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Green’s function

Elastodynamic Green function

- scalar problem

- Lamè theorem

- EGF in homogeneous media


- near and far field

- EGF for double couple in homogeneous media


- near, intermediate and far field 

- EGF for double couple in heterogeneous media


- surface waves in the far field 

Seismic sources - 2



Green’s function

G(x,s)

Green's function is a basic solution to a linear differential 
equation, a building block that can be used to construct 
many useful solutions.


If one considers a linear differential equation written as:


L(x)u(x)=f(x)


where L(x) is a linear, self-adjoint differential operator, 
u(x) is the unknown function, and f(x) is a known non-
homogeneous term, the GF is a solution of:


L(x)u(x,s)=δ(x-s)

Green’s function



Green’s function

Why GF is important?

If such a function G can be found for the operator L, then if we multiply the 
second equation for the Green's function by f(s), and then perform an 
integration in the s variable, we obtain:

Thus, we can obtain the function u(x) through the knowledge of the 
Green's function and the source term. This process has resulted from the 
linearity of the operator L. See Linear System Theory (i.e. impulse response)

L∫ (x)G(x, s)f(s)ds = δ∫ (x − s)f(s)ds = f(x) = Lu(x)
L G∫ (x, s)f(s)ds = Lu(x)

u(x) = G∫ (x, s)f(s)ds



Green’s function

Inhomogeneous wave equation
Let us consider the simplest inhomogeneous scalar problem, i.e. a 
spherically symmetric one, to avoid the directionality of the source:

L(u) = !!u − c2Δu = δ(x)δ(t)



Green’s function

Inhomogeneous wave equation
Let us consider the simplest inhomogeneous scalar problem, i.e. a 
spherically symmetric one, to avoid the directionality of the source:

and let us look for the solution, whose spatial dependence can be only 
on u=u(r,t)=u(|x|,t); expressing the Laplacian in spherical coordinates, 
one has that everywhere, except at r=0, u=f(t-r/c)/r is the general 
solution. At t=0, we have the Poisson equation:              

               whose solution is:


Thus, the general solution is:

and the rapidly varying function depends, at any position, only on the 
arrival time, and its shape is the same in time as the time function at 
the source term.

L(u) = !!u − c2Δu = δ(x)δ(t)

Δu = δ(x)
c2

u(r,t) = 1
4πc2

δ(t-r/c)
r

u = δ(x)
4πc2



Green’s function

Properties of the solution

1) If

    

then

2) If

    

then

3) If the source is extended through a volume V:

    

then

L(u) = δ(x - ζ)δ(t − τ)

u(r,t) = 1
4πc2

δ(t-τ- x - ζ /c)
x - ζ

L(u) = δ(x - ζ)f(t)

u(r,t) = 1
4πc2

f(t- x - ζ /c)
x - ζ

L(u) = Φ(x,t)
ρ

u(r,t) = 1
4πρc2

Φ(ζ,t- x - ζ /c)
x - ζ

dV
V
∫∫∫



Green’s function

Helmholtz theorem

Any vector field u=u(x) may be separated into scalar and vector potentials

then the identity

Brief proof: since it is possible to solve the Poisson equation:

tells us that

u = ∇Φ + ∇ × Ψ

∇2W = u
W(x) = − u(ξ)

4π x − ξV
∫∫∫ dξ

Δ = ∇∇ ⋅ -∇ × ∇ ×

Φ = ∇ ⋅ W      Ψ = −∇ × W



Green’s function

Lamè theorem

The problem is to find solutions to the elastodynamic equation


for an isotropic and homogeneous elastic space,                                      
in terms of soluble equations.


If the body terms and initial conditions can be expressed as:


with


then two potentials exist with the following properties:

ρ!!u = f+ λ + 2µ( )∇(∇ ⋅ u) − µ∇ × (∇ × u)

f=∇Φ + ∇ × Ψ;  u(x,0)=∇A + ∇ × B;  !u(x,0)=∇C + ∇ × D
∇ ⋅ Ψ = 0; ∇ ⋅ B = 0; ∇ ⋅ D = 0

u = ∇φ + ∇ × ψ; ∇ ⋅ ψ = 0;

!!φ = Φ
ρ

+ α2Δφ;  !!ψ = Ψ
ρ

+ β2Δψ



Green’s function

Solutions for elastodynamic GF

Let us consider for example that 


then we can build:

f = X0(t)δ(x)x̂1 = ∇Φ + ∇ × Ψ

W =
X0(t)
4π 1, 0, 0( )

V
∫∫∫

δ ζ( ) dV
x − ζ

= −
X0(t)
4πr x̂1

Φ x,t( ) = ∇ ⋅W = −
X0(t)
4π

∂
∂x1

1
r

Ψ x,t( ) = −∇ × W =
X0(t)
4π 0, ∂

∂x3

1
r , −

∂
∂x2

1
r

⎛

⎝
⎜

⎞

⎠
⎟



Green’s function

Far field term

Near field term

Solutions for elastodynamic GF

and we have to a) solve the wave equation for the Lamè potentials of 
body force and then b) to calculate the displacement.  

After some heavy algebra (Stokes, 1849), generalizing from the xj 
direction and using direction cosines (γi=xi/r=∂r/∂xi)

ui=X0(t) ∗ Gij=

=
3γ iγ j − δij( )
4πρ x 3 τ

x /α

x /β

∫ X0(t-τ)dτ+

   + γ iγ j

4πρα3 x
X0(t-

x
α

)+

   +
3γ iγ j − δij( )
4πρβ3 x

X0(t-
x
β

)



Green’s function

Near field term

The near-field expression of the point force delta function GF is:

Figure 2: Time Dependence of Near Field Terms at a Source Distance of r.
Delta Function Force in Isotropic Whole-Space

8

and the response has a static (time-independent) 
component that corresponds to a permanent deformation 
of the medium, both in radial and transverse directions.


ui
NF=

3γ iγ j − δij( )
4πρ

⋅

1
r3

(t- r
α
)H(t- r

α
)-(t- r

β
)H(t- r

β
)⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪
+

1
r2

1
α
H(t- r

α
)- 1

β
H(t- r

β
)⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪



Green’s function

Far field term

The far-field expressions of the point force delta function GF are  
characterized by: 

1) decay as 1/r; 

2) are made of P and S waves;

3) the displacement waveform is proportional to the applied force at 
the retarded time;


4) have a radiation pattern


Figure 2: Time Dependence of Near Field Terms at a Source Distance of r.
Delta Function Force in Isotropic Whole-Space
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Figure 3: P and S Far-Field Displacement Radiation Patterns for a Delta Func-
tion Force in an Isotropic Whole-Space

10

uP
FF ∝ γ 1γ j=cosθ

uS
FF ∝ −γ j’=sinθ



Green’s function

Far field term

Near field term

GF for moment tensor

We can calculate the radiation pattern from a point source with an arbitrary 
moment tensor by noting that Green’s function for a couple is just the spatial 
derivative of Green’s function for a point force, so that the displacement field 
from a moment tensor Mpq is just:

Intermediate field 
term

un = Mpq ∗ Gnp,q = lim
Δlq→0
Fp→∞

ΔlqFp ∗
∂Gnp

∂ζq
=

= uNF

4πρ x 4 τ
x /α

x /β

∫ Mpq(t-τ)dτ+

   + uP
IF

4πρα2 x 2 Mpq(t-
x
α

)- uS
IF

4πρβ2 x 2 Mpq(t-
x
β

)+

   + uP
FF

4πρα3 x
!Mpq(t-

x
α

)- uS
FF

4πρβ3 x
!Mpq(t-

x
β

)



Green’s function

Far field term

Near field term

GF for double couple
An important case to consider in detail is the radiation pattern expected when the 
source is a double-couple. The result for a moment time function M0(t) is:

Intermediate field 
term

u= ANF

4πρ x 4 τ
x /α

x /β

∫ M0(t-τ)dτ+

   + AP
IF

4πρα2 x 2 M0(t-
x
α

)- AS
IF

4πρβ2 x 2 M0(t-
x
β

)+

   + AP
FF

4πρα3 x
!M0(t-

x
α

)- AS
FF

4πρβ3 x
!M0(t-

x
β

)

ANF = 9sin2θcosφr̂ − 6 cos2θcosφθ̂ − cosθ sinφφ̂( )
AP

IF = 4sin2θcosφr̂ − 2 cos2θcosφθ̂ − cosθ sinφφ̂( )
AS

IF = −3sin2θcosφr̂ + 3 cos2θcosφθ̂ − cosθ sinφφ̂( )
AP

FF = sin2θcosφr̂
AS

FF = cos2θcosφθ̂ − cosθ sinφφ̂



Green’s function

NF DC (static) Radiation pattern 
The static final displacement for a shear dislocation of strength M0 is:
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Figure 7: Near-field Static Displacement Field From a Point Double Couple
Source (⌃ = 0 plane); � = 31/2, ⇥ = 1, r = 0.1, 0.15, 0.20, 0.25, ⇧ = 1/4⌅,
M⇥ = 1; self-scaled displacements

The near-field term gives a static displacement as t⇥⇤

u =
M0(⇤)
4⌅⇧r2

�
AN

2

�
1
⇥2
� 1

�2

⇥
+

AIP

�2
+

AIS

⇥2

⇥
(64)

=
M0(⇤)
4⌅⇧r2

�
1
2

�
3
⇥2
� 1

�2

⇥
sin 2⇤ cos ⇤r̂ +

1
�2

(cos 2⇤ cos ⌃⇤̂ � (cos ⇤ sin ⌃⌃̂)
⇥

,

where M0(⇤) is the final value of the seismic moment. Interestingly, this ex-
pression contains two terms with the same angular dependence as those for the
far-field, but decays as r�2. The strain field, which is the usual observable used
to study such permanent near field terms, will correspondingly decay as r�3.
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u=
M0 ∞( )
4πρ x2 ANF 1

2β2 − 1
2α2

⎛

⎝⎜
⎞

⎠⎟
+

AP
IF

α2 +
AS

IF

β2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

   =
M0 ∞( )
4πρ x2

3
2β2 − 1

2α2
⎛

⎝⎜
⎞
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sin2θcosφr̂ + 1

α2 cos2θcosφθ̂ − cos θ sinφφ̂( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
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Green’s function

Coseismic deformation
Page 2 of 15Hashima et al. Earth, Planets and Space  (2016) 68:159 

homogeneous elastic half-space (e.g., Ozawa et al. 2011, 
2012; Iinuma et  al. 2011, 2012; Perfettini and Avouac 
2014), which is often an adequate approximation. How-
ever, the great spatial extent of the Tohoku-oki earth-
quake, more than 500  km along the surface, causing 
stress changes to similar depth extent, makes it likely that 
the resulting surface deformation was affected by the het-
erogeneity of the surrounding structure. Those include 
lateral variations in elastic strength due to the presence 
of the slab as well as depth dependence due to the influ-
ence of pressure and temperature on elastic strength. 

For example, the consideration of elastic moduli increas-
ing with depth may lead to an increase in inferred seis-
mic moment compared to a homogeneous model (e.g., 
Hearn and Bürgmann 2005; Pollitz et al. 2011; Diao et al. 
2012; Dong et al. 2014). Conversely, the consideration of 
a strong slab (a slab with increased rigidity) in the coseis-
mic inversion was shown to lead to a decrease in inferred 
seismic moment compared to a homogeneous model 
(Hsu et  al. 2011; Kyriakopoulos et  al. 2013). Considera-
tion of surface topography and lateral heterogeneity from 
seismic tomography was also found to lead to a better fit 
to the observed coseismic surface displacements (Pul-
virenti et al. 2014; Romano et al. 2014). There is, however, 
significant uncertainty when seismic velocity is con-
verted to elastic moduli because of the possibly compet-
ing effects of temperature, pressure, and composition. 
Moreover, the physical mechanisms as to how different 
kinds of elastic heterogeneity affect surface deformation 
are unclear.

Here, we develop a 3-D finite element model that sys-
tematically investigates the kinematics of the Tohoku-oki 
earthquake given different structural configurations in 
order to understand how the various components influ-
ence the inferred slip distribution and seismic moment. 
This complexity includes depth-dependent elastic struc-
ture (including a Moho interface), as well as the incor-
poration of both the Pacific (PAC) and Philippine Sea 
Plate (PHS) slabs. We also study what level of complex-
ity may be required to accurately explain both horizon-
tal and vertical onland GPS, as well as seafloor geodetic 
observations.

Methods
We model elastic structure corresponding to crust–man-
tle layering under northeast Japan on the Eurasian plate 
(EUR) and the descending PAC and PHS slabs with a 
finite element method. Effects of elastic structure on 
coseismic deformation are evaluated by the following 
steps: (1) compute deformation due to a slip distribu-
tion given by a simple model to resemble the actual slip 
distribution of the Tohoku-oki earthquake for different 
structures (forward test) in order to get an understand-
ing of the characteristic patterns and (2) invert for the 
actual slip distributions based on the data using Green’s 
functions for slip patches computed for different elastic 
structures.

Finite element modeling
We use the ABAQUS finite element modeling software 
(http://www.3ds.com) to model coseismic deforma-
tion. To minimize boundary effects, our model domain 
includes the regions surrounding the immediate study 
area: the Kuril arc to the northeast, the Izu–Bonin 

Fig. 1 Coseismic displacements, seafloor topography, and plates 
around Japan. Onshore GPS displacements from Nishimura et al. 
(2011). Offshore displacements by a combined GPS/acoustic 
technique from Sato et al. (2011) and Kido et al. (2011), and those by 
pressure gauges from Ito et al. (2011), Hino et al. (2011), and Maeda 
et al. (2011). Red and orange arrows indicate onshore and offshore 
horizontal displacement vectors. Triangles and squares indicate pres-
sure gauges and GPS/acoustic stations, respectively. Onshore uplifts 
are expressed by color scales and contours taken at 20-cm intervals. 
Offshore uplifts are indicated by color within triangles and squares. 
White line with triangles shows the Japan trench. Mechanisms of the 
M9 2011 Tohoku-oki earthquake and the three largest aftershocks are 
shown. The epicenter of the mainshock is represented by a black dot 
connected with the mechanism. Star in inset is the epicenter of the 
mainshock. PAC Pacific plate, EUR Eurasian plate, PHS Philippine Sea 
plate

Coseismic displacements, seafloor topography, and plates around Japan. Red 
and orange arrows indicate onshore and offshore horizontal displacement 

vectors. Triangles and squares indicate pressure gauges and GPS/acoustic 
stations, respectively. Onshore uplifts are expressed by color scales and 

contours taken at 20-cm intervals. Offshore uplifts are indicated by color within 
triangles and squares. White line with triangles shows the Japan trench. 

Mechanisms of the M9 2011 Tohoku-oki earthquake and the three largest 
aftershocks are shown. The epicenter of the mainshock is represented by a 
black dot connected with the mechanism. Star in inset is the epicenter of the 

mainshock. PAC Pacific plate, EUR Eurasian plate, PHS Philippine Sea plate.
Hashima et al. Earth, Planets and Space (2016) 68:159 



Green’s function

4.3 The Double-Couple Solution in an Infinite Homogeneous Medium 

0 = 0" 

a i  

% = 180" 

FIGURE 4.6 
Diagrams for the radiation pattern of the jransverse component of displacement due to a double 
couple, i.e., cos 28 cos 4 6 - cos 8 sin 4 4. (a) The four-lobed pattern in plane (4 = 0, 4 = n}. 
The central pair of arrows shows the sense of shear dislocation, and arrows imposed on each lobe 
show the direction of particle displacement associated with the lobe. If applied to the far-field S- 
wave displacement, it is assumed that k0(t - r / B )  is positive. (b) Off the two planes 0 = n / 2  and 
(4 = 0, 4 = n}, the 3 component is nonzero, hence (a) is of limited use. This diagram is a view of 
the radiation pattern over a whole sphere centered on the origin, and arrows (with varying size and 
direction) in the spherical surface denote the variation (with 8 , @ )  of the transverse motions. There 
are no nodal lines (where there is zero motion), but nodal points do occur. Note that the nodal point 
for transverse motion at ( 0 , d )  = (45", 0) is a maximum in the radiation pattern for longitudinal 
motion (Fig. 4.5b). But the maximum transverse motion (e.g., at 8 = 0) occurs on a nodal line for 
the longitudinal motion. The stereographic projection has been used (see Fig. 4.16). It is a conformal 
projection, meaning that it preserves the angles at which curves intersect and the shapes of small 
regions, but it does not preserve relative areas. 

FF DC Radiation pattern


