli Seismic waves

Principles of mechanics applied to bulk matter:
Mechanics of fluids        Mechanics of solids

Continuum Mechanics

A material can be called solid (rather than -perfect- 
fluid) if it can support a shearing force over the time 

scale of some natural process.

Shearing forces are directed parallel, rather than 
perpendicular, to the material surface on which they act.

Some basic definitions - 1
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When a material is loaded at sufficiently low temperature, 
and/or short time scale, and with sufficiently limited stress 
magnitude, its deformation is fully recovered upon uploading:

the material is elastic

If there is a permanent (plastic) deformation due to exposition 
to large stresses:

the material is elastic-plastic

If there is a permanent deformation (viscous or creep) due to 
time exposure to a stress, and that increases with time:
the material is viscoelastic (with elastic response), or

the material is visco-plastic (with partial elastic response)

Some basic definitions - 2
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Elastic means reversible!
It goes back to its original state 
once the loading is removed.

1. Initial 2. Small load

F

δ

bonds 
stretch

3. Unload

return to 
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Elastic Deformation
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Normal stress acts perpendicular to the surface 

(F=normal force)

Tensile causes elongation Compressive causes shrinkage

FF F F
A A

  

� 

σ = stretching force
cross sectional area

Stress as a measure of Force
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F

F A

ΔX

  

� 

τ = shear force
tangential area

Shear Stress as a measure of Force
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 Modulus of Elasticity, E:
  (also known as Young's modulus)

• Hooke's Law:

σ = E ε

σ

Linear- 
elastic

E

ε

F

F
simple 
tension 
test

E: stiffness (material’s resistance to elastic deformation) 

Linear Elastic Properties
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Young’s modulus
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A time-dependent perturbation of an elastic medium (e.g. a 
rupture, an earthquake, a meteorite impact, a nuclear 
explosion etc.) generates elastic waves emanating from the 
source region. These disturbances produce local changes in 
stress and strain. 

To understand the propagation of elastic waves we need to 
describe kinematically the deformation of our medium and the 
resulting forces (stress). The relation between deformation 
and stress is governed by elastic constants.

The time-dependence of these disturbances will lead us to 
the elastic wave equation as a consequence of conservation of 
energy and momentum. 

Elasticity Theory
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The symmetric part is called the 
strain tensor
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and describes the relation between deformation and displacement in linear 
elasticity. In 2-D this tensor looks like
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...and the stress state in a point of the material can be 
expressed  with:
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The relation between stress and strain in general is described by the 
tensor of elastic constants cijkl

From the symmetry of the stress and strain tensor and a thermodynamic 
condition if follows that the maximum number if independent constants of 
cijkl is 21. In an isotropic body, where the properties do not depend on 
direction, the relation reduces to 

where λ and µ  are the Lame parameters, θ is the dilatation and  δij is the 
Kronecker delta. 

Generalised Hooke’s Law

Hooke’s Law
  σij = λθδij +2µεij

  σij = cijklεkl

θδ
ij
= ε

kk
δ
ij
= ε

11
+ ε

22
+ ε

33( )δij

Stress-strain relation - 1
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Consider a stretching experiment where tension is applied to an isotropic
medium along a principal axis (say x).

For Poisson’s ratio we have  0<ν<0.5. 
A useful approximation is λ=µ (Poisson’s solid), then ν=0.25 and for fluids ν=0.5

  
µ =

σij

2εij

Rigidity is the ratio of pure shear strain and the applied shear stress component

Bulk modulus of incompressibility is defined the ratio of pressure to volume change. Ideal 
fluid means no rigidity (µ = 0), thus λ  is the  incompressibility of a fluid.

  

� 

λ = νE
(1 + ν)(1 −2ν)   

� 

µ = E
2(1 + ν)

  

� 

K = − P
θ

= λ + 2
3

µ

  
Poisson's ratio ≡ ν = −

ε
22

ε
11

= λ
2(λ +2µ)

Young's modulus ≡ E = −
σ

11

ε
11

= µ(3λ +2µ)
λ + µ

Elastic parameters 
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As in the case of deformation the stress-strain relation can be 
interpreted in simple geometric terms:

Remember that these relations are a generalization of Hooke’s Law:

l

u

γ l

u

 F= Kx

D being the spring constant and s the elongation.

Stress-strain - significance
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Let us look at some examples for elastic constants:

Rock K
1012 dynes/cm2

E
1012 dynes/cm2

µ
1012 dynes/cm2

v

Limestone 0.621 0.248 0.251

Granite 0.132 0.416 0.197 0.055

Gabbro 0.659 1.08 0.438 0.219

Dunite 1.52 0.60 0.27

Elastic constants
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We now have a complete description of the forces acting within an elastic 
body. Adding the inertia forces with opposite sign leads us from

to

the equations of motion for dynamic elasticity

ρ
∂2u

i

∂t2
= f

i
+
∂σ

ij

∂x
j

f
i
+
∂σ

ij

∂x
j

= 0

Equations of elastic motion
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Let us apply the div operator to this equation, we obtain

where

      ρ∂t
2u = f + (λ +2µ)∇∇ •u -µ∇×∇× u

  

� 

ρ∂t
2θ = (λ + 2µ)Δθ

Equations of motion – P waves

or

1
α2∂t

2θ = Δθ

P-wave velocityAcoustic wave 
equation

  θ = ∇ •u
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Let us apply the curl operator to this equation, we obtain

we now make use of    and define∇ ×∇θ = 0
to obtain

� 

ρ∂
t
2∇×u = (λ + µ)∇×∇θ+ µΔ(∇×u)

      ρ∂t
2u = f + (λ +2µ)∇∇ •u -µ∇×∇× u

  ϕ = ∇ × u

Equations of motion – shear waves

  

1
β2

∂t
2ϕ = Δϕ

S-wave velocityShear wave 
equation
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Any vector may be separated into scalar and vector potentials

⇒θ = ΔΦ

Shear waves have no change in volumeP-waves have no rotation

where Φ is the potential for P waves and Ψ the potential for shear waves

� 

1
α2∂t

2θ = Δθ

� 

1
β2∂t

2ϕ = Δϕ
� 

⇒ϕ = ∇×u = ∇×∇×Ψ = −ΔΨ

  

� 

u = ∇Φ + ∇× Ψ

Elastodynamic Potentials 
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... what can we say about the direction of displacement, the
polarization of seismic waves?

... we now assume that the potentials have the well known form of 
plane harmonic waves

    

� 

Ψ = Bexpi(k •x − ωt)    

� 

Φ = Aexpi(k •x − ωt)

Plane waves

S waves are transverse because S is 
normal to the wave vector k

P waves are longitudinal as P is 
parallel to k

P = Akexp[i(k • x − ωt)] S = k ×Bexp[i(k • x − ωt)]

u = ∇Φ +∇ × Ψ ⇒ u = P + S
P = ∇Φ S = ∇ × Ψ
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Wavefields visualization

https://www.iris.edu/hq/inclass/animation/seismic_wave_motions4_waves_animated

https://www.iris.edu/hq/inclass/animation/seismic_wave_motions4_waves_animated
https://www.iris.edu/hq/inclass/animation/seismic_wave_motions4_waves_animated

