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Surface wave dispersion
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Figure 1.2.1b Composite of dispersion ¢urves for surface waves.




Wave Packets

FTAN

Seismograms of a
Love wave train
filtered with
different central
periods.

Each narrowband
trace has the
appearance of a
wave packet
arriving at
different times.
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FTAN analysis

Frequency-Time representation:

gaussian filters
FTAN maps

Floating filters:
phase equalization

Examples of calculation and filtering:

synthetic signals (Love, Rayleigh, 1D, 2D)
recorded (real) signals

FTAN



Frequency-Time representation

Surface waves, showing not impulse nor quasi-harmonic behavior, are difficult to
be studied in time or spectral domain, since their principal feature, dispersion, is
described by a function rather than a single parameter.

Frequency-time analysis has the property of separating signals in accordance to
their dispersion curve, since a visual picture requires a function of two variables.

Let us consider a signal in time x(t) and its Fourier transform, X(®), and let it pass
through a system of parallel relatively narrow-band filters H(w-oH) with varying

central frequency wH. The combination of all signals at the output of all the filters
is a complex function of two variables:

5 (m”, f) = Tl—l((x) — 0" X(w)e dw
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FTAN

A contour map of |S(oH,t)l is called FTAN (Frequency-Time Analysis) map, and it
is used to visualize the dispersion curves, since, for frequency fixed, a “mountain
ridge” (increased amplitudes) appears.The frequency-time region of a signal is
that part of the (wH,t) plane occupied by the relevant ridge, and the statement
"the energy of a signal concentrates around its dispersion curve” has a clear

meaning.
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FTAN map: dashed line is a
dispersion curve t(oH)

FTAN

The function S(oH,1) is not a property of the
original signal alone, since it involves also the
filter characteristics H(ow-oH), chosen by the
investigator: we have different classes of signal

representations that differ in filter choice.

When the shape of H(w-o") is known, the

function x(t) or X(»w) can be recovered:

‘X(w) from infinitesimally small filters = 8(w-w")
-X(t) from infinitely broad filters = 1/(2m)V2
with the advantage that the noise can be more
easily separated, for surface wave
identification.




Gaussian filters

The choice of H (0w-0H) is guided by the typical properties of the signal to be
processed. For surface waves two simple rules have to be followed:

‘No phase distortion (H has to be real valued)

Best resolution

and the optimal choice is found to be a Gaussian filter, described by two parameters:
central frequency, o", and width of the frequency band, o.
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And the final FTAN representation is the complex valued function:
1

J e—oc(oo—oo"')2 K((D)ei(o’rdo)
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S(m”,’r) =
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FTAN map

FTAN

The graphical representation consists in the

‘S((DJ’ fi)‘
max ‘S(oo, ’r)‘

S(w,, 1) =20log,

Converting the frequency to period
and,

given the epicentral distance,

converting arrival times of energy
packets to group velocity,

one has the FTAN map
of a time signal.
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FTAN and linear filters

The term “filter” is usually employed for a transformation whose parameters are invariant

under a time shift: a band parallel to time axis, bandpass filtering, or a band parallel fo
frequency axis, time window.

In a broader sense, the general form of a linear transformation can be written as:

_I_

()= [ Flo2K(1)d
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And the filter should separate, without distortions, the part of the plane where the signal
energy is. The filter band has to “float” along the dispersion curve:
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Floating filters

FTAN

The dispersion curve of a signal, (), is known approximately from FTAN results and the

spectral phase of the whole record is transformed according to:

to make the signal weakly dispersed, thus transforming info a straight line parallel to the
frequency axis. The use of a time window allows fo filter out the noise and the original
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signal shape can be recovered applying the inverse procedure of

phase equalization.
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Floating filters: scheme

FTAN

w} 4 b) Bandpass filtering
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FTAN

@ Frequency-Time representation:

® Gaussian filters; FTAN maps

e.g. Levshin et al.,, 1972

@ Floating filters: Phase equalization
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FTAN - Tsunami signal

Untitled (japan10012.tsz.00001.ft)
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dt(s): 24414
FTAN analysis
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FTAN - Acoustic signal
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