

The DMG Manuals

FTAN Computer Exercises

Frequency-time analysis of synthetic and recorded seismograms

University of Trieste Department of Mathematic and Geosciences Group of Seismology via Weiss, 4 34128 Trieste, Italy

Table of Contents

FTAN Computer Exercises	5
Foreword	5
Logging in and getting to the working directory	5
Example input files	5
Synthetic seismograms in 1D models (1 Hz)	7
Computation of the modes	7
Generation of the synthetic seismograms	10
FTAN analysis	11
Variations	11
Eigenfunction computations	12
List of options: Useful variables that can be set:	12 12
Synthetic seismograms in 1D models (10 Hz)	13
Computation of the modes	13
Generation of the synthetic seismograms	15
FTAN analysis	16
Variations	17
Synthetic seismograms in 2D models	
(coupling, 10 Hz)	18
Exercise	18
Variations	20
Synthetic seismograms in 2D models (hybrid, 10 Hz)	21
Exercise	21
Observed data	27
FTAN analysis	

FTAN Computer Exercises

Foreword

To better understand how the FTAN analysis works, it is very useful to practice on synthetic seismograms, where in each experiment the structural model and its dispersion properties are known.

Synthetic seismograms will be generated along a path, for a given source and structural model. For seismograms generated in a laterally homogeneous layered model, the dispersion features retrieved from the FTAN map will be compared with the theoretical group velocity dispersion curves of the structure. The influence of lateral heterogeneities in the structural model will also be investigated, before tackling the case of an observed time series.

Logging in and getting to the working directory

Six accounts have been made available for the students:

Username:	sg01	sg02	sg03	sg04	sg05	sg06
Password:						

From the computer used to login into the system, connect to is01 server, using the Terminal application:

```
[it01:/XDST/sg01] sg01% ssh is01
[is01:/XDST/sg01] sg01%
```

To get to the working directory, give the following commands:

```
[is01:/XDST/sg01] sg01% cdt
[is01:/tmpXDST/sg01] sg01% cd Ftan
[is01:/tmpXDST/sg01/Ftan] sg01%
```

Example input files

Required input files can be found in **/XDST/Examples/Ftan**. Four example input datasets (available in **10Hz**, **1Hz**, **2D**, **Obs** directories) are given. Each one has a **Base** directory where the input files can be found. You should copy the required files into a new directory dedicated to your own computations.

Here is what you find in the /XDST/Examples/Ftan directory:

```
[is01:/XDST/Examples/Ftan] vaccari% ls -lR
.:
total 0
drwxr-xr-x 3 vaccari dstguest 102 Mar 5 13:02 10Hz
drwxr-xr-x 3 vaccari dstguest 102 Mar 5 12:50 1Hz
drwxr-xr-x 3 vaccari dstguest 102 Mar 5 13:08 2D
drwxr-xr-x 3 vaccari dstguest 102 Mar 5 13:05 Obs
./10Hz:
total 0
drwxr-xr-x 2 vaccari dstguest 170 Mar 5 13:04 Base
./10Hz/Base:
total 12
-rw-r--r- 1 vaccari dstguest 829 Mar 30 2011 a.stp
-rw-r--r- 1 vaccari dstguest 1300 Mar 13 2013 ftanparatest.par
-rw-r--r- 1 vaccari dstguest 844 Mar 30 2011 p5r.par
```

./1Hz: total 0 drwxr-xr-x 2 vaccari dstguest 238 Mar 5 12:51 Base ./1Hz/Base: total 20 -rw-r--r-- 1 vaccari dstguest 217 Mar 5 2013 eigr.par -rw-r--r-- 1 vaccari dstguest 1292 Mar 4 2013 ftanparatest.par -rwxr-xr-x 1 vaccari dstguest 1381 Mar 4 -rwxr-xr-x 1 vaccari dstguest 1243 Mar 4 2013 levc_n.stp 2013 levp_n.stp -rw-r--r-- 1 vaccari dstguest 857 Mar 4 2013 p5r.par ./2D: total 0 drwxr-xr-x 2 vaccari dstquest 816 Mar 5 13:27 Base ./2D/Base: total 92 -rw-r--r-- 1 vaccari dstguest 1296 Mar 25 -rw-r--r-- 1 vaccari dstguest 511 Mar 21 2013 ftanparatest.par 2013 gusev01.xy -rw-r--r-- 1 vaccari dstguest 642 Mar 21 2013 gusev02.xy -rw-r--r-- 1 vaccari dstguest 581 Mar 21 2013 gusev03.xy -rw-r--r-- 1 vaccari dstguest 2013 gusev04.xy 726 Mar 21 -rw-r--r-- 1 vaccari dstguest 707 Mar 21 -rw-r--r-- 1 vaccari dstguest 817 Mar 21 -rw-r--r-- 1 vaccari dstguest 890 Mar 21 2013 gusev05.xy 2013 gusev06.xy 2013 gusev07.xy -rw-r--r-- 1 vaccari dstguest 1094 Mar 21 2013 gusev08.xy -rw-r--r-- 1 vaccari dstguest 1109 Mar 21 -rw-r--r-- 1 vaccari dstguest 974 Mar 21 -rw-r--r-- 1 vaccari dstguest 719 Mar 21 -rw-r--r-- 1 vaccari dstguest 1266 Mar 21 2013 gusev09.xy 2013 gusev10.xy 2013 m0.pof 2013 ml.pof -rw-r--r-- 1 vaccari dstguest 1266 Mar 21 2013 m2.pof 2013 m3.pof -rw-r--r-- 1 vaccari dstguest 1266 Mar 21 -rw-r--r-- 1 vaccari dstguest 1265 Mar 21 -rw-r--r-- 1 vaccari dstguest 1755 Mar 21 -rw-r--r-- 1 vaccari dstguest 877 Mar 20 2013 m4.pof 2013 m5.pof 2013 p5r.par -rw-r--r-- 1 vaccari dstguest 4707 Mar 21 2013 pfdg13.par -rw-r--r-- 1 vaccari dstguest 1105 Apr 10 2013 s1.stp -rw-r--r-- 1 vaccari dstguest 1105 Apr 10 -rw-r--r-- 1 vaccari dstguest 116 Mar 21 2013 s2.stp 2013 syn2ftan.par ./Obs: total 0 drwxr-xr-x 2 vaccari dstquest 102 Mar 5 13:07 Base ./Obs/Base: total 8 -rw-r--r-- 1 vaccari dstguest 6636 Mar 30 2011 obs.sac [is01:/XDST/Examples/Ftan] vaccari%

For each exercise, create a dedicated directory, and copy into it the files you find in the pertinent Base directory:

[is01:/tmpXDST/sg01/Ftan] sg01% mkdir Sg01Test01 [is01:/tmpXDST/sg01/Ftan] sg01% cp /XDST/Examples/Ftan/1Hz/Base/* Sg01Test01/ [is01:/tmpXDST/sg01/Ftan] sg01% cd Sg01Test01/ [is01:sg01/Ftan/Sg01Test01] sg01% ls ftanparatest.par levc_n.stp levp_n.stp p5r.par [is01:sg01/Ftan/Sg01Test01] sg01%

Synthetic seismograms in 1D models (1 Hz)

Create a new directory for this exercise and copy the required files:

```
[is01:/tmpXDST/sg01/Ftan] sg01% mkdir Sg01Test01
[is01:/tmpXDST/sg01/Ftan] sg01% cd Sg01Test01/
[is01:sg01/Ftan/Sg01Test01] sg01% cp /XDST/Examples/Ftan/1Hz/Base/* .
[is01:sg01/Ftan/Sg01Test01] sg01% ls
eigr.par ftanparatest.par levc_n.stp levp_n.stp p5r.par
```

Computation of the modes

1) See the structures:

[1S01:Sg0	1/Ftan,	/Sg01Test0	1] sg01% cat	levp n.	stp		
thk(km)	rho	Vp(km/s)	Vs(km/s)	Qp	Qs	depth(km) 1	ayer
4.0000	2.410	4.410000	2.550000	750.00	300.00	4.00000	1
26.0000	2.660	5.580000	3.180000	750.00	300.00	30.00000	2
30.0000	2.900	6.500000	3.760000	750.00	300.00	60.00000	3
20.0000	3.360	8.100000	4.510000	750.00	300.00	80.00000	4
10.0000	3.370	8.070000	4.460000	750.00	300.00	90.00000	5
10.0000	3.380	8.020000	4.410000	750.00	300.00	100.00000	6
25.0000	3.390	7.930000	4.370000	750.00	300.00	125.00000	7
25.0000	3.410	7.850000	4.350000	750.00	300.00	150.00000	8
25.0000	3.430	7.890000	4.360000	750.00	300.00	175.00000	9
25.0000	3.460	7.980000	4.380000	750.00	300.00	200.00000	10
25.0000	3.480	8.100000	4.420000	750.00	300.00	225.00000	11
25.0000	3.500	8.210000	4.460000	750.00	300.00	250.00000	12
50.0000	3.530	8.380000	4.540000	750.00	300.00	300.00000	13
50.0000	3.580	8.620000	4.680000	750.00	300.00	350.00000	14
50.0000	3.620	8.870000	4.850000	750.00	300.00	400.00000	15
50.0000	3.690	9.150000	5.040000	750.00	300.00	450.00000	16
50.0000	3.800	10.000000	5.500000	750.00	300.00	500.00000	17
[is01:sg0	1/Ftan,	/Sg01Test0	1] sg01%				
				_			
			1 1 1 1 1 1 1 1 1 1				
[1SUI:SGU	1/Ftan,	/Sg01Test0	1] sg01% cat	levc_n.	stp	-lass + la (lass) - 1	
thk(km)	rho	/Sg01Test0 Vp(km/s)	1] sg01% cat Vs(km/s)	levc_n. Qp	Qs	depth(km) 1	ayer
[1S01:SG0 thk(km) 20.0000	1/Ftan, rho 2.740	/Sg01Test02 Vp(km/s) 6.140000	1] sg01% cat Vs(km/s) 3.550000	levc_n. Qp 750.00	Stp Qs 300.00	depth(km) 1 20.00000	ayer 1
[1501:590 thk(km) 20.0000 19.0000	1/Ftan, rho 2.740 3.000	/Sg01Test02 Vp(km/s) 6.140000 6.580000	1] sg01% cat Vs(km/s) 3.550000 3.800000	levc_n. Qp 750.00 750.00 750.00	stp Qs 300.00 300.00	depth(km) 1 20.00000 39.00000	ayer 1 2
[1501:590 thk(km) 20.0000 19.0000 12.0000	1/Ftan, rho 2.740 3.000 3.320	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000	1] sg01% cat Vs(km/s) 3.550000 3.800000 4.650000	levc_n. Qp 750.00 750.00 750.00 750.00	stp Qs 300.00 300.00 300.00	depth(km) 1 20.00000 39.00000 51.00000	ayer 1 2 3
[1501:590 thk(km) 20.0000 19.0000 12.0000 10.0000	1/Ftan, rho 2.740 3.000 3.320 3.340	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.620000	levc_n. Qp 750.00 750.00 750.00 750.00 750.00	stp Qs 300.00 300.00 300.00 300.00	depth(km) 1 20.00000 39.00000 51.00000 61.00000	ayer 1 2 3 4
[1501:590 thk(km) 20.0000 19.0000 12.0000 10.0000 10.0000	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 2.260	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.570000	levc_n. Qp 750.00 750.00 750.00 750.00 750.00 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00	depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000	ayer 1 2 3 4 5
<pre>[1S01:SG0 thk(km) 20.0000 19.0000 12.0000 10.0000 10.0000 10.0000 10.0000</pre>	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.100000 8.070000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.650000 4.620000 4.570000 4.510000 4.60000	levc_n. Qp 750.00 750.00 750.00 750.00 750.00 750.00 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00	depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000	ayer 1 2 3 4 5 6 7
[1501:5g0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000	rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370 3.380	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.100000 8.070000 8.020000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.570000 4.510000 4.460000 4.410000	Levc_n. Qp 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00	depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000 91.00000	ayer 1 2 3 4 5 6 7 8
[1501:5g0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 10.0000 25.0000	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370 3.380 3.380	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.100000 8.070000 8.020000 7.930000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.570000 4.510000 4.460000 4.410000 4.370000	Levc_n. Op 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000 91.00000 101.00000	ayer 1 2 3 4 5 6 7 8 9
[1501:5g0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 10.0000 25.0000	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.360 3.380 3.380 3.390 3.410	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.100000 8.070000 8.020000 7.930000 7.850000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.570000 4.510000 4.460000 4.410000 4.370000 4.350000	levc_n. Qp 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	<pre>depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000 91.00000 101.00000 126.00000 151.00000</pre>	ayer 1 2 3 4 5 6 7 8 9
[1501:500 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370 3.380 3.380 3.390 3.410	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.100000 8.070000 8.020000 7.930000 7.850000 7.850000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.570000 4.510000 4.460000 4.410000 4.370000 4.350000	Levc_n. Qp 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	<pre>depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000 91.00000 101.00000 126.00000 151.00000 151.00000</pre>	ayer 1 2 3 4 5 6 7 8 9 10
<pre>[1s01:sg0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000 25.0000 25.0000</pre>	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370 3.380 3.390 3.410 3.430 3.460	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.100000 8.020000 7.930000 7.850000 7.980000 7.980000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.570000 4.510000 4.460000 4.410000 4.370000 4.350000 4.360000 4.380000	Levc_n. Qp 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	<pre>depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000 101.00000 101.00000 126.00000 151.00000 176.00000 201 00000</pre>	ayer 1 2 3 4 5 6 7 8 9 10 11 12
<pre>[1501:sg0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000 25.0000 25.0000</pre>	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370 3.380 3.380 3.390 3.410 3.430 3.480	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.140000 8.140000 8.070000 8.020000 7.930000 7.850000 7.890000 8.100000 8.100000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.570000 4.510000 4.460000 4.410000 4.370000 4.350000 4.380000 4.20000	Levc_n. Qp 750.00 7	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	<pre>depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000 101.00000 126.00000 151.00000 151.00000 201.00000 226.00000 </pre>	ayer 1 2 3 4 5 6 7 8 9 10 11 12 13
<pre>[1501:sg0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000 25.0000 25.0000 25.0000</pre>	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370 3.380 3.390 3.410 3.430 3.440 3.480 3.500	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.070000 8.020000 7.930000 7.930000 7.850000 7.890000 8.100000 8.100000 8.210000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.650000 4.620000 4.570000 4.510000 4.460000 4.410000 4.370000 4.350000 4.360000 4.380000 4.420000 4.460000	Levc_n. Qp 750.00 7	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	<pre>depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000 101.00000 101.00000 126.00000 151.00000 176.00000 201.00000 226.00000 251.00000</pre>	ayer 1 2 3 4 5 6 7 8 9 10 11 12 13 14
<pre>[1501:sg0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000</pre>	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.360 3.380 3.390 3.410 3.430 3.440 3.480 3.480 3.500	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.100000 8.020000 7.930000 7.850000 7.980000 8.100000 8.100000 8.380000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.650000 4.620000 4.570000 4.510000 4.410000 4.370000 4.350000 4.360000 4.380000 4.420000 4.460000 4.540000	Levc_n. Qp 750.00 7	stp QS 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	depth(km) 1 20.00000 39.00000 51.00000 71.00000 81.00000 101.00000 101.00000 151.00000 176.00000 201.00000 226.00000 251.00000 301.00000	ayer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
<pre>[1501:sg0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000</pre>	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.360 3.360 3.380 3.380 3.410 3.440 3.440 3.440 3.440 3.550 3.530 3.580	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.100000 8.020000 7.930000 7.850000 7.850000 7.890000 8.100000 8.210000 8.380000 8.620000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.570000 4.510000 4.460000 4.410000 4.370000 4.350000 4.360000 4.380000 4.420000 4.460000 4.680000	Levc_n. Qp 750.00 7	stp QS 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	<pre>depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000 101.00000 101.00000 126.00000 176.00000 226.00000 251.00000 351.000000 351.000000 351.000000 351.000000 351.000000 351.000000 351.000000 351.000000 351.000000 351.000000 351.0000000000000 351.0000000000000000000000000000000000</pre>	ayer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
<pre>[1501:sg0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 50.0000</pre>	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370 3.380 3.390 3.440 3.440 3.440 3.440 3.480 3.500 3.580 3.580 3.620	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.140000 8.070000 7.930000 7.930000 7.850000 7.850000 8.100000 8.210000 8.380000 8.620000 8.870000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.620000 4.570000 4.510000 4.410000 4.410000 4.370000 4.350000 4.360000 4.380000 4.420000 4.460000 4.540000 4.680000	Levc_n. Qp 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	<pre>depth(km) 1 20.0000 39.00000 51.00000 61.00000 71.00000 81.00000 10.00000 101.00000 126.00000 151.00000 226.00000 251.00000 301.00000 351.00000 401.00000 </pre>	ayer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
<pre>[1501:sg0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 50.0000 50.0000 50.0000</pre>	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370 3.380 3.390 3.410 3.440 3.440 3.460 3.480 3.500 3.530 3.530 3.580 3.620 3.620	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.070000 8.020000 7.930000 7.850000 7.850000 7.890000 8.100000 8.210000 8.380000 8.870000 9.150000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.650000 4.570000 4.510000 4.410000 4.410000 4.370000 4.350000 4.360000 4.380000 4.420000 4.460000 4.540000 4.680000 5.040000	Levc_n. Qp 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	<pre>depth(km) 1 20.00000 39.00000 51.00000 61.00000 71.00000 81.00000 101.00000 126.00000 151.00000 201.00000 251.00000 301.00000 351.00000 401.00000</pre>	ayer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
<pre>[1s01:sg0 thk(km) 20.0000 19.0000 10.0000 10.0000 10.0000 10.0000 25.0000 25.0000 25.0000 25.0000 25.0000 25.0000 50.0000 50.0000 50.0000</pre>	1/Ftan, rho 2.740 3.000 3.320 3.340 3.350 3.360 3.370 3.380 3.390 3.410 3.440 3.460 3.440 3.460 3.530 3.530 3.580 3.580 3.690 3.800	/Sg01Test0 Vp(km/s) 6.140000 6.580000 8.200000 8.170000 8.140000 8.140000 8.070000 7.930000 7.930000 7.850000 7.850000 7.890000 8.100000 8.380000 8.380000 8.620000 8.620000 9.150000 10.000000	1] sg01% cat Vs(km/s) 3.550000 4.650000 4.650000 4.570000 4.510000 4.410000 4.410000 4.370000 4.350000 4.360000 4.380000 4.420000 4.460000 4.680000 4.680000 5.040000 5.500000	Levc_n. Qp 750.00	stp Qs 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	<pre>depth(km) 1 20.0000 39.00000 51.00000 61.00000 71.00000 81.00000 101.00000 126.00000 126.00000 271.00000 26.00000 251.00000 301.00000 351.00000 451.00000 451.00000 </pre>	ayer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2) Prepare for the conversion to modal summation format

```
[is01:sg01/Ftan/Sg01Test01] sg01% cat p5r.par
Parameters file for program p5r
0 reference structure (0 = none)
1. max frequency (10 Hz or 1 Hz or 0.1 Hz)
6.42 min velocity for halfspace (1Hz=6.42,10Hz=4.50)
0. max depth (0=use vel; x=km,if in channel stay above)
0 split more at physical interfaces (0=no, 1=YES)
1 add num gradient to num layers (0=no, 1=YES)
1 take care of low-velocity channels (0=no, 1=YES)
1 argest Vs to split using wavelength (sugg. 2.0)
```

1. wavelength correction factor (suggested 1.0) 0 max depth for plotting (0=all) levc_n.stp physical layers first structure levp_n.stp [is01:sg01/Ftan/Sg01Test01] sg01%

3) Generate the structure files for modal summation and plot the structures

[is01:sg01/Ftan/Sg01Test01] sg01% p5r.out

reference structure file not used
<pre>physical structure file: levc_n.stp structure file for program ray and lov: levc_n.str not enough depth or velocity reached, and reference structure missing maximum frequency (hz) 1.00 number of water layers 0 number of solid layers 78 number of low velocity channels 1 maximum depth (km) 0.00 halfspace s-wave velocity (km/s) 5.50</pre>
<pre>physical structure file: levp_n.stp structure file for program ray and lov: levp_n.str not enough depth or velocity reached, and reference structure missing maximum frequency (hz) 1.00 number of water layers 0 number of solid layers 83 number of low velocity channels 1 maximum depth (km) 0.00 halfspace s-wave velocity (km/s) 5.50</pre>

p5r, - execution terminated, check file p5r.pri

You can plot the structure (density and velocities vs depth and quality factors for P and S wave vs depth) issuing the command

plotstructure levc_n.str
plotstructure levp_n.str

Files levc_n.str.ps, levc_n.q.ps, levp_n.str.ps and levp_n.q.ps are created that can be printed or viewed. You can redefine the depth range and/or the density and velocity ranges, or use colors in the plots using options of *plotstructure*. The correct syntax is:

```
plotstructure [-options] [<minimum depth (km) to plot>-<maximum depth
(km) to plot>] <input files>
```

Input files can be in str, stp, spl or spr format. The options are:

-cf convert from ps format to format f, where f means:

- b bmp e eps
- f pdf
- j jpg
- g png
- G png (transparent)
- m ppm
- t tif
- -C plot with color

-dNNN define density (dpi) of raster format, NNN is the value to use

- -h print help
- -n no title

4) Generate the modes for Love (SH) and Rayleigh (P-SV) waves

```
[is01:sg01/Ftan/Sg01Test01] sg01% lov
[is01:sg01/Ftan/Sg01Test01] sg01% ray
```

The modes must be plotted to check that all modes have been properly computed:

plotmodes	levp_n.spl	(plot Love modes)
plotmodes	levp_n.spr	(plot Rayleigh modes)

The first command generates the PostScript file levp_n.spl.ps with the plot of the Love modes, the second command generates the file levp n.spr.ps with the Rayleigh modes.

gs	levp_n.spl.ps	(visualize on screen Love modes)
gs	levp_n.spr.ps	(visualize on screen Rayleigh modes)

You can redefine the frequency range and/or the phase velocity and/or number of modes ranges using options of plotmodes script. The correct syntax is:

```
plotmodes [-options] [name_of_var=value_of_var] [<first modes to plot>-
<last modes to plot>] <input files>
```

List of options:

- -a alternate colors for consecutive modes
- -cf convert from ps format to format f, where f means:
 - b bmp
 - e eps
 - f pdf
 - j jpg
 - g png
 - G png (transparent)
 - m ppm
 - t tif

-dNNN define density (dpi) of raster format, NNN is the value to use

- -e plot ellipticity in additional file
- -h print help
- -i plot iend in additional file
- -l use logscale for x axis
- -q plot qx instead of c2
- -t use period instead of frequency
- --N define line color, default is red, 0 means black

Max and min values of y and x axis can be set by this variables:

- Fmin Fmax: frequency
- Tmin Tmax: period
- Cmin Cmax: phase velocity
- Umin Umax: group velocity
- Imin Imax: energy Integral
- C2min C2max: phase attenuation
- Qmin Qmax: Q
- Zmin Zmax: depth of structure (for iend)
- Vmin Vmax: velocity of P and S waves (for iend)

Generation of the synthetic seismograms

5) Edit the parameters for synthetic seismogram computations

[is01:sg01/Ftan/Sg01Test01] sg01% vi ftanparatest.par Parameter file for program paratest Test label (root for output filenames - 13 chars max) р 0 Ref. box file for values not listed below (0=no, 13 chars max) Love spectrum file levp_n.spl Rayleigh spectrum file Motion (1=displ, 2=vel, 3=acc) levp_n.spr 1 200 Time length for plot seismograms (s) 1 0.0 0.0 0.0 Source (1=point, 2=extended), lon, lat, strike (Nord) Force system (1=dc, 2=single, 3=dip, 4=sc, 5=pex, 6=cex) 1 Strike (loop 0=no,1=yes, start, stop, step) (Degrees) Dip (loop 0=no,1=yes, start, stop, step) (Degrees) SRE 0 60 60 15 90 90 10 DIP 0 RAK 0 180 40 10 Rake (loop 0=no,1=yes, start, stop, step) (Degrees) SDE 1 10 30 2 Source Depth (loop 0=no/1=yes, start, stop, step) (km) EDI 0 100 200 10 Epicentral Distance (loop 0=no/1=yes, start, stop, step) (km) RDE 0 0 3 1 MOD 0 0 0 1 INT 0 0 30 1 Receiver Depth (loop 0=no/1=yes, start, stop, step) (km) Modes (loop 0=no/1=yes, start, stop (step must be 1)) INT 0 0 30 1 Interpolation (0-9) (flag 0=no,1=yes, start, stop, step) MAG 0 0.0 6.5 0.1 Magnitude (flag 0=no,1=yes, start, stop, step)

6) Generate the script for the computation of the synthetic seismograms

7) Generate the synthetic seismograms

[is01:sg01/Ftan/Sg01Test01] sg01% ftanparajob Computing Radial Component... Computing Vertical Component... 2014/03/05 19:04:26 efft treating seismograms... 2014/03/05 19:04:26 efft OK - Execution terminated Converting to FTAN format pf0.syr... 11 pf0.syz... 22 pf0.syl... 33 *** To plot the seismograms: gs p.sde.sis.*.ps *** To plot the peak values: gs p.sde.ps

Example of list of generated seismograms, to be read with FTAN (ASCII format):

[is01:sg01/Ftan/Sg01Test01] sg01% ll *.ft -rw-r--r- 1 sg01 dstguest 70097 Mar 5 02:55 p.syz.00001.ft -rw-r--r- 1 sg01 dstguest 70097 Mar 5 02:55 p.syz.00002.ft -rw-r--r- 1 sg01 dstguest 70097 Mar 5 02:55 p.syz.00003.ft -rw-r--r- 1 sg01 dstguest 70097 Mar 5 02:55 p.syz.00004.ft -rw-r--r- 1 sg01 dstguest 70097 Mar 5 02:55 p.syz.00005.ft -rw-r--r- 1 sg01 dstguest 70097 Mar 5 02:55 p.syz.00005.ft

-rw-rr	1	sg01	dstguest	70097	Mar	5	02:55	p.syz.00007.ft
-rw-rr	1	sg01	dstguest	70097	Mar	5	02:55	p.syz.00008.ft
-rw-rr	1	sg01	dstguest	70097	Mar	5	02:55	p.syz.00009.ft
-rw-rr	1	sg01	dstguest	70097	Mar	5	02:55	p.syz.00010.ft
-rw-rr	1	sg01	dstguest	70097	Mar	5	02:55	p.syz.00011.ft

FTAN analysis

Launch XFTAN. You can have more than one window open, and in each window you can perform the following steps:

- 9) Read one of the generated seismogram, in ASCII format.
- 10) Adjust the FTAN parameter and generate the FTAN map by pushing the "Map" button.
- 11) Draw a dispersion curve by clicking on the FTAN map, following the curve you think is the fundamental mode. When done, push the "Filter" button, being sure to use manual mode ("Manual" checkbox must be checked).
- 12) Check that the automatically selected region (four red marks) contains the green mark plotted along the curve. If the green mark is not visible in the plotted region, zoom out by alt-shift-click on the plot. If the green mark is outside of the four red marks, define manually the proper red marks by clicking four times on the plot around the peak closest to the green mark. Click OK to do the filtering.
- 13) As a cross-check, read the modes (file *.spr) used to generate the seismograms, to see how they fit with the pattern of the FTAN map. To do this, push the "Map" button again, ctrl-click on the ftan map and select the "Read Modes..." contextual menu to select the proper *.spr file. The first three modes of the structure will be plotted (the darkest being the fundamental mode).
- 14) When a satisfactory FTAN processing has been achieved, it is suggested to save the analysis from the File-->Save menu. Remember to add a .ftan extension to the file saved.

Variations

In the original example, source depth was varied, and all modes were generated. The fundamental mode was then obtained by filtering the FTAN map. Modify file ftanparatest.par in step 5) to generate only the fundamental mode changing the MOD record to look like this:

MOD 0 1 1 1 1 Modes (loop 0=no/1=yes, start, stop (step must be 1))

(and set change "p" to "fp "in test label, to obtain different filenames and avoid overwriting the results). Compare theoretical and filtered fundamental mode seismograms.

Repeat the computations using a different epicentral distance. Any difference in the FTAN map you obtain?

Repeat the computations generating the seismograms in velocity or displacement, rather than in acceleration. Any difference in the FTAN map you obtain?

Eigenfunction computations

You may want to visualize the eigenfunctions running script checkEig, for selected modes and frequencies. Script checkEig computes and plots the eigenfunctions starting from spectrum (spl or spr) file. The correct syntax is:

```
checkEig [-options] [name_of_var=value_of_var] m=<first modes to plot>-
<last modes to plot> f=<first frequency to plot>-<last frequency to plot>
<input files>
```

Input files must be a Love or Rayleigh spectrum. Name of the output file has this format:

<root name of input file>.<first mode to plot>-<last mode to plot>.eig[rl].ps

List of options:

- -B grey-scale plot
- -b plot Ray and Love eigenfunctions
- -cf convert from ps format to format f, where f means:
 - b bmp
 - e eps
 - f pdf
 - j jpg
 - g png
 - G png (transparent)
 - m ppm
 - t tif

-dNNN define density (dpi) of raster format, NNN is the value to use

- -i plot iend
- -l use logscale for x axis in iend plot
- -t use period instead of frequency in iend plot
- -h print help
- -n no title

Useful variables that can be set:

iend	defines iend for eigenfunction computation
depth	defines maximum depth for eigenfunction computation
Zmax, Zmin	maximum and minimum depths to plot
Fmax, Fmin	maximum and minimum frequency to plot (for iend)

Synthetic seismograms in 1D models (10 Hz)

Create a new directory for this exercise and copy the required files:

```
[is01:/tmpXDST/sg01/Ftan] sg01% mkdir Sg01Test10
[is01:/tmpXDST/sg01/Ftan] sg01% cd Sg01Test10/
[is01:sg01/Ftan/Sg01Test10] sg01% cp /XDST/Examples/Ftan/10Hz/Base/* .
[is01:sg01/Ftan/Sg01Test10] sg01% ls
a.stp ftanparatest.par p5r.par
```

The steps to be performed are the same as those executed in the previous exercise. The FTAN map parameters will have to be adapted to the new period and velocity ranges.

Computation of the modes

1) See the structure:

```
[is01:sg01/Ftan/Sg01Test10] sg01% cat a.stp
  thk(km) rho Vp(km/s) Vs(km/s) Qp Qs
0.0430 2.000 0.550000 0.300000 10000.00 10000.00
                                                               depth(km) layer
                                                                   0.04300
                                                                               1
   0.0760 2.100 1.500000 0.900000 10000.00 10000.00
                                                                   0.11900
                                                                               2
                               1.300000 10000.10 10000.00
1.500000 10000.00 10000.00
   0.3810 2.120
                   2.250000
                                                                   0.50000
                                                                               3
   0.5000 2.150
                   2.600000
                                                                   1.00000
                                                                               4
   0.5000 2.300
                   3.200000
                               1.800000 10000.00 10000.00
                                                                   1.50000
                                                                               5
   0.5000 2.300
                               2.100000 10000.00 10000.00
                   3.600000
                                                                   2.00000
                                                                               6
   0.5000 2.300
0.5000 2.300
0.5000 2.450
                   4.000000
                               2.300000 10000.00 10000.00
                                                                   2.50000
                                                                               7
                               2.500000 10000.00 10000.00
2.700000 10000.00 10000.00
                                                                   3.00000
                   4.400000
                                                                               8
9
                   4.800000
                                                                   3.50000
   0.5000 2.500
                   5.400000
                               3.100000 10000.00 10000.00
                                                                   4.00000
                                                                             10
   6.0000 2.600
                   5.600000 3.200000 10000.00 10000.00
                                                                  10.00000
                                                                             11
[is01:sg01/Ftan/Sg01Test10] sg01%
```

2) Prepare for the conversion to modal summation format

[is01:sg01/Ftan/Sg01Test10] #	sg01% cat p5r.par
Parameters file for program	p5r
0	reference structure (0 = none)
10.	max frequency (10 Hz or 1 Hz or 0.1 Hz)
4.5	min velocity for halfspace (1Hz=6.42,10Hz=4.50)
0.	<pre>max depth (0=use vel; x=km, if in channel stay above)</pre>
0	split more at physical interfaces (0=no, 1=YES)
1	add num gradient to num layers (0=no, 1=YES)
1	take care of low-velocity channels (0=no, 1=YES)
2.0	largest Vs to split using wavelength (sugg. 2.0)
1.	wavelength correction factor (suggested 1.0)
0.3	max depth for plotting (0=all)
a.stp	physical layers first structure
4.5 0. 0 1 1 2.0 1. 0.3 a.stp	<pre>min velocity for halfspace (IHz=6.42,10Hz=4.50) max depth (0=use vel; x=km,if in channel stay above split more at physical interfaces (0=no, 1=YES) add num gradient to num layers (0=no, 1=YES) take care of low-velocity channels (0=no, 1=YES) largest Vs to split using wavelength (sugg. 2.0) wavelength correction factor (suggested 1.0) max depth for plotting (0=all) physical layers first structure</pre>

3) Generate the structure files for modal summation and plot the structures

[is01:sg01/Ftan/Sg01Test10] sg01% p5r.out

reference structure file n	not used
<pre>physical structure file: a</pre>	1.stp
structure file for program ray and lov: a	1.str
not enough depth or velocity reached, and ref	Terence structure missing
maximum frequency (hz)	10.00
number of water layers	0
number of solid layers	47
number of low velocity channels	0
maximum depth (km)	0.00
halfspace s-wave velocity (km/s)	3.20

p5r, - execution terminated, check file p5r.pri

You can plot the structure (density and velocities vs depth and quality factors for P and S wave vs depth) issuing the command

```
plotstructure levc_n.str
plotstructure levp_n.str
```

Files levc_n.str.ps, levc_n.q.ps, levp_n.str.ps and levp_n.q.ps are created that can be printed or viewed. You can redefine the depth range and/or the density and velocity ranges, or use colors in the plots using options of *plotstructure*. The correct syntax is:

```
plotstructure [-options] [<minimum depth (km) to plot>-<maximum depth
(km) to plot>] <input files>
```

Input files can be in str, stp, spl or spr format. The options are:

-cf convert from ps format to format f, where f means:

- b bmp
- e eps
- f pdf
- j jpg g png
- G png (transparent)
- m ppm
- t tif
- -C plot with color

-dNNN define density (dpi) of raster format, NNN is the value to use

- -h print help
- -n no title

4) Generate the modes for Love (SH) and Rayleigh (P-SV) waves

[is01:sg01/Ftan/Sg01Test01] sg01% lov [is01:sg01/Ftan/Sg01Test01] sg01% ray

The modes must be plotted to check that all modes have been properly computed:

plotmodes	levp_n.spl	(plot Love modes)
plotmodes	levp_n.spr	(plot Rayleigh modes)

The first command generates the PostScript file levp_n.spl.ps with the plot of the Love modes, the second command generates the file levp n.spr.ps with the Rayleigh modes.

gs	levp_n.spl.ps	(visualize on screen Love modes)
qs	levp n.spr.ps	(visualize on screen Rayleigh modes)

You can redefine the frequency range and/or the phase velocity and/or number of modes ranges using options of plotmodes script. The correct syntax is:

```
plotmodes [-options] [name_of_var=value_of_var] [<first modes to plot>-
<last modes to plot>] <input files>
```

List of options:

- -a alternate colors for consecutive modes
- -cf convert from ps format to format f, where f means:
 - b bmp e eps f pdf
 - j jpg
 - g png

- G png (transparent)
- m ppm
- t tif
- -dNNN define density (dpi) of raster format, NNN is the value to use
- -e plot ellipticity in additional file
- -h print help
- -i plot iend in additional file
- -l use logscale for x axis
- -q plot qx instead of c2
- -t use period instead of frequency
- --N define line color, default is red, 0 means black

Max and min values of y and x axis can be set by this variables:

- Fmin Fmax: frequency
- Tmin Tmax: period
- Cmin Cmax: phase velocity
- Umin Umax: group velocity
- Imin Imax: energy Integral
- C2min C2max: phase attenuation
- Qmin Qmax: Q
- Zmin Zmax: depth of structure (for iend)
- Vmin Vmax: velocity of P and S waves (for iend)

Generation of the synthetic seismograms

5) Edit the parameters for synthetic seismogram computations

```
[is01:sg01/Ftan/Sg01Test01] sg01% vi ftanparatest.par
Parameter file for program ftanparatest
```

```
Test label (root for output filenames - 13 chars max)
Ref. box file for values not listed below (0=no, 13 chars max)
s01a
 0
                                                     Love spectrum file
a.spl
                                                     Rayleigh spectrum file
 a.spr
                                                     Motion (1=displ, 2=vel, 3=acc)
 3
                                                     Time length for plot seismograms (s)
Source (1=point, 2=extended), lon, lat, strike (Nord)
 40
       0.0 0.0 0.0
 1
 2
                                                     Force system (1=dc, 2=single, 3=dip, 4=sc, 5=pex, 6=cex)
 SRE 0
                     0
                            60 15
                                                     Strike (loop 0=no,1=yes, start, stop, step) (Degrees)
                   90 90 10
                                                     Dip (loop 0=no,1=yes, start, stop, step) (Degrees)
DIP 0
RAK 0 270 40 10 Rake (loop 0=no,1=yes, start, stop, step) (Degrees)
SDE 1 0.001 0.031 0.002 Source Depth (loop 0=no/1=yes, start, stop, step) (km)
EDI 0 5.00 15. 1.0 Epicentral Distance (loop 0=no/1=yes, start, stop, step) (km)

        RDE
        0
        0
        3
        1

        MOD
        0
        0
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1
        1</td
                                                          Receiver Depth (loop 0=no/1=yes, start, stop, step) (km)
                                                  Modes (loop 0=no/1=yes, start, stop (step must be 1) )
                                                Interpolation (0-9) (flag 0=no,1=yes, start, stop, step)
Magnitude (flag 0=no,1=yes, start, stop, step)
```

6) Generate the script for the computation of the synthetic seismograms

*** Now you can execute the shell script named: ftanparajob ***

Generate the synthetic seismograms

```
[is01:sg01/Ftan/Sg01Test10] sg01% ftanparajob
Computing Radial Component...
Computing Vertical Component...
Computing Transverse Component...
2014/03/05 18:59:48 efft treating seismograms...
2014/03/05 18:59:49 efft OK - Execution terminated
Converting to FTAN format
s01af2.syr... 16
s01af2.syz... 32
s01af2.syl... 48
*** To plot the seismograms: gs s01a.sde.sis.*.ps
*** To plot the peak values: gs s01a.sde.ps
```

Example of list of generated seismograms, to be read with FTAN (ASCII format):

```
[is01:sg01/Ftan/Sg01Test10] sg01% ll *.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00001.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00003.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00003.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00005.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00005.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00006.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00006.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00008.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00008.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00009.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00010.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00010.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00011.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00013.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00013.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00013.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00013.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00013.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00013.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00013.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00013.ft
-rw-r--r- 1 sg01 dstguest 70134 Mar 5 18:59 s01a.syz.00013.ft
```

FTAN analysis

Launch XFTAN. You can have more than one window open, and in each window you can perform the following steps:

- Read one of the generated seismogram, in ASCII format.
- 10) Adjust the FTAN parameter and generate the FTAN map by pushing the "Map" button.
- 11) Draw a dispersion curve by clicking on the FTAN map, following the curve you think is the fundamental mode. When done, push the "Filter" button, being sure to use manual mode ("Manual" checkbox must be checked).
- 12) Check that the automatically selected region (four red marks) contains the green mark plotted along the curve. If the green mark is not visible in the plotted region, zoom out by alt-shift-click on the plot. If the green mark is outside of the four red marks, define manually the proper red marks by clicking four times on the plot around the peak closest to the green mark. Click OK to do the filtering.
- 13) As a cross-check, read the modes (file *.spr) used to generate the seismograms, to see how they fit with the pattern of the FTAN map. To do this, push the "Map" button again, ctrl-click on the ftan

map and select the "Read Modes..." contextual menu to select the proper *.spr file. The first three modes of the structure will be plotted (the darkest being the fundamental mode).

14) When a satisfactory FTAN processing has been achieved, it is suggested to save the analysis from the File-->Save menu. Remember to add a .ftan extension to the file saved.

Variations

Modify the properties of the uppermost layers, generate again the modes and the seismograms and see how much the dispersion properties of the fundamental mode can change.

Synthetic seismograms in 2D models (coupling, 10 Hz)

In this exercise, the 2D coupling modal summation technique is used to generate synthetic seismograms for the transverse component of motion. Two structural models are defined in s1.stp and s2.stp, and the modes are already available in the corresponding .sp1 files.

To get to the working directory, give the following commands:

```
[is01:Ftan/2D/Coupling] sg01% cdt
[is01:/tmpXDST/sg01] sg01% cd Ftan
[is01:/tmpXDST/sg01/Ftan] sg01% mkdir -p 2D/Coupling
[is01:/tmpXDST/sg01/Ftan] sg01% cd 2D/Coupling
[is01:Ftan/2D/Coupling] sg01%
```

Copy the files you find in the example directory:

```
[is01:Ftan/2D/Coupling] sg01% ls -1 /XDST/Examples/Ftan/2D/Coupling/Base
total 3084
-rw-r--r-- 1 vaccari dstguest 975 Apr 7 15:22 couplov.par
-rw-r--r-- 1 vaccari dstguest 104 Apr 7 15:23 coupsplit.par
-rw-r--r-- 1 vaccari dstguest 5268 Apr 7 15:25 fft.par
-rw-r--r-- 1 vaccari dstguest 1544897 Apr 7 09:14 s1.spl
-rw-r--r-- 1 vaccari dstguest 1105 Apr 10 2013 s1.stp
-rw-r--r-- 1 vaccari dstguest 1571386 Apr 7 09:14 s2.spl
-rw-r--r-- 1 vaccari dstguest 1105 Apr 10 2013 s2.stp
-rw-r--r-- 1 vaccari dstguest 2371 Apr 7 14:58 syl2d.box
-rw-r--r-- 1 vaccari dstguest 891 Apr 7 15:25 syn2ftan.par
```

```
[is01:Ftan/2D/Coupling] sg01% cp /XDST/Examples/Ftan/2D/Coupling/Base/* .
[is01:Ftan/2D/Coupling] sg01%
```

Exercise

1) See the structures:

thk(km) rho	Vp(km/s)	Vs(km/s)	Qp	Qs d	lepth(km) la	ayer
0.0300 2.0	2.60000	0 1.500000	220.00	100.00	0.03000	1
0.1700 2.0	2.94000	0 1.700000	220.00	100.00	0.20000	2
0.8000 2.1	LOO 3.50000	0 1.900000	220.00	100.00	1.00000	3
1.0000 2.2	210 4.80000	0 2.400000	220.00	100.00	2.00000	4
3.0000 2.5	550 5.57000	0 3.220000	220.00	100.00	5.00000	5
3.0000 2.6	560 5.89900	0 3.410000	220.00	100.00	8.00000	6
7.0000 2.6	580 5.98500	0 3.460000	220.00	100.00	15.00000	7
4.0000 2.7	6.15000	0 3.560000	220.00	100.00	19.00000	8
9.0000 2.7	6.29000	0 3.640000	220.00	100.00	28.00000	9
12.0000 2.9	6.92000	0 4.000000	220.00	100.00	40.00000	10
5.0000 3.1	00 7.28000	0 4.210000	220.00	100.00	45.00000	11
11.0000 3.2	240 7.73000	0 4.470000	220.00	100.00	56.00000	12
9.0000 3.2	250 7.75000	0 4.480000	220.00	100.00	65.00000	13
9.0000 3.2	260 7.76700	0 4.494000	220.00	100.00	74.00000	14
18.0000 3.2	290 7.78500	0 4.500000	220.00	100.00	92.00000	15
	(Courling) -	~019 ~ot -0	a+			
(1SUI:rtan/2D +bk(km) rh	Vo Vo(km/s	yuis cat sz. Ve(km/e)	Stp	05	denth(km)	lavor
) və(KIII/S)	γγ	<u>v</u> s		таует

	0.0300	1.900	0.780000	0.450000	220.00	100.00	0.03000	1
	0.1700	2.000	1.730000	1.000000	220.00	100.00	0.20000	2
	0.8000	2.100	3.500000	1.900000	220.00	100.00	1.00000	3
	1.0000	2.210	4.800000	2.400000	220.00	100.00	2.00000	4
	3.0000	2.550	5.570000	3.220000	220.00	100.00	5.00000	5
	3.0000	2.660	5.899000	3.410000	220.00	100.00	8.00000	6
	7.0000	2.680	5.985000	3.460000	220.00	100.00	15.00000	7
	4.0000	2.740	6.150000	3.560000	220.00	100.00	19.00000	8
	9.0000	2.780	6.290000	3.640000	220.00	100.00	28.00000	9
	12.0000	2.980	6.920000	4.000000	220.00	100.00	40.00000	10
	5.0000	3.100	7.280000	4.210000	220.00	100.00	45.00000	11
	11.0000	3.240	7.730000	4.470000	220.00	100.00	56.00000	12
	9.0000	3.250	7.750000	4.480000	220.00	100.00	65.00000	13
	9.0000	3.260	7.767000	4.494000	220.00	100.00	74.00000	14
	18.0000	3.290	7.785000	4.500000	220.00	100.00	92.00000	15
[i	s01:Ftan	/2D/Co	upling] sg0	18				

 Convert the Love modes files (.spl) into direct access format using program modes2daf01.out:

```
[is01:Ftan/2D/Coupling] sg01% ls *.spl
s1.spl
        s2.spl
[is01:Ftan/2D/Coupling] sg01% modes2daf01.out
 NUMBER OF SPECTRA (MAX 29)
2
          2
 SPECTRUM TYPE (1=LOVE 2=RAYLEIGH):
1
          1
SEQUENTAL INPUT SPECTRUM
                                  1 (MAX 20 CHARACTERS)
s1.spl
INPUT SPECTRUM (FORMATTED SEQUENTIAL).....: s1.spl
OUTPUT SPECTRUM (FORMATTED DIRECT ACCESS)...: s1.sdl
SPECTRAL INFORMATION FILE..... s1.sil
                                  2 (MAX 20 CHARACTERS)
SEQUENTAL INPUT SPECTRUM
s2.spl
INPUT SPECTRUM (FORMATTED SEQUENTIAL).....: s2.spl
OUTPUT SPECTRUM (FORMATTED DIRECT ACCESS)...: s2.sdl
SPECTRAL INFORMATION FILE..... s2.sil
[is01:Ftan/2D/Coupling] sg01%
3)
   Compute the coupling coefficients using program couplov01.out:
```

[is01:Ftan/2D/Coupling] sg01% couplov01.out EXECUTION HAS STARTED FOR 1 . INTERFACE Input parameters...... (IN) ...: coplov.inp Output writings..... (OUT)...: coplov.pri Output files created...... Coupling file transmission... (OUT)...: tran01.cdl COMPUTATIONS OK - EXECUTION ENDED [is01:Ftan/2D/Coupling] sg01% if you happen to run more than once *couplov01.out*, please remember to remove file tran01.cdl before re-running the program, or you will obtain an error message like this:

At line 218 of file couplov01.f (unit = 9, file = '') Fortran runtime error: File 'tran01.cdl' already exists

So, in case:

[is01:Ftan/2D/Coupling] sg01% rm tran01.cdl

4) Generate the direct access coupling file for the mode paths:

```
[is01:Ftan/2D/Coupling] sg01% coupsplit01.out
NUMBER OF COUPLINGFILES ? (MAX 15)
1
SPECTRUM TYPE (1=LOVE, 2=RAYLEIGH)
1
INPUT COUPLING FILE(S) (extension .cdl)
INPUT COUPLING FILE (FORMATTED DIRECT ACCESS).: tran01.cdl
OUTPUT SPLIT FILE (UNFORMATTED DIRECT ACCESS).: coupmode.mdl
OUTPUT SPLIT FILE (FORMATTED SEQUENTAL)....: coupmode.mil
THE OUTPUT FILES ARE USED BY sylcoup
```

[is01:Ftan/2D/Coupling] sg01%

5) Generate the synthetic seismogram. Seismogram parameters are defined in file sylcoup.par and syl2d.box:

[is01:Ftan/2D/Coupling] sg01% sylcoup01.out
Parameters are read from file sylcoup.par

THE SPECTRUM FOR STRUCTURE 1 CONTAINS LESS MODES THAN THE FLAG LASTMODE IN SYL2D.BOX ALLOWS IN THE SUM. LASTMODE IS RESET TO MAXIMALLY 138. HIGHER MODE IN THE SUM.

THE SUM OF MODES IN THE SEISMOGRAM CONSISTS OF 843533 MODE PATHS. THE SUM CONSIST OF ALL MODE PATHS (ALSO CROSS COUPLED PATHS) THAT INVOLVES MODES IN THE RANGE FROM FUNDAMENTAL TO 138. HIGHER MODE.

[is01:Ftan/2D/Coupling] sg01%

6) Convert seismogram into FTAN format:

```
[is01:Ftan/2D/Coupling] sg01% syn2ftan.out
[is01:Ftan/2D/Coupling] sg01%
```

Variations

Changing the parameter icrossflag in file sylcoup.par and firstmode and lastmode in file syl2d.box:

- 1) Compute new seismograms ignoring the cross-couplings between modes of different orders
- 2) Focus on the incoming fundamental mode, with or without cross-couplings

Synthetic seismograms in 2D models (hybrid, 10 Hz)

To get to the working directory, give the following commands:

[is01:/XDST/sg01] sg01% cdt [is01:/tmpXDST/sg01] sg01% cd Ftan [is01:/tmpXDST/sg01/Ftan] sg01% cd 2D [is01:sg01/Ftan/2D] sg01%

Copy the files you find in the example directory:

[is01:sg01,	/Ft	can/2D] s	sg01% ls -	-1 /XI	OST/E	Exar	nples/H	Stan/2D/Base/
total 140								
-rw-rr	1	vaccari	dstguest	1296	Apr	7	10:53	ftanparatest.par
-rw-rr	1	vaccari	dstguest	511	Apr	7	10:53	gusev01.xy
-rw-rr	1	vaccari	dstguest	642	Apr	7	10:53	gusev02.xy
-rw-rr	1	vaccari	dstguest	581	Apr	7	10:53	gusev03.xy
-rw-rr	1	vaccari	dstguest	726	Apr	7	10:53	gusev04.xy
-rw-rr	1	vaccari	dstguest	707	Apr	7	10:53	gusev05.xy
-rw-rr	1	vaccari	dstguest	817	Apr	7	10:53	gusev06.xy
-rw-rr	1	vaccari	dstguest	890	Apr	7	10:53	gusev07.xy
-rw-rr	1	vaccari	dstguest	1094	Apr	7	10:53	gusev08.xy
-rw-rr	1	vaccari	dstguest	1109	Apr	7	10:53	gusev09.xy
-rw-rr	1	vaccari	dstguest	974	Apr	7	10:53	gusev10.xy
-rw-rr	1	vaccari	dstguest	719	Apr	7	10:53	m0.pof
-rw-rr	1	vaccari	dstguest	1266	Apr	7	10:53	ml.pof
-rw-rr	1	vaccari	dstguest	1266	Apr	7	10:53	m2.pof
-rw-rr	1	vaccari	dstguest	1266	Apr	7	10:53	m3.pof
-rw-rr	1	vaccari	dstguest	1265	Apr	7	10:53	m4.pof
-rw-rr	1	vaccari	dstguest	1755	Apr	7	10:53	m5.pof
-rw-rr	1	vaccari	dstguest	877	Apr	7	10:53	p5r.par
-rw-rr	1	vaccari	dstguest	4707	Apr	7	10:53	pfdg13.par
-rw-rr	1	vaccari	dstguest	4707	Apr	7	10:53	pfdg13.par.m0
-rw-rr	1	vaccari	dstguest	4707	Apr	7	10:53	pfdg13.par.m1
-rw-rr	1	vaccari	dstguest	4707	Apr	7	10:53	pfdg13.par.m2
-rw-rr	1	vaccari	dstguest	4707	Apr	7	10:53	pfdg13.par.m3
-rw-rr	1	vaccari	dstguest	4707	Apr	7	10:53	pfdg13.par.m4
-rw-rr	1	vaccari	dstguest	4707	Apr	7	10:53	pfdg13.par.m5
-rw-rr	1	vaccari	dstguest	1105	Apr	7	10:53	s1.stp
-rw-rr	1	vaccari	dstguest	1105	Apr	7	10:53	s2.stp
-rw-rr	1	vaccari	dstguest	116	Apr	7	10 : 53	syn2ftan.par
[is01:sq01/Ftan/2D] sq01% cp /XDST/Examples/Ftan/2D/Base/* .								
[is01:sg01,	/Ft	an/2D] s	sg01%			-		

Exercise

1) See the structures:

[is01:sg01/Ftan/2D] sg01% cat s1.stp

1	thk(km)	rho	Vp(km/s)	Vs(km/s)	Qp	Qs	depth(km)	layer
	0.0300	2.000	2.600000	1.500000	220.00	100.00	0.03000	1
	0.1700	2.000	2.940000	1.700000	220.00	100.00	0.20000	2
	0.8000	2.100	3.500000	1.900000	220.00	100.00	1.00000	3
	1.0000	2.210	4.800000	2.400000	220.00	100.00	2.00000	4
	3.0000	2.550	5.570000	3.220000	220.00	100.00	5.00000	5

3.0000	2.660	5.899000	3.410000	220.00	100.00	8.00000	6
7.0000	2.680	5.985000	3.460000	220.00	100.00	15.00000	7
4.0000	2.740	6.150000	3.560000	220.00	100.00	19.00000	8
9.0000	2.780	6.290000	3.640000	220.00	100.00	28.00000	9
12.0000	2.980	6.920000	4.000000	220.00	100.00	40.00000	10
5.0000	3.100	7.280000	4.210000	220.00	100.00	45.00000	11
11.0000	3.240	7.730000	4.470000	220.00	100.00	56.00000	12
9.0000	3.250	7.750000	4.480000	220.00	100.00	65.00000	13
9.0000	3.260	7.767000	4.494000	220.00	100.00	74.00000	14
18.0000	3.290	7.785000	4.500000	220.00	100.00	92.00000	15

[is01:sg01/Ftan/2D] sg01% cat s2.stp

thk(km)	rho	Vp(km/s)	Vs(km/s)	Qp	Qs	depth(km)	layer
0.0300	1.900	0.780000	0.450000	220.00	100.00	0.03000	1
0.1700	2.000	1.730000	1.000000	220.00	100.00	0.20000	2
0.8000	2.100	3.500000	1.900000	220.00	100.00	1.00000	3
1.0000	2.210	4.800000	2.400000	220.00	100.00	2.00000	4
3.0000	2.550	5.570000	3.220000	220.00	100.00	5.00000	5
3.0000	2.660	5.899000	3.410000	220.00	100.00	8.00000	6
7.0000	2.680	5.985000	3.460000	220.00	100.00	15.00000	7
4.0000	2.740	6.150000	3.560000	220.00	100.00	19.00000	8
9.0000	2.780	6.290000	3.640000	220.00	100.00	28.00000	9
12.0000	2.980	6.920000	4.000000	220.00	100.00	40.00000	10
5.0000	3.100	7.280000	4.210000	220.00	100.00	45.00000	11
11.0000	3.240	7.730000	4.470000	220.00	100.00	56.00000	12
9.0000	3.250	7.750000	4.480000	220.00	100.00	65.00000	13
9.0000	3.260	7.767000	4.494000	220.00	100.00	74.00000	14
18.0000	3.290	7.785000	4.500000	220.00	100.00	92.00000	15
[is01:sg0]	l/Ftan,	/2D] sg01%					

2) Prepare for the conversion to modal summation format

[is01:sq01/Ftan/2D] sq01% cat r	b5r.par
Parameters file for program p5r	
0	reference structure (0 = none)
10.	max frequency (10 Hz or 1 Hz or 0.1 Hz)
4.50	<pre>min velocity for halfspace (1Hz=6.42,10Hz=4.50)</pre>
0.	<pre>max depth (0=use vel; x=km,if in channel stay above)</pre>
1	split more at physical interfaces (0=no, 1=YES)
1	add num gradient to num layers (0=no, 1=YES)
1	take care of low-velocity channels (0=no, 1=YES)
2.0	largest Vs to split using wavelength (sugg. 2.0)
1.	wavelength correction factor (suggested 1.0)
2	max depth for plotting (0=all)
s1.stp	physical layers
s2.stp	physical layers

3) Generate the structure files for modal summation and plot the structures

[is01:sg01/Ftan/2D] sg01% p5r.out

_	reference structure file no	ot used
_	<pre>physical structure file s: structure file for program ray and lov: s: maximum frequency (hz) number of water layers number of solid layers number of low velocity channels maximum depth (km) halfspace s-wave velocity (km/s)</pre>	1.stp 1.str 10.00 0 107 0 0.00 4.50
_	physical structure file sz structure file for program ray and lov: sz	2.stp 2.str

10.00 maximum frequency (hz)..... number of water layers..... 0 number of solid layers..... 110 maximum depth (km)..... 0.00 halfspace s-wave velocity (km/s)..... 4.50 _____ p5r, - execution terminated, check file p5r.pri [is01:sg01/Ftan/2D] sg01% [is01:sg01/Ftan/2D] sg01% plotstructure *.str [is01:sq01/Ftan/2D] sq01% ll *.ps -rw-r--r-- 1 sg01 dstguest 18542 Apr 11 00:26 s1.str.ps -rw-r--r-- 1 sg01 dstguest 18622 Apr 11 00:26 s2.str.ps [is01:sg01/Ftan/2D] sg01% gs s?.str.ps Generate the modes for Love (SH) and Rayleigh (P-SV) waves and plot them 4) [is01:sg01/Ftan/2D] sg01% lov [is01:sg01/Ftan/2D] sg01% ray [is01:sg01/Ftan/2D] sg01% plotmodes *.sp? [is01:sg01/Ftan/2D] sg01% ll *.sp?.ps -rw-r--r-- 1 sq01 dstquest 491567 Apr 11 00:28 s1.spl.ps -rw-r--r-- 1 sg01 dstguest 503822 Apr 11 00:28 s1.spr.ps -rw-r--r-- 1 sg01 dstguest 490647 Apr 11 00:28 s2.spl.ps -rw-r--r-- 1 sg01 dstguest 511410 Apr 11 00:28 s2.spr.ps [is01:sg01/Ftan/2D] sg01% gs *.sp?.ps 5) See the parameters for synthetic seismogram computations [is01:sq01/Ftan/2D] sq01% cat ftanparatest.par Parameter file for program paratest _____ _____ Test label (root for output filenames - 13 chars max) s1m Ref. box file for values not listed below (0=no, 13 chars max) 0 s1.spl Love spectrum file sl.spr Rayleigh spectrum file 2 Motion (1=displ, 2=vel, 3=acc) 10 Time length for plot seismograms (s) 1 0.0 0.0 0.0 Source (1=point, 2=extended), lon, lat, strike (Nord) 1 Force system (1=dc, 2=single, 3=dip, 4=sc, 5=pex, 6=cex) SRE 0 50 360 15 Strike (loop 0=no,1=yes, start, stop, step) (Degrees)
 DIP 0
 80 90 10
 Dip (loop 0=no,1=yes, start, stop, step) (Degrees)

 RAK 0
 10 40 10
 Rake (loop 0=no,1=yes, start, stop, step) (Degrees)
 SDE 0 0.050 0.050 0.005 Source Depth (loop 0=no/1=yes, start, stop, step) (km) EDI 0 3.00 1.5 0.1 Epicentral Distance (loop 0=no/1=yes, start, stop, step) (km) RDE 0 0 3 1 Receiver Depth (loop 0=no/1=yes, start, stop, step) (km) Modes (loop 0=no/1=yes, start, stop (step must be 1)) MOD 1 0 50 1 Interpolation (0-9) (flag 0=no,1=yes, start, stop, step) INT 0 0 30 1 MAG 0 0. 6.0 .1 Magnitude (flag 0=no,1=yes, start, stop, step) [is01:sg01/Ftan/2D] sg01%

6) Generate the script to compute the 1D synthetic seismograms for S1 model

Total number of seismograms : 51

Generating the input for syl and syr...
OK - Execution terminated
*** Now you can execute the shell script named: ftanparajob ***

[is01:sg01/Ftan/2D] sg01%

7) Generate the 1D synthetic seismograms for S1 model

[is01:sg01/Ftan/2D] sg01% sh ftanparajob Computing Radial Component... Computing Vertical Component... 2013/04/1100:32:19 efft OK - Execution terminated Converting to FTAN format slmf1.syr... 51 slmf1.syz... 102 slmf1.syl... 153 *** To plot the seismograms: gs slm.mod.sis.*.ps *** To plot the peak values: gs slm.mod.ps

8) Example of list of generated seismograms, to be read with FTAN (ASCII format):

```
[is01:sg01/Ftan/2D] sg01% ll *.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00001.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00003.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00004.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00005.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00006.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00006.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00006.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00008.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00008.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00008.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00009.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00009.ft
-rw-r--r-- 1 sg01 dstguest 70099 Apr 11 00:32 slm.syz.00010.ft
...
...
...
[is01:sg01/Ftan/2D] sg01%
```

- Repeat steps 5) to 8) for structure S2. There are 3 occurrences of "s1" to be substituted with "s2" in file ftanparatest.par
- 10) Generate the synthetic seismograms for the 2D laterally heterogeneous model, selecting the proper model (file .pof and adjusting the run label accordingly)

```
[is01:sg01/Ftan/2D] sg01% pfdg13.out
m0.
N. of polygons for heterogeneities..:
No special treatment of topography..:
Sampling along x.....
                                   0.00500 km
Sampling along z.....
                                   0.00500 km
depnfb,nfb 0.000000000000000
                                        40
Dz change at (km from free surface).: 0.22000 km (nfb(2D)= 45, nfb(1D)= 45)
Number of layers in reference model.: 107
Multiplying factor for dz (nf).....:
                                  1
Sampling along z below heterogeneity: 0.00500 km
Dimension along x.....
                                  2.51500 km ( 504 grid points)
Dimension along z..... 1.00500 km ( 202 grid points)
```

Source to first site distance.....: 0.99500 km

 Distance between two sites......
 0.02000 km

 Time of the first snapshot (1D,2D)...
 6.00000 6.00000 s (SH)

 Time of the first snapshot (1D,2D)...
 6.00000 6.00000 s (P-SV)

 Total duration of signal (1D,2D)...:
 15.00000 15.00000 s (P-SV)

 Total duration of signal (1D,2D)...:
 15.00000 s (P-SV)

 Time skipped at the beginning.....: 0.00000 s (SH) Time skipped at the beginning.....: 0.00000 s (P-SV) Generating the FD models... Generating the input for sylvdv and syndv... Generating the input for syl and syr... nsisfd,mrecn 101 100 Checking the .11d model... m0.fll.VEL.xyz m0.fll.VEL.xyz m0.f21.VEL.xyz m0.fll.VEL.xyz Checking the .rld model... m0.flr.VEL.xyz m0.flr.VEL.xyz m0.f2r.VEL.xyz m0.flr.VEL.xyz Checking the .12d model... m0.f2l.VEL.xyz m0.fll.VEL.xyz m0.f21.VEL.xyz m0.fll.VEL.xyz Checking the .r2d model... m0.f2r.VEL.xyz m0.flr.VEL.xyz m0.f2r.VEL.xyz m0.flr.VEL.xyz If you are going to work with 2D regional structure you have to create the input files for 2D from those created here for 1D: m0.bol m0.bor using program changebox1D2Da, and remember that 2D programs do not include the gaussian filtering used in the FD programs. You need to filter the obtained seismograms with fft program OK - Execution terminated [is01:sg01/Ftan/2D] sg01%

11) Edit file jobfd and comment the call to the plotting script by adding a # in front of "plotall"

[is01:sg01/Ftan/2D] sg01% vi jobfd

```
...
rcheck4.out
echo Plotting...
#sh plotall
...
```

12) Generate the 2D synthetic seismograms for the laterally heterogeneous model

[is01:sg01/Ftan/2D] sg01% echo "jobfd > m0.log" | at now job 1912 at Thu Apr 11 00:49:20 2013 [is01:sg01/Ftan/2D] sg01% atq 1912 Thu Apr 11 00:49:00 2013 [is01:sg01/Ftan/2D] sg01% 13) Check the running jobs with alias "mj"

```
[is01:sg01/Ftan/2D] sg01% mj
96.3 12:49AM sg01 42947 finray80.out
 0.0 12:53AM sg01
                     43054 sort -r
 0.0 12:53AM sg01
                     43053 grep sg01
                     42923 /bin/bash ./job1dr
 0.0 12:49AM sg01
 0.0 12:49AM sg01 42920 /bin/bash ./job1d 0
 0.0 12:49AM sg01
                     42916 /bin/bash ./jobfd
 0.0 12:49AM sg01
                     42915 sh
 0.0 12:20AM sg01
                      24829 -tcsh
 0.0 12:20AM sg01
                      24810 /usr/sbin/sshd -i
 0.0 12:16AM sg01 13289 -tcsh
0.0 12:16AM sg01 13274 /usr/sbin/sshd -i
[is01:sg01/Ftan/2D] sg01%
```

until all *finit80.out*, *finray80.out*, *rcheck4.out* and *jobfd* processes disappear (should take about 15' to complete

14) Convert 2D synthetic seismograms to FTAN format, after checking the parameter file syn2ftan.par

```
[is01:sg01/Ftan/2D] sg01% syn2ftan.out
[is01:sg01/Ftan/2D] sg01% ls -1 m*.ft
...
-rw-r--r-- 1 sg01 dstguest 45097 Apr 11 01:00 m0f0.r2d.zve.00098.ft
-rw-r--r-- 1 sg01 dstguest 45097 Apr 11 01:00 m0f0.r2d.zve.00099.ft
-rw-r--r-- 1 sg01 dstguest 45097 Apr 11 01:00 m0f0.r2d.zve.00100.ft
[is01:sg01/Ftan/2D] sg01%
```

15) Now use XFTAN to process file m0f0.r2d.zve.00100.ft

Read structures s1.stp and s2.stp (both as structure and reference structure) to overlap their group velocity dispersion curves on the ftan map. Use the following FTAN parameters:

16) Try to fit the yellow area on the FTAN map that you might interpret as the fundamental mode of a 1D structure, by modifying the two or three uppermost layers (Vs and thickness), using the mouse on the structure plot. Once you get an acceptable fit, see how the structure compares with models S1 and S2.

Observed data

Create a new directory for this exercise and copy the required files:

```
[is01:/XDST/sg01] sg01% cdt
[is01:/tmpXDST/sg01] sg01% cd Ftan
[is01:/tmpXDST/sg01/Ftan] sg01% mkdir Obs
[is01:/tmpXDST/sg01/Ftan] sg01% cd Obs
[is01:sg01/Ftan/Obs] sg01% cp /XDST/Examples/Ftan/Obs/Base/* .
[is01:sg01/Ftan/Obs] sg01% ls
obs.sac
[is01:sg01/Ftan/Obs] sg01%
```

The file obs.sac contains one recording in SAC format, that can be read in from XFTAN.

FTAN analysis

Launch XFTAN. You can have more than one window open, and in each window you can perform the following steps:

- 1) Read the seismogram from obs.sac, in SAC format.
- 2) Adjust the FTAN parameter and generate the FTAN map by pushing the "Map" button.
- 3) Draw a dispersion curve by clicking on the FTAN map, following the curve you think is the fundamental mode. When done, push the "Filter" button, being sure to use manual mode ("Manual" checkbox must be checked).
- 4) With the help of partial derivatives dU/dVs, try to modify the default structure so to obtain a theoretical group velocity dispersion curve compatible with the observed one.