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Damped Oscillations

All real oscillations are subject to 
frictional or dissipative forces.

These forces remove energy from 
the oscillating system and reduce 
A.
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Consider mass m on the end of a 
spring with a spring constant k

m

k
Restoring force = kx when mass is a 
distance x from equilibrium

drag force ∝ dx/dt

where γ = b/m  and ω2 = k/m
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Auxiliary equation

In order to find the auxiliary eq. one tries:   
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where γ = b/m  and ω0 = (k/m)1/2
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                 Boundary conditions
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and the constants can be determined applying the boundary 
conditions, e.g. x(0)=x0 and v(0)=0. 

overdamped

critically damped

underdamped
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Weak damping: dissipative force is small compared to the 
restoring force

Oscillations continue, but gradually decrease in amplitude

Weak damping                  

Guess a solution to the differential equation above - 
exponential function will ensure the oscillations die at long t

first guess:

where β is a +ve constant and f(t) is to be determined

where γ = b/m  and ω2 = k/m
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substitute these expressions into 
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After some tidying up we get  

If  γ = 2β  ( or β =γ /2)      we get an equation for SHM
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when the dissipative force is small  

choosing f to have its maximum value xo at t=0

we can write    f(t) = xocos ωt  

Therefore the displacement at any time t is given by
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Strong damping

where γ = b/m  and ω2 = k/m

Strong damping:                                                     oscillations rapidly cease

if                  no oscillations will occur 

Our solution becomes                               with

exp(-αt) and exp(+αt) both satisfy this equation  giving

and displacement
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Critical damping                  

If γ = 2ωo  the mass returns to equilibrium most quickly

df/dt=B     d2f/dt2=0

eg: shock absorbers, 
CD platform
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Energy of a damped oscillator                  

energy E ∝ amplitude A2

max displacement when cos=1

if amplitude is decreasing exponentially then energy will also 
decrease exponentially

Generally
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Quality factor

this can be related to the fractional energy lost per cycle

A damped oscillator is often described by its quality-factor 
or Q-factor
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In a weakly damped system the energy lost / cycle is small 

                          dE = ΔE     and     dt = T
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Driven oscillations

Consider the steady state 
behaviour of a mass oscillating on 
a spring under the influence of a 
driving force.

The mass oscillates at the same 
frequency of the driving force 
with a constant amplitude xo.

The oscillations are out of phase, 
ie the displacement lags behind 
the driving force.

t

di
sp

la
ce

m
en

t

mass     driving force



Seismology I - D&F oscillators

Force = Focos(ωt) has +ve peaks 
at t = 0, 2π/ω, 4π/ω…………

+ve peaks of the displacement 
occur at t = Δt, (2π/ω)+Δt, (4π/ω)
+Δt …………

This describes a displacement with the same frequency as 
the driving force, has constant amplitude and a phase lag φ 
with respect to the driving force.
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Equation of motion for a driven oscillator is

where γ = b/m  and ω2 = k/m

Solution of this equation is

To determine the xo and φ we need to substitute the 
solution into the equation of motion.

We need
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This equation must be true at all times.  

To solve for xo and φ we need to consider two situations.

1. (ωt - φ) = 0       ∴sin(ωt - φ) = 0    and   cos(ωt)=cos φ 

2. (ωt - φ) = π/2   ∴cos(ωt - φ) = 0   and cos(ωt)=cos(π/2 + φ)
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This leaves us with two simultaneous equations:

Remember                                 and cos2A + sin2A = 1 

The solutions are
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Resonance

The amplitude and energy of a system in the steady state 
depends on the amplitude and the frequency of the driver.  

With no driving force the system will oscillate at its natural 
frequency ωo 

If the driving frequency  ~ ωo  the energy absorbed by the 
oscillator is maximum and large amplitude oscillations occur 

This is known as resonance and the natural frequency of the 
system is therefore called the resonance frequency 

Resonance occurs in many systems - washing machines, 
breaking a glass with sound,  child on a swing…………
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The average rate at which power is absorbed equals the 
average power delivered by the driving force.  

When damping is small oscillator 
absorbs much more energy from 
driving force.

Resonance peak is narrow   

When damping is large oscillator 
resonance curve is broad  

For small damping  


