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▰ It is the matrix Λ built with the relative gains of all possible
combinations (pairings) between MVs and CVs

▻ Each 𝜆 element indicates how the gain of the potential loop 𝑦 ←
𝑢 changes when the other loops are closed

▻ Therefore, the array summarizes the (steady-state) characteristics
of all possible CV ← MV pairings

▰ Properties (which can be demonstrated)
▻ Each row and each column of Λ sum up to 1
▻ The 𝜆 values can be calculated in a simple way from the sole 

values of the open-loop gains → the calculation is very simple!
 Schur product (element by element)

RELATIVE GAIN ARRAY (RGA; BRISTOL MATRIX)
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Λ =

𝜆 𝜆 … 𝜆

𝜆 𝜆 … 𝜆
…

𝜆
…

𝜆
…
…

…
𝜆

𝑢 𝑢

𝑦

𝑢…

𝑦

𝑦
…

Λ = 𝐾 ⊗ 𝐾

▰ Numerator: since 𝑢 remains constant (i.e., the 2° loop is open)

▰ Denominator: 𝑢 varies (the 2° loop is closed), and how this variation
affects 𝑦 should be determined

CALCULATION OF RGA FROM A 2X2 STEADY-STATE MODEL
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Λ =
𝜆 1 − 𝜆

1 − 𝜆 𝜆

𝜆 ≜

𝜕𝑦
𝜕𝑢

𝜕𝑦
𝜕𝑢

𝜆 =

𝜕𝑦
𝜕𝑢 .

𝜕𝑦
𝜕𝑢 .

For a 2x2 system, calculating a single relative gain (e.g., 𝜆 ) is sufficient

𝑦 = 𝐾 𝑢 + 𝐾 𝑢

𝑦 = 𝐾 𝑢 + 𝐾 𝑢
Linearized steady-state model 
(in deviation variables)

How is 𝜆 = λ calculated?

𝜕𝑦

𝜕𝑢
.

= 𝐾

𝑦 = 𝑐𝑜𝑛𝑠𝑡 𝑦 = 0 𝑢 = −
𝐾

𝐾
𝑢 𝑦 = 𝐾 𝑢 − 𝐾

𝐾

𝐾
𝑢

𝜕𝑦

𝜕𝑢
.

= 𝐾 −
𝐾 𝐾

𝐾
= 𝐾 1 −

𝐾 𝐾

𝐾 𝐾
λ =

1

1 −
𝐾 𝐾
𝐾 𝐾

𝑦 = 𝐾 𝑢
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▰ 𝜆 = 1

▻ The gain between 𝑦 and 𝑢 with loop 2-2 closed is equal to that with loop 2-2 open → opening or closing loop 2-2 has no effect on loop 1-1 → it is convenient to pair 𝑦 to 𝑢

▰ 𝜆 = 0

▻ The gain between 𝑦 and 𝑢  with loop 2-2 open is zero → 𝑢 has not effect on 𝑦 → it is convenient to pair 𝑦 to 𝑢

▰ 0 < 𝜆 <1
▻ The gain between 𝑦 e 𝑢 with loop 2-2 closed is greater than that with loop 2-2 open → coupling exists between the two loops, and it is maximum for 𝜆 = 0.5

▰ 𝜆 > 1

▻ closing loop 2-2 makes the gain between 𝑦 and 𝑢  decrease → coupling exists between the two loops, and it is maximum for 𝜆 → ∞

 If 𝜆 ≫ 1, when the loop 2-2 is closed the gain of loop 1-1 becomes much smaller than with loop 2-2 open → a controller with high gain 𝐾 , is required→
if, at a given time, loop 2-2 gets open, the large value of 𝐾 , may drive loop 1-1 toward instability

▰ 𝜆 < 0

▻ The gain between 𝑦 and 𝑢 with loop 2-2 closed has opposite sign with respect to that with loop 2-2 open →
opening or closing loop 2-2 has a destabilizing effect on loop 1 (it makes it oscillate) → 𝑦 must not be paired to 𝑢

PAIRING CVs AND MVs IN 2X2 SYSTEMS
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𝜆 =
𝐾

𝐾
Is the 𝑦 ← 𝑢 pairing appropriate?

Λ =
𝜆 1 − 𝜆

1 − 𝜆 𝜆

𝑢 𝑢

𝑦
𝑦

𝐾 =
1

𝜆
𝐾 One needs to determine the value of 𝜆 = 𝜆

▰ Integrity of a control system
▻ A control system possesses integrity if, when one or more loops go out of service (e.g., due to failure or valve saturation), the 

rest of the closed-loop system remains stable with no need to change sign to the gain of any of the controllers remaining in 
operation

▰ If a loop (with integral action) pairs CVs and MVs with 𝜆 < 0, then one of the following conditions is always met:
▻ The multiloop system is unstable when all the controllers are in operation
▻ Loop 𝑦 ← 𝑢 becomes unstable when all the other controllers are set to manual mode

▻ The multiloop system becomes unstable when the 𝑦 ← 𝑢 controller is set to manual

RECOMMENDATION FOR LOOP COUPLING
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Recommendation
Pair the controlled and manipulated variables so that the corresponding

relative gains are positive and as close to one as possible
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APPLICATIONS OF RGA: THE BLENDER REVISITED
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▰ For a 2x2 system: 

▰ Problem: controlling both w and x
▻ Consider to limiting situations: 𝑥 ≅ 1 or 𝑥 ≅ 0 (x is

the mass fraction of A)
 Which is the best pairing in both limiting cases?

𝑦 = 𝑤; 𝑦 = 𝑥 
𝑢 = 𝑤 ;  𝑢 = 𝑤

λ =
1

1 −
𝐾 𝐾
𝐾 𝐾

Let us find the steady-state gains

Steady-state balances
(total + species A)

𝑤 + 𝑤 = 𝑤
𝑤 1 + 𝑤 0 = 𝑤 𝑥

𝑥 =
𝑤

𝑤 + 𝑤

Calculating the open-
loop gains: 𝐾 =

𝜕𝑦

𝜕𝑢
=

𝜕𝑤

𝜕𝑤
= 1;      𝐾 =

𝜕𝑤

𝜕𝑤
= 1

APPLICATIONS OF RGA: 
THE BLENDER REVISITED
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λ =
1

1 −
𝐾 𝐾
𝐾 𝐾

= ⋯ = 𝑥

Calculating the open-
loop gains:

/cont’d

𝐾 =
𝜕𝑥

𝜕𝑤
=

1 𝑤 + 𝑤 − 𝑤 1

(𝑤 + 𝑤 )
=

𝑤

(𝑤 + 𝑤 )
=  

(1 − 𝑥)

𝑤

𝐾 =
𝜕𝑥

𝜕𝑤
=

1 𝑤 + 𝑤 − 𝑤 1

(𝑤 + 𝑤 )
=

𝑤

(𝑤 + 𝑤 )
=  

−𝑥

𝑤

𝑦 = 𝑤; 𝑦 = 𝑥 
𝑢 = 𝑤 ;  𝑢 = 𝑤

▰ Therefore, the suggested pairing depends on the desired outlet composition 𝑥

▻ If 𝒙𝒔𝒑 < 𝟎. 𝟓, then pair 𝑤 ← 𝑤 and 𝑥 ← 𝑤

▻ This is reasonable: if x is small, the mass fraction of A in the product 
is small, i.e., 𝑤 is small → it is convenient to control the total flow w 
with the larger stream (𝑤 ), and the composition x with the smaller
stream (𝑤 ).

▻ If 𝒙𝒔𝒑 > 𝟎. 𝟓, then pair 𝑤 ← 𝑤 and 𝑥 ← 𝑤

The resulting RGA is: Λ =
𝑥 1 − 𝑥

1 − 𝑥 𝑥

𝑥 = 0.05

Λ =
0.05 0.95
0.95 0.05

𝑥 = 0.99

Λ =
0.99 0.01
0.01 0.99
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APPLICATIONS OF RGA: 3x3 EXAMPLE
BINARY DISTILLATION COLUMN WITH A SIDESTREAM
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𝑌
𝑌
𝑌

=

0.66𝑒 .

6.7𝑠 + 1

−0.61𝑒 .

8.64𝑠 + 1

−0.0049𝑒

9.06𝑠 + 1
−33.68𝑒 .

8.15𝑠 + 1

46.2𝑒 .

10.9𝑠 + 1

0.87(11.61𝑠 + 1)𝑒

(3.89𝑠 + 1)(18.8𝑠 + 1)

1.11𝑒 .

3.25𝑠 + 1

−2.36𝑒

5𝑠 + 1

−0.012𝑒 .

7.09𝑠 + 1

𝑈
𝑈
𝑈

▰ 𝑦 = mole fr. EtOH in distillate = 𝑥

▰ 𝑦 = tray 19 temperature = 𝑇

▰ 𝑦 = mole fr. EtOH in sidestream = 𝑥

▰ 𝑢 = reflux flowrate = 𝐿

▰ 𝑢 = sidestream flowrate = S

▰ 𝑢 = reboiler steam pressure = 𝑃

Λ = 𝐾 ⊗ 𝐾 𝐾 = 𝐺 0 =
0.66 −0.61 −0.0049

−33.68 46.2 0.87
1.11 −2.36 −0.012

𝐾 =
2.9476 0.0083 −0.5985
1.1044 −0.0049 −0.8047
55.466 1.7316 19.563

𝐾 =
2.9476 1.1044 55.466
0.0083 −0.0049 1.7316

−0.5985 −0.8047 19.563

Λ = 𝐾 ⊗ 𝐾 =
1.945 −0.6737 −0.2718

−0.2811 −0.2254 1.507
−0.6643 1.899 −0.2348

𝑦 ← 𝑢
𝑦 ← 𝑢
𝑦 ← 𝑢

BEWARE OF THE DYNAMICS!
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▰ The conventional RGA approach only uses steady-state information
▻ The process interactions are evaluated at steady state
▻ Any consideration about the system dynamics is neglected

▰ However, the off-diagonal pairing responds much faster
▻ When 𝑢 is used to correct 𝑦 , its action must persist long due to the slow dynamics; instead, the effect of 𝑢 on 𝑦 is very fast

 With the pairing 1-1, 𝑢 continues to perturb 𝑦 for a long time, forcing 𝑢 to react
▻ If the 𝑦 ← 𝑢 pairing were used instead, when 𝑢 is manipulated, 𝑦 gets corrected immediately, and 𝑦 is perturbed much more 

slowly; 𝑢 can bring it back to the set-point rapidly, because its effect on 𝑦 is immediate

In pairing MVs to CVs, also consider the speed of response of the CVs to the MVs.
Select the pairing that has a «small» effective time constant and a «small» dead time

Reasonably, on a steady-
state perspective: the 
gains along the diagonal
are on average greater
than the off-diagonal ones

𝐺 𝑠 =

2

10𝑠 + 1

2

𝑠 + 1
1

𝑠 + 1

−4

10𝑠 + 1

𝑈 (𝑠) 𝑈 (𝑠)

𝑌 (𝑠)

𝑌 (𝑠)

𝐾 =
2 2
1 −4

λ =
1

1 −
𝐾 𝐾
𝐾 𝐾

=
1

1 −
2 × 1

2 × (−4) 

= 0.8

Λ =
0.8 0.2
0.2 0.8

𝑦 ← 𝑢
𝑦 ← 𝑢
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TUNING MULTILOOP PID CONTROLLERS
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▰ Decentralized control
▻ A (PID) loop is in place for each single variable to be controlled

 In a (n x n) system, n PID loops are present, and each of them needs to be tuned individually

PROS
▰ The tuning task is easy to understand
▰ It requires tuning fewer parameters than a 

centralized (multivariable) controller
▻ In multivariable controller, instead, the situation 

resembles one where each loop manipulates an 
MV accounting for the errors in all CVs

▰ The tolerance loop failure (integrity) can be verified
easily

CONS
▰ Loop coupling makes the tuning of each single 

loop complicated (possibly, very much)

▰ Most frequently used tuning methods for decentralized controllers
▻ Detuning
▻ Modified relay auto-tuning

DECENTRALIZED CONTROLLERS: DETUNING METHOD
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▰ If some loops respond much faster than the others (at least ~5 times faster), then they are tuned first (with the 
other loops open)

▻ The slow loops (e.g., temperature) are then tuned with the fast loops (e.g., flow) closed

▰ Otherwise, if no «very fast» loops exist:
▻ Each loop is tuned with the other ones open
▻ Loop coupling is attenuated by detuning each loop

 Usually, considering the most interacting loops, their controller gains are reduced and their intergal time constants
are increased (i.e., tuning is made more conservative), until the response is satisfactory.

▻ BLT method
 Each loop j is tuned with the Ziegler-Nichols parameters (𝐾 , , ; 𝜏 , , ) as derived from 𝐾 , and 𝜔 , (usually

determined by the relay method)
 Then, a single detuning parameter F is adjusted on field, and it is used for all loops

▻ Typical values:    1.5 < 𝐹 < 4.0

𝐾 , =
𝐾 , ,

𝐹
;     𝜏 , = 𝐹 𝜏 , ,
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MULTIVARIABLE CONTROL
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▰ In multivariable control (centralized control) the value of each MV depends on the error
▻ Simplified example: 2x2 system, simple proportional control

𝑢 𝑡 = 𝐾 𝑒 𝑡 + 𝐾 𝑒 (𝑡)

𝑢 𝑡 = 𝐾 𝑒 𝑡 + 𝐾 𝑒 (𝑡)

▻ In the control laws, model-based terms are included

▰ Two examples of multivariable model-based controllers are:
▻ Decouplers
▻ Predictive controllers (MPC - model predictive control; cfr. SEMD, 3° Ed, Chapter 20, available for download from the textbook

website)

DECOUPLERS
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▰ Decoupling control is a technique used to reduce the control-loop interactions
▻ Decouplers are controllers that are added to a conventional multiloop configuration

▰ It is a model-based control technique
▻ The model may be steady state or dynamic
▻ With a perfect dynamic model, the interactions are totally removed

▰ Limitations
▻ The model is never perfect→ the interactions can never be eliminated completely
▻ In the control law, model inverse terms appear, which may make the controller unrealizable
▻ The tuning is more complex than in a simple multiloop system
▻ Completely removing the interactions may actually reduce the overall performance of the control system

 Totally removing the control-loop interactions means making the effects of process interactions not visible anymore
 However, the process interactions can «help» process control: in fact, controlling one single CV 

might be sufficient to keep also the other CVs close to their set-points
 Sometimes, it may be convenient to achieve one-way decoupling only
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DECOUPLING IN A 2x2 SYSTEM

© Andrea Mio, University of Trieste

Adapted from Barolo M.

411

▰ Let us assume that the pairings is 𝑦 ← 𝑢 and 𝑦 ← 𝑢

▰ A rationale for decoupling loop 2-2 from loop 1-1 may be the following:
▻ When the CO of 𝐺 changes, not only 𝑌 but also 𝑌 is affected; namely, 𝑌 gest affected through 𝐺 (process interaction)

▻ Basic idea: including in the system a dynamic element 𝑇 (𝑠) that gets excited by the CO of 𝐺 , so that an effect is obtained
on 𝑌 that is equal and contrary to the «natural» one deriving from the process interactions
 Therefore, these interactions can be completely compensated for

▰ To decouple the 1-1 loop from the 2-2 one, the rationale is the same
▰ 4 controllers result: 2 feedback ones (𝐺 , 𝐺 ) and 2 decouplers (𝑇 , 𝑇 )

DESIGN OF A 𝑻𝟐𝟏(𝒔) DECOUPLER
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▰ The two feedback COs are 𝑈 and 𝑈
▰ The two signals that actually arrive to the process are:
▰ We would like to eliminate the effect of 𝐺 from 𝑌
▰ The 𝑌 output is determined by: 

▻ If it is required to remove the effect of controller 𝐺 from 𝑌 , the term containing 𝑈 must vanish

▰ A sort of feedforward control 𝐺 = −

▻ The «disturbance» is the off-diagonal term (2,1), which determines the process interaction
▻ The «process» is the diagonal element (2,2) which determines the «primary» effect on 𝑌 from 𝑈

𝑌 = 𝑌 + 𝑌 𝑌 = 𝐺 𝑈 + 𝐺 𝑈

𝑌 = 𝐺 (𝑈 + 𝑇 𝑈 ) + 𝐺 (𝑈 + 𝑇 𝑈 ) 𝑌 = (𝐺 + 𝐺 𝑇 )𝑈 +  (𝐺 𝑇 + 𝐺 )𝑈

𝐺 + 𝐺 𝑇 = 0 𝑇 = −
𝐺

𝐺
𝑇 = −

𝐺

𝐺

𝑈 = 𝑈 + 𝑇 𝑈

𝑈 = 𝑈 + 𝑇 𝑈
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RELATION BETWEEN DECOUPLING AND FEEDFORWARD
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▰ Differently from a feedforward controller, the decoupler is an integral part of the feedback loop

𝑇 𝑠 = −
𝐺 𝑠

𝐺 𝑠
;       𝑇 = −

𝐺

𝐺
𝐺 (𝑠) = −

𝐺 (𝑠)

𝐺 (𝑠)
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