
Statistical Machine Learning
Gaussian Processes

Luca Bortolussi

Data Science and Scientific Computing

1 Random functions and Bayesian regression
• Bayesian linear regression places a (Gaussian) prior over the weights vector, and

computes the (Gaussian) posterior distribution over weights.

• What does this mean? Consider linear basis functions. In this case, the regression
line is a random line, with the property that the output prediction at any point is
a Gaussian random variable

• This concept can be generalised: taking linear combinations of basis functions
with (Gaussian) random coefficients leads to a (Gaussian) random function

1.1 Random functions terminology
• A random function is an infinite collection of random variables indexed by the

argument of the function

• A popular alternative name is a stochastic process

• When considering the random function evaluated at a (finite) set of points, we
get a random vector

• The distribution of this random vector is called finite dimensional marginal

Exercise

Let φ0(x), . . . , φM−1(x) be a fixed set of functions, and let f (x) =
∑

wiφi(x). If w ∼
N(0, I), compute:

1. The single-point marginal distribution of f (x)

2. The two-point marginal distribution of f (x1), f (x2)

1

1.2 The Gram matrix
• Generalising the exercise to more than two points, we get that any finite dimen-

sional marginal of this process is multivariate Gaussian

• The covariance matrix of this function is given by evaluating a function of two
variables at all possible pairs

• The function is defined by the set of basis functions

k(xi, x j) = φ(xi)Tφ(x j)

• The covariance matrix is often called Gram matrix and is (necessarily) symmet-
ric and positive definite

• Bayesian prediction in regression then is essentially the same as computing con-
ditionals for Gaussians (more later)

1.3 Main limitation of Bayesian regression
• Choice of basis functions inevitably impacts what can be predicted

• Suppose one wishes the basis functions to tend to zero as x→ ∞

• Then, necessarily, very large input values will have predicted outputs near zero
with high confidence!

• Ideally, one would want a prior over functions which would have the same un-
certainty everywhere

1.4 Function Space view
• In order to construct such priors, one possibility would be to construct a count-

able sequence of basis functions. We can partition the full Rn in compact sets,
and define a finite number of basis functions supported in each compact set so
that the variance in each point of the state space is a constant (partition of unity).

• This approach, called the weights space view, is unpractical, but it demonstrates
the existence of truly infinite dimensional Gaussian Processes.

• In general, it is more useful to take the dual point of view, and work with kernels
rather than with basis functions.

2 Gaussian Processes

2.1 GP definition
• A Gaussian Process (GP) is a stochastic process indexed by a continuous variable

x s.t. all finite dimensional marginals are multivariate Gaussian

2

• A GP is uniquely defined by its mean and covariance functions, denoted by µ(x)
and k(x, x′):

f ∼ GP(µ, k)↔ f = (f (x1), . . . , f (xN)) ∼ N (µ,K) ,

µ = (µ(x1), . . . , µ(xN)), K = (k(xi, x j))i, j

• The covariance function must satisfy some conditions (Mercer’s theorem), es-
sentially it needs to evaluate to a symmetric positive definite function for all sets
of input points

Example

Consider a 1-dimensional GP with mean function µ(x) ≡ 0, and with Gaussian covariance func-
tion:

k(x, x′) = exp
[
−

1
2
|x − x′|2

]

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 15

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

(a), prior (b), posterior

Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a↵ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f⇤ according to the
prior is

f
f⇤

�
⇠ N

✓
0,

K(X, X) K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
. (2.18)

If there are n training points and n⇤ test points then K(X, X⇤) denotes the
n ⇥ n⇤ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X⇤, X⇤) and K(X⇤, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

The variance at each point x is k(x, x) = 1. If we consider a test set X∗ = x1, . . . xn, then the
joint distribution of f∗ = (f (x1), . . . , f (xn)) is

f∗ ∼ N(0,K(X∗, X∗))

where K(X∗, X∗) is the Gram matrix, Ki j = k(xi, x j), which is symmetric and positive definite.

2.2 Noise-free prediction
• Suppose now to observe the exact value of the GP at N different points, X = x1, . . . , xN ,

with observations f = f (x1), . . . , f (xN).

• Consider also the test points X∗ = x1, . . . xn, with function values f∗ = (f (x1), . . . , f (xn))
(unobserved, to be estimated).

3

• The joint prior distribution of f on inputs X and test points X∗ is

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 15

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

(a), prior (b), posterior

Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a↵ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f⇤ according to the
prior is

f
f⇤

�
⇠ N

✓
0,

K(X, X) K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
. (2.18)

If there are n training points and n⇤ test points then K(X, X⇤) denotes the
n ⇥ n⇤ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X⇤, X⇤) and K(X⇤, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

• If we observe the values at X, then we need to condition on these values. Hence the
conditional f∗|f is

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

16 Regression

though this strategy would not be computationally very e�cient. Fortunately,
in probabilistic terms this operation is extremely simple, corresponding to con-
ditioning the joint Gaussian prior distribution on the observations (see section
A.2 for further details) to givenoise-free predictive

distribution
f⇤|X⇤, X, f ⇠ N

�
K(X⇤, X)K(X, X)�1f ,

K(X⇤, X⇤)�K(X⇤, X)K(X, X)�1K(X, X⇤)
�
.

(2.19)

Function values f⇤ (corresponding to test inputs X⇤) can be sampled from the
joint posterior distribution by evaluating the mean and covariance matrix from
eq. (2.19) and generating samples according to the method described in section
A.2.

Figure 2.2(b) shows the results of these computations given the five data-
points marked with + symbols. Notice that it is trivial to extend these compu-
tations to multidimensional inputs – one simply needs to change the evaluation
of the covariance function in accordance with eq. (2.16), although the resulting
functions may be harder to display graphically.

Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access
to function values themselves, but only noisy versions thereof y = f(x) + ".8

Assuming additive independent identically distributed Gaussian noise " with
variance �2

n, the prior on the noisy observations becomes

cov(yp, yq) = k(xp,xq) + �2
n�pq or cov(y) = K(X, X) + �2

nI, (2.20)

where �pq is a Kronecker delta which is one i↵ p = q and zero otherwise. It
follows from the independence9 assumption about the noise, that a diagonal
matrix10 is added, in comparison to the noise free case, eq. (2.16). Introducing
the noise term in eq. (2.18) we can write the joint distribution of the observed
target values and the function values at the test locations under the prior as

y
f⇤

�
⇠ N

✓
0,

K(X, X) + �2

nI K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
. (2.21)

Deriving the conditional distribution corresponding to eq. (2.19) we arrive atpredictive distribution

the key predictive equations for Gaussian process regression

f⇤|X,y, X⇤ ⇠ N
�
f̄⇤, cov(f⇤)

�
, where (2.22)

f̄⇤ , E[f⇤|X,y, X⇤] = K(X⇤, X)[K(X, X) + �2
nI]�1y, (2.23)

cov(f⇤) = K(X⇤, X⇤)�K(X⇤, X)[K(X, X) + �2
nI
⇤�1

K(X, X⇤). (2.24)

8There are some situations where it is reasonable to assume that the observations are
noise-free, for example for computer simulations, see e.g. Sacks et al. [1989].

9More complicated noise models with non-trivial covariance structure can also be handled,
see section 9.2.

10Notice that the Kronecker delta is on the index of the cases, not the value of the input;
for the signal part of the covariance function the input value is the index set to the random
variables describing the function, for the noise part it is the identity of the point.

which is obtained by the standard formula for the conditional of a Gaussian.

Example

Consider again the 1-dimensional GP with mean function µ(x) ≡ 0, and with Gaussian covari-
ance function:

k(x, x′) = exp
[
−

1
2
|x − x′|2

]
C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 15

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

(a), prior (b), posterior

Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a↵ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f⇤ according to the
prior is

f
f⇤

�
⇠ N

✓
0,

K(X, X) K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
. (2.18)

If there are n training points and n⇤ test points then K(X, X⇤) denotes the
n ⇥ n⇤ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X⇤, X⇤) and K(X⇤, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

2.3 Noisy predictions
• Suppose we cannot observe the values f of a GP at points X, but a perturbed version of

them:
y(x) = f (x) + ε,

where ε ∼ N(0, σ2)

• Then the covariance of observations is cov(y) = K(X, X) + σ2I

• The prior between observations X and test points X∗ is then

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

16 Regression

though this strategy would not be computationally very e�cient. Fortunately,
in probabilistic terms this operation is extremely simple, corresponding to con-
ditioning the joint Gaussian prior distribution on the observations (see section
A.2 for further details) to givenoise-free predictive

distribution
f⇤|X⇤, X, f ⇠ N

�
K(X⇤, X)K(X, X)�1f ,

K(X⇤, X⇤)�K(X⇤, X)K(X, X)�1K(X, X⇤)
�
.

(2.19)

Function values f⇤ (corresponding to test inputs X⇤) can be sampled from the
joint posterior distribution by evaluating the mean and covariance matrix from
eq. (2.19) and generating samples according to the method described in section
A.2.

Figure 2.2(b) shows the results of these computations given the five data-
points marked with + symbols. Notice that it is trivial to extend these compu-
tations to multidimensional inputs – one simply needs to change the evaluation
of the covariance function in accordance with eq. (2.16), although the resulting
functions may be harder to display graphically.

Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access
to function values themselves, but only noisy versions thereof y = f(x) + ".8

Assuming additive independent identically distributed Gaussian noise " with
variance �2

n, the prior on the noisy observations becomes

cov(yp, yq) = k(xp,xq) + �2
n�pq or cov(y) = K(X, X) + �2

nI, (2.20)

where �pq is a Kronecker delta which is one i↵ p = q and zero otherwise. It
follows from the independence9 assumption about the noise, that a diagonal
matrix10 is added, in comparison to the noise free case, eq. (2.16). Introducing
the noise term in eq. (2.18) we can write the joint distribution of the observed
target values and the function values at the test locations under the prior as

y
f⇤

�
⇠ N

✓
0,

K(X, X) + �2

nI K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
. (2.21)

Deriving the conditional distribution corresponding to eq. (2.19) we arrive atpredictive distribution

the key predictive equations for Gaussian process regression

f⇤|X,y, X⇤ ⇠ N
�
f̄⇤, cov(f⇤)

�
, where (2.22)

f̄⇤ , E[f⇤|X,y, X⇤] = K(X⇤, X)[K(X, X) + �2
nI]�1y, (2.23)

cov(f⇤) = K(X⇤, X⇤)�K(X⇤, X)[K(X, X) + �2
nI
⇤�1

K(X, X⇤). (2.24)

8There are some situations where it is reasonable to assume that the observations are
noise-free, for example for computer simulations, see e.g. Sacks et al. [1989].

9More complicated noise models with non-trivial covariance structure can also be handled,
see section 9.2.

10Notice that the Kronecker delta is on the index of the cases, not the value of the input;
for the signal part of the covariance function the input value is the index set to the random
variables describing the function, for the noise part it is the identity of the point.

• Conditioning on observations y, we get

4

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

16 Regression

though this strategy would not be computationally very e�cient. Fortunately,
in probabilistic terms this operation is extremely simple, corresponding to con-
ditioning the joint Gaussian prior distribution on the observations (see section
A.2 for further details) to givenoise-free predictive

distribution
f⇤|X⇤, X, f ⇠ N

�
K(X⇤, X)K(X, X)�1f ,

K(X⇤, X⇤)�K(X⇤, X)K(X, X)�1K(X, X⇤)
�
.

(2.19)

Function values f⇤ (corresponding to test inputs X⇤) can be sampled from the
joint posterior distribution by evaluating the mean and covariance matrix from
eq. (2.19) and generating samples according to the method described in section
A.2.

Figure 2.2(b) shows the results of these computations given the five data-
points marked with + symbols. Notice that it is trivial to extend these compu-
tations to multidimensional inputs – one simply needs to change the evaluation
of the covariance function in accordance with eq. (2.16), although the resulting
functions may be harder to display graphically.

Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access
to function values themselves, but only noisy versions thereof y = f(x) + ".8

Assuming additive independent identically distributed Gaussian noise " with
variance �2

n, the prior on the noisy observations becomes

cov(yp, yq) = k(xp,xq) + �2
n�pq or cov(y) = K(X, X) + �2

nI, (2.20)

where �pq is a Kronecker delta which is one i↵ p = q and zero otherwise. It
follows from the independence9 assumption about the noise, that a diagonal
matrix10 is added, in comparison to the noise free case, eq. (2.16). Introducing
the noise term in eq. (2.18) we can write the joint distribution of the observed
target values and the function values at the test locations under the prior as

y
f⇤

�
⇠ N

✓
0,

K(X, X) + �2

nI K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
. (2.21)

Deriving the conditional distribution corresponding to eq. (2.19) we arrive atpredictive distribution

the key predictive equations for Gaussian process regression

f⇤|X,y, X⇤ ⇠ N
�
f̄⇤, cov(f⇤)

�
, where (2.22)

f̄⇤ , E[f⇤|X,y, X⇤] = K(X⇤, X)[K(X, X) + �2
nI]�1y, (2.23)

cov(f⇤) = K(X⇤, X⇤)�K(X⇤, X)[K(X, X) + �2
nI
⇤�1

K(X, X⇤). (2.24)

8There are some situations where it is reasonable to assume that the observations are
noise-free, for example for computer simulations, see e.g. Sacks et al. [1989].

9More complicated noise models with non-trivial covariance structure can also be handled,
see section 9.2.

10Notice that the Kronecker delta is on the index of the cases, not the value of the input;
for the signal part of the covariance function the input value is the index set to the random
variables describing the function, for the noise part it is the identity of the point.

2.4 Linear predictor
• For a single point x∗, the predictive distribution reads

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 17

Observations

Gaussian field

Inputs

y1 yc

x1 x2 x⇤ xc

✓⌘◆⇣
y⇤

✓⌘◆⇣
f1 ✓⌘◆⇣✓⌘◆⇣✓⌘◆⇣

f⇤ ✓⌘◆⇣✓⌘◆⇣
fc ✓⌘◆⇣6 6 6 6

6 6 6 6 6 6 6

Figure 2.3: Graphical model (chain graph) for a GP for regression. Squares rep-
resent observed variables and circles represent unknowns. The thick horizontal bar
represents a set of fully connected nodes. Note that an observation yi is conditionally
independent of all other nodes given the corresponding latent variable, fi. Because of
the marginalization property of GPs addition of further inputs, x, latent variables, f ,
and unobserved targets, y⇤, does not change the distribution of any other variables.

Notice that we now have exact correspondence with the weight space view in
eq. (2.12) when identifying K(C,D) = �(C)>⌃p�(D), where C,D stand for ei-
ther X or X⇤. For any set of basis functions, we can compute the corresponding correspondence with

weight-space viewcovariance function as k(xp,xq) = �(xp)
>⌃p�(xq); conversely, for every (posi-

tive definite) covariance function k, there exists a (possibly infinite) expansion
in terms of basis functions, see section 4.3.

The expressions involving K(X, X), K(X, X⇤) and K(X⇤, X⇤) etc. can look compact notation

rather unwieldy, so we now introduce a compact form of the notation setting
K = K(X, X) and K⇤ = K(X, X⇤). In the case that there is only one test
point x⇤ we write k(x⇤) = k⇤ to denote the vector of covariances between the
test point and the n training points. Using this compact notation and for a
single test point x⇤, equations 2.23 and 2.24 reduce to

f̄⇤ = k>
⇤ (K + �2

nI)�1y, (2.25)

V[f⇤] = k(x⇤,x⇤)� k>
⇤ (K + �2

nI)�1k⇤. (2.26)

Let us examine the predictive distribution as given by equations 2.25 and 2.26. predictive distribution

Note first that the mean prediction eq. (2.25) is a linear combination of obser-
vations y; this is sometimes referred to as a linear predictor . Another way to linear predictor

look at this equation is to see it as a linear combination of n kernel functions,
each one centered on a training point, by writing

f̄(x⇤) =
nX

i=1

↵ik(xi,x⇤) (2.27)

where ↵ = (K + �2
nI)�1y. The fact that the mean prediction for f(x⇤) can be

written as eq. (2.27) despite the fact that the GP can be represented in terms
of a (possibly infinite) number of basis functions is one manifestation of the
representer theorem; see section 6.2 for more on this point. We can understand representer theorem

this result intuitively because although the GP defines a joint Gaussian dis-
tribution over all of the y variables, one for each point in the index set X , for

where k∗ = (k(x∗, x1), . . . , k(x∗, xN))

• It can be seen that the average prediction is a linear combination of the kernels evaluated
on the input points:

f̄ (x∗) =
N∑

i=1

αik(x∗, xi)

where α = (K + σ2I)−1y.

2.5 Posterior GP
• It is easy to see that the posterior process f |y is again a Gaussian process, with mean

E[f (x)|y] = K(x, X)(K + σ2I)−1y

and covariance
k(x, x′) = k(x, x′) − K(x, X)(K + σ2I)−1K(X, x′)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

18 Regression

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

−5 0 5
−0.2

0

0.2

0.4

0.6

input, x

po
st

. c
ov

ar
ia

nc
e,

 c
ov

(f(
x)

,f(
x’

)) x’=−2
x’=1
x’=3

(a), posterior (b), posterior covariance

Figure 2.4: Panel (a) is identical to Figure 2.2(b) showing three random functions
drawn from the posterior. Panel (b) shows the posterior co-variance between f(x) and
f(x0) for the same data for three di↵erent values of x0. Note, that the covariance at
close points is high, falling to zero at the training points (where there is no variance,
since it is a noise-free process), then becomes negative, etc. This happens because if
the smooth function happens to be less than the mean on one side of the data point,
it tends to exceed the mean on the other side, causing a reversal of the sign of the
covariance at the data points. Note for contrast that the prior covariance is simply
of Gaussian shape and never negative.

making predictions at x⇤ we only care about the (n+1)-dimensional distribution
defined by the n training points and the test point. As a Gaussian distribu-
tion is marginalized by just taking the relevant block of the joint covariance
matrix (see section A.2) it is clear that conditioning this (n+1)-dimensional
distribution on the observations gives us the desired result. A graphical model
representation of a GP is given in Figure 2.3.

Note also that the variance in eq. (2.24) does not depend on the observed
targets, but only on the inputs; this is a property of the Gaussian distribution.
The variance is the di↵erence between two terms: the first term K(X⇤, X⇤) is
simply the prior covariance; from that is subtracted a (positive) term, repre-
senting the information the observations gives us about the function. We can
very simply compute the predictive distribution of test targets y⇤ by addingnoisy predictions

�2
nI to the variance in the expression for cov(f⇤).

The predictive distribution for the GP model gives more than just pointwisejoint predictions

errorbars of the simplified eq. (2.26). Although not stated explicitly, eq. (2.24)
holds unchanged when X⇤ denotes multiple test inputs; in this case the co-
variance of the test targets are computed (whose diagonal elements are the
pointwise variances). In fact, eq. (2.23) is the mean function and eq. (2.24) the
covariance function of the (Gaussian) posterior process; recall the definitionposterior process

of Gaussian process from page 13. The posterior covariance in illustrated in
Figure 2.4(b).

It will be useful (particularly for chapter 5) to introduce the marginal likeli-
hood (or evidence) p(y|X) at this point. The marginal likelihood is the integralmarginal likelihood

5

3 Kernel functions
3.1 Kernels

• The notion of kernel comes from the theory of integral operators on a space X with mea-
sure µ. A real kernel k : X×X → R defines an integral operator Tk (applied to integrable
f) as:

(Tk f)(x) =
∫
X

k(x, y) f (y)dµ(y)

• A kernel is positive semidefinite if, for all f ∈ L2(X, µ):∫
X×X

k(x, y) f (x) f (y)dµ(x)dµ(y) ≥ 0

• Equivalently, a kernel is positive (semi)definite if for any collection of n points {xi | i =
1, . . . , n}, the Gram matrix K, Ki j = l(xi, xj) is positive (semi)definite (Mercer’s theorem).

• The Gram matrix of a symmetric kernel, k(x, y) = k(y, x), is symmetric.

3.2 Eigenfunctions
• An eigenfunction φ with eigenvalue λ of k satisfies∫

k(x, y)φ(x)dµ(x) = λφ(y)

• There can be an infinite number of eigenfunctions, which can be ordered w.r.t. decreasing
eigenvalues, and they can be chosen orthogonal, i.e. such that

∫
φi(x)φ j(x)dµ(x) = δi j

• A kernel can be decomposed using eigenfunctions:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

96 Covariance Functions

4.3 Eigenfunction Analysis of Kernels

We first define eigenvalues and eigenfunctions and discuss Mercer’s theorem
which allows us to express the kernel (under certain conditions) in terms of these
quantities. Section 4.3.1 gives the analytical solution of the eigenproblem for the
SE kernel under a Gaussian measure. Section 4.3.2 discusses how to compute
approximate eigenfunctions numerically for cases where the exact solution is
not known.

It turns out that Gaussian process regression can be viewed as Bayesian
linear regression with a possibly infinite number of basis functions, as discussed
in chapter 2. One possible basis set is the eigenfunctions of the covariance
function. A function �(·) that obeys the integral equation

Z
k(x,x0)�(x) dµ(x) = ��(x0), (4.36)

is called an eigenfunction of kernel k with eigenvalue � with respect to measure10eigenvalue,
eigenfunction µ. The two measures of particular interest to us will be (i) Lebesgue measure

over a compact subset C of RD, or (ii) when there is a density p(x) so that
dµ(x) can be written p(x)dx.

In general there are an infinite number of eigenfunctions, which we label
�1(x), �2(x), . . . We assume the ordering is chosen such that �1 � �2 �
The eigenfunctions are orthogonal with respect to µ and can be chosen to be
normalized so that

R
�i(x)�j(x) dµ(x) = �ij where �ij is the Kronecker delta.

Mercer’s theorem (see, e.g. König, 1986) allows us to express the kernel kMercer’s theorem

in terms of the eigenvalues and eigenfunctions.

Theorem 4.2 (Mercer’s theorem). Let (X , µ) be a finite measure space and
k 2 L1(X 2, µ2) be a kernel such that Tk : L2(X , µ) ! L2(X , µ) is positive
definite (see eq. (4.2)). Let �i 2 L2(X , µ) be the normalized eigenfunctions of
Tk associated with the eigenvalues �i > 0. Then:

1. the eigenvalues {�i}1i=1 are absolutely summable

2.

k(x,x0) =

1X

i=1

�i�i(x)�⇤i (x
0), (4.37)

holds µ2 almost everywhere, where the series converges absolutely and
uniformly µ2 almost everywhere. ⇤

This decomposition is just the infinite-dimensional analogue of the diagonaliza-
tion of a Hermitian matrix. Note that the sum may terminate at some value
N 2 N (i.e. the eigenvalues beyond N are zero), or the sum may be infinite.
We have the following definition [Press et al., 1992, p. 794]

10For further explanation of measure see Appendix A.7.

6

3.3 Reproducing Kernel Hilbert Spaces

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

130 Relationships between GPs and Other Models

We start with a formal definition of a RKHS, and then describe two specific
bases for a RKHS, firstly through Mercer’s theorem and the eigenfunctions of
k, and secondly through the reproducing kernel map.

Definition 6.1 (Reproducing kernel Hilbert space). Let H be a Hilbert space
of real functions f defined on an index set X . Then H is called a reproducing
kernel Hilbert space endowed with an inner product h·, ·iH (and norm kfkH =p
hf, fiH) if there exists a function k : X⇥X ! R with the following properties:

1. for every x, k(x,x0) as a function of x0 belongs to H, and

2. k has the reproducing property hf(·), k(·,x)iH = f(x). ⇤reproducing property

See e.g. Schölkopf and Smola [2002] and Wegman [1982]. Note also that as
k(x, ·) and k(x0, ·) are in H we have that hk(x, ·), k(x0, ·)iH = k(x,x0).

The RKHS uniquely determines k, and vice versa, as stated in the following
theorem:

Theorem 6.1 (Moore-Aronszajn theorem, Aronszajn [1950]). Let X be an in-
dex set. Then for every positive definite function k(·, ·) on X ⇥ X there exists
a unique RKHS, and vice versa. ⇤

The Hilbert space L2 (which has the dot product hf, giL2 =
R

f(x)g(x)dx)
contains many non-smooth functions. In L2 (which is not a RKHS) the delta
function is the representer of evaluation, i.e. f(x) =

R
f(x0)�(x�x0)dx0. Kernels

are the analogues of delta functions within the smoother RKHS. Note that the
delta function is not itself in L2; in contrast for a RKHS the kernel k is the
representer of evaluation and is itself in the RKHS.

The above description is perhaps rather abstract. For our purposes the key
intuition behind the RKHS formalism is that the squared norm kfk2H can be
thought of as a generalization to functions of the n-dimensional quadratic form
f>K�1f we have seen in earlier chapters.

Consider a real positive semidefinite kernel k(x,x0) with an eigenfunction
expansion k(x,x0) =

PN
i=1�i�i(x)�i(x

0) relative to a measure µ. Recall from
Mercer’s theorem that the eigenfunctions are orthonormal w.r.t. µ, i.e. we haveR
�i(x)�j(x) dµ(x) = �ij . We now consider a Hilbert space comprised of linear

combinations of the eigenfunctions, i.e. f(x) =
PN

i=1fi�i(x) with
PN

i=1f
2
i /�i <

1. We assert that the inner product hf, giH in the Hilbert space betweeninner product
hf, giH functions f(x) and g(x) =

PN
i=1gi�i(x) is defined as

hf, giH =
NX

i=1

figi

�i
. (6.1)

Thus this Hilbert space is equipped with a norm kfkH where kfk2H = hf, fiH =PN
i=1f

2
i /�i. Note that for kfkH to be finite the sequence of coe�cients {fi}

must decay quickly; e↵ectively this imposes a smoothness condition on the
space.

3.3.1 RKHS and Eigenfunctions

• The functions belonging to the RKHS associated with a kernel k can be written as a linear
combination of the eigenfunctions φ j of k: f (x) =

∑
j f jφ j(x), with

∑
j f 2

j /λ j < ∞ (this is
a smoothness constraint).

• Such functions define an Hilbert space H with inner product 〈 f , g〉H =
∑

j
f jg j
λ j

• This Hilbert space is the RKHS corresponding to kernel k:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.1 Reproducing Kernel Hilbert Spaces 131

We now need to show that this Hilbert space is the RKHS corresponding to
the kernel k, i.e. that it has the reproducing property. This is easily achieved
as

hf(·), k(·,x)iH =
NX

i=1

fi�i�i(x)

�i
= f(x). (6.2)

Similarly

hk(x, ·), k(x0, ·)iH =
NX

i=1

�i�i(x)�i�i(x
0)

�i
= k(x,x0). (6.3)

Notice also that k(x, ·) is in the RKHS as it has norm
PN

i=1(�i�i(x))2/�i =
k(x,x) < 1. We have now demonstrated that the Hilbert space comprised of
linear combinations of the eigenfunctions with the restriction

PN
i=1f

2
i /�i <1

fulfils the two conditions given in Definition 6.1. As there is a unique RKHS
associated with k(·, ·), this Hilbert space must be that RKHS.

The advantage of the abstract formulation of the RKHS is that the eigenbasis
will change as we use di↵erent measures µ in Mercer’s theorem. However, the
RKHS norm is in fact solely a property of the kernel and is invariant under
this change of measure. This can be seen from the fact that the proof of the
RKHS properties above is not dependent on the measure; see also Kailath
[1971, sec. II.B]. A finite-dimensional example of this measure invariance is
explored in exercise 6.7.1.

Notice the analogy between the RKHS norm kfk2H = hf, fiH =
PN

i=1f
2
i /�i

and the quadratic form f>K�1f ; if we express K and f in terms of the eigen-
vectors of K we obtain exactly the same form (but the sum has only n terms if
f has length n).

If we sample the coe�cients fi in the eigenexpansion f(x) =
PN

i=1fi�i(x)
from N (0,�i) then

E[kfk2H] =
NX

i=1

E[f2
i]

�i
=

NX

i=1

1. (6.4)

Thus if N is infinite the sample functions are not in H (with probability 1)
as the expected value of the RKHS norm is infinite; see Wahba [1990, p. 5]
and Kailath [1971, sec. II.B] for further details. However, note that although
sample functions of this Gaussian process are not in H, the posterior mean after
observing some data will lie in the RKHS, due to the smoothing properties of
averaging.

Another view of the RKHS can be obtained from the reproducing kernel
map construction. We consider the space of functions f defined as

n
f(x) =

nX

i=1

↵ik(x,xi) : n 2 N, xi 2 X , ↵i 2 R
o

. (6.5)

• Furthermore, the norm of k(x, ·) is k(x, x) < ∞: it belongs to H.

3.4 Classification of Kernel functions
A kernel k(x, y) can be classified w.r.t dependence on x and y.

• Stationary kernel: it is a function of x − y (invariant to translations).

• Isotropic kernel: it is a function of ‖x − y‖ (invariant to rigid motions).

• Dot-product kernel: it is a function of xT y (invariant w.r.t. rotations with respect to the
origin).

Continuity properties of the GPs and kernels k.

• Continuity in mean square of a process f at x: for each xk → x, it holds that E[‖ f (xk) −
f (x)‖2]→ 0.

7

• A process is continuous in m.s. at x iff k is continuous at k(x, x). For stationary kernels, k
must be continuous at zero.

• If k is 2kth differentiable, than f is kth differentiable (in m.s.).

3.4.1 Gaussian kernel

• The Gaussian or Squared Exponential kernel is defined by

k(x, y) = α exp
[
−
‖x − y‖2

λ2

]
• α is called the amplitude, it regulates the magnitude of variance at each point x. λ, instead,

is the characteristic length-scale, which regulates the speed of decay of the correlation
between points.

• The Gaussian kernel is isotropic and among the most used in computational statistics, and
its RKHS is dense in the space of continuous functions over a compact set in Rn.

• The Automatic-Relevance Detection Gaussian Kernel generalises the GK as

k(x, y) = α exp

−∑
j

|x j − y j|
2

λ2
j

3.4.2 Matérn kernel

• The Matérn kernel is defined by

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

84 Covariance Functions

The SE kernel is infinitely divisible in that (k(r))t is a valid kernel for allinfinitely divisible

t > 0; the e↵ect of raising k to the power of t is simply to rescale `.

We now digress briefly, to show that the squared exponential covariance
function can also be obtained by expanding the input x into a feature space
defined by Gaussian-shaped basis functions centered densely in x-space. Forinfinite network

construction for SE
covariance function

simplicity of exposition we consider scalar inputs with basis functions

�c(x) = exp
�
� (x� c)2

2`2
�
, (4.10)

where c denotes the centre of the basis function. From sections 2.1 and 2.2 we
recall that with a Gaussian prior on the weights w ⇠ N (0,�2

pI), this gives rise
to a GP with covariance function

k(xp, xq) = �2
p

NX

c=1

�c(xp)�c(xq). (4.11)

Now, allowing an infinite number of basis functions centered everywhere on an
interval (and scaling down the variance of the prior on the weights with the
number of basis functions) we obtain the limit

lim
N!1

�2
p

N

NX

c=1

�c(xp)�c(xq) = �2
p

Z cmax

cmin

�c(xp)�c(xq)dc. (4.12)

Plugging in the Gaussian-shaped basis functions eq. (4.10) and letting the in-
tegration limits go to infinity we obtain

k(xp, xq) = �2
p

Z 1

�1
exp

�
� (xp � c)2

2`2
�
exp

�
� (xq � c)2

2`2
�
dc

=
p
⇡`�2

p exp
�
� (xp � xq)

2

2(
p

2`)2

�
,

(4.13)

which we recognize as a squared exponential covariance function with a
p

2
times longer length-scale. The derivation is adapted from MacKay [1998]. It
is straightforward to generalize this construction to multivariate x. See also
eq. (4.30) for a similar construction where the centres of the basis functions are
sampled from a Gaussian distribution; the constructions are equivalent when
the variance of this Gaussian tends to infinity.

The Matérn Class of Covariance Functions

The Matérn class of covariance functions is given byMatérn class

kMatern(r) =
21�⌫

�(⌫)

⇣p2⌫r

`

⌘⌫
K⌫

⇣p2⌫r

`

⌘
, (4.14)

with positive parameters ⌫ and `, where K⌫ is a modified Bessel function
[Abramowitz and Stegun, 1965, sec. 9.6]. This covariance function has a spectral
density

S(s) =
2D⇡D/2�(⌫ + D/2)(2⌫)⌫

�(⌫)`2⌫

⇣2⌫

`2
+ 4⇡2s2

⌘�(⌫+D/2)

(4.15)

• If ν > h, then the process with Matérn kernel is h times differentiable (in m.s.) For ν→ ∞,
then the MK becomes the GK.

• Examples of Matern Kernel:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 85

0 1 2 30

0.2

0.4

0.6

0.8

1

input distance, r

co
va

ria
nc

e,
 k

(r)

ν=1/2
ν=2
ν→∞

−5 0 5

−2

0

2

input, x

ou
tp

ut
, f

(x
)

(a) (b)

Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

k⌫=p+1/2(r) = exp
⇣
�
p

2⌫r

`

⌘ �(p + 1)

�(2p + 1)

pX

i=0

(p + i)!

i!(p� i)!

⇣p8⌫r

`

⌘p�i

. (4.16)

It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which

k⌫=3/2(r) =
⇣
1 +

p
3r

`

⌘
exp

⇣
�
p

3r

`

⌘
,

k⌫=5/2(r) =
⇣
1 +

p
5r

`
+

5r2

3`2

⌘
exp

⇣
�
p

5r

`

⌘
,

(4.17)

since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

3.4.3 Matérn and Exponential kernel

• Typical choice for MK is ν = p + 1/2, giving

8

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 85

0 1 2 30

0.2

0.4

0.6

0.8

1

input distance, r

co
va

ria
nc

e,
 k

(r)

ν=1/2
ν=2
ν→∞

−5 0 5

−2

0

2

input, x

ou
tp

ut
, f

(x
)

(a) (b)

Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

k⌫=p+1/2(r) = exp
⇣
�
p

2⌫r

`

⌘ �(p + 1)

�(2p + 1)

pX

i=0

(p + i)!

i!(p� i)!

⇣p8⌫r

`

⌘p�i

. (4.16)

It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which

k⌫=3/2(r) =
⇣
1 +

p
3r

`

⌘
exp

⇣
�
p

3r

`

⌘
,

k⌫=5/2(r) =
⇣
1 +

p
5r

`
+

5r2

3`2

⌘
exp

⇣
�
p

5r

`

⌘
,

(4.17)

since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

• for ν = 1/2, we get the Exponential Kernel

k(x, y) = exp
[
‖x − y‖/λ

]
which in one dimension corresponds to the Ornstein-Ulembeck process (the model of
velocity of a particle undergoing Brownian motion), which is continuous but nowhere
differentiable.

3.4.4 Polynomial kernel

• Simple dot-products kernels are the polynomial kernel, for p integer:

k(x, x′) = (xT x′)p

• This corresponds to a kernel obtained by a set of polynomial basis functions:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

90 Covariance Functions

by concatenating a constant. We write

k(x,x0) = (x · x0)p =
⇣ DX

d=1

xdx
0
d

⌘p

=
⇣ DX

d1=1

xd1
x0

d1

⌘
· · ·
⇣ DX

dp=1

xdp
x0

dp

⌘

=
DX

d1=1

· · ·
DX

dp=1

(xd1
· · ·xdp

)(x0
d1

· · ·x0
dp

) , �(x) · �(x0). (4.23)

Notice that this sum apparently contains Dp terms but in fact it is less than this
as the order of the indices in the monomial xd1

· · ·xdp
is unimportant, e.g. for

p = 2, x1x2 and x2x1 are the same monomial. We can remove the redundancy
by defining a vector m whose entry md specifies the number of times index
d appears in the monomial, under the constraint that

PD
i=1 mi = p. Thus

�m(x), the feature corresponding to vector m is proportional to the monomial
xm1

1 . . . xmD

D . The degeneracy of �m(x) is p!
m1!...mD! (where as usual we define

0! = 1), giving the feature map

�m(x) =

r
p!

m1! · · ·mD!
xm1

1 · · ·xmD

D . (4.24)

For example, for p = 2 in D = 2, we have �(x) = (x2
1, x

2
2,
p

2x1x2)
>. Dot-

product kernels are sometimes used in a normalized form given by eq. (4.35).

For regression problems the polynomial kernel is a rather strange choice as
the prior variance grows rapidly with |x| for |x| > 1. However, such kernels
have proved e↵ective in high-dimensional classification problems (e.g. take x
to be a vectorized binary image) where the input data are binary or greyscale
normalized to [�1, 1] on each dimension [Schölkopf and Smola, 2002, sec. 7.8].

4.2.3 Other Non-stationary Covariance Functions

Above we have seen examples of non-stationary dot product kernels. However,
there are also other interesting kernels which are not of this form. In this section
we first describe the covariance function belonging to a particular type of neural
network; this construction is due to Neal [1996].

Consider a network which takes an input x, has one hidden layer with NH

units and then linearly combines the outputs of the hidden units with a bias b
to obtain f(x). The mapping can be written

f(x) = b +

NHX

j=1

vjh(x;uj), (4.25)

where the vjs are the hidden-to-output weights and h(x;u) is the hidden unit
transfer function (which we shall assume is bounded) which depends on the
input-to-hidden weights u. For example, we could choose h(x;u) = tanh(x ·u).
This architecture is important because it has been shown by Hornik [1993] that
networks with one hidden layer are universal approximators as the number of

• The basis functions φm are given by all monomials of degree p, i.e.
∑

m j = p:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

90 Covariance Functions

by concatenating a constant. We write

k(x,x0) = (x · x0)p =
⇣ DX

d=1

xdx
0
d

⌘p

=
⇣ DX

d1=1

xd1
x0

d1

⌘
· · ·
⇣ DX

dp=1

xdp
x0

dp

⌘

=
DX

d1=1

· · ·
DX

dp=1

(xd1 · · ·xdp)(x0
d1

· · ·x0
dp

) , �(x) · �(x0). (4.23)

Notice that this sum apparently contains Dp terms but in fact it is less than this
as the order of the indices in the monomial xd1

· · ·xdp
is unimportant, e.g. for

p = 2, x1x2 and x2x1 are the same monomial. We can remove the redundancy
by defining a vector m whose entry md specifies the number of times index
d appears in the monomial, under the constraint that

PD
i=1 mi = p. Thus

�m(x), the feature corresponding to vector m is proportional to the monomial
xm1

1 . . . xmD

D . The degeneracy of �m(x) is p!
m1!...mD! (where as usual we define

0! = 1), giving the feature map

�m(x) =

r
p!

m1! · · ·mD!
xm1

1 · · ·xmD

D . (4.24)

For example, for p = 2 in D = 2, we have �(x) = (x2
1, x

2
2,
p

2x1x2)
>. Dot-

product kernels are sometimes used in a normalized form given by eq. (4.35).

For regression problems the polynomial kernel is a rather strange choice as
the prior variance grows rapidly with |x| for |x| > 1. However, such kernels
have proved e↵ective in high-dimensional classification problems (e.g. take x
to be a vectorized binary image) where the input data are binary or greyscale
normalized to [�1, 1] on each dimension [Schölkopf and Smola, 2002, sec. 7.8].

4.2.3 Other Non-stationary Covariance Functions

Above we have seen examples of non-stationary dot product kernels. However,
there are also other interesting kernels which are not of this form. In this section
we first describe the covariance function belonging to a particular type of neural
network; this construction is due to Neal [1996].

Consider a network which takes an input x, has one hidden layer with NH

units and then linearly combines the outputs of the hidden units with a bias b
to obtain f(x). The mapping can be written

f(x) = b +

NHX

j=1

vjh(x;uj), (4.25)

where the vjs are the hidden-to-output weights and h(x;u) is the hidden unit
transfer function (which we shall assume is bounded) which depends on the
input-to-hidden weights u. For example, we could choose h(x;u) = tanh(x ·u).
This architecture is important because it has been shown by Hornik [1993] that
networks with one hidden layer are universal approximators as the number of

3.5 Composition of Kernels
Kernels can be composed according to certain rules, giving rise to new kernels.

9

296 6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels k1(x,x′) and k2(x,x′), the following new kernels will also
be valid:

k(x,x′) = ck1(x,x′) (6.13)
k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)
k(x,x′) = q (k1(x,x′)) (6.15)
k(x,x′) = exp (k1(x,x′)) (6.16)
k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)
k(x,x′) = k1(x,x′)k2(x,x′) (6.18)
k(x,x′) = k3 (φ(x),φ(x′)) (6.19)
k(x,x′) = xTAx′ (6.20)
k(x,x′) = ka(xa,x′

a) + kb(xb,x
′
b) (6.21)

k(x,x′) = ka(xa,x′
a)kb(xb,x

′
b) (6.22)

where c > 0 is a constant, f(·) is any function, q(·) is a polynomial with nonneg-
ative coefficients, φ(x) is a function from x to RM , k3(·, ·) is a valid kernel in
RM , A is a symmetric positive semidefinite matrix, xa and xb are variables (not
necessarily disjoint) with x = (xa,xb), and ka and kb are valid kernel functions
over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x,x′) be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x′ according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-
sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

We saw that the simple polynomial kernel k(x,x′) =
(
xTx′)2

contains only
terms of degree two. If we consider the slightly generalized kernel k(x,x′) =(
xTx′ + c

)2
with c > 0, then the corresponding feature mapping φ(x) contains con-

stant and linear terms as well as terms of order two. Similarly, k(x,x′) =
(
xTx′)M

contains all monomials of order M . For instance, if x and x′ are two images, then
the kernel represents a particular weighted sum of all possible products of M pixels
in the first image with M pixels in the second image. This can similarly be gener-
alized to include all terms up to degree M by considering k(x,x′) =

(
xTx′ + c

)M

with c > 0. Using the results (6.17) and (6.18) for combining kernels we see that
these will all be valid kernel functions.

Another commonly used kernel takes the form

k(x,x′) = exp
(
−∥x − x′∥2/2σ2

)
(6.23)

and is often called a ‘Gaussian’ kernel. Note, however, that in this context it is
not interpreted as a probability density, and hence the normalization coefficient is

4 Hyperparameters
4.1 Marginal likelihood

• In order to do model selection (e.g. between different kernels) we can use the marginal
likelihood.

• This can be used also to set hyperparameters of the kernel functions, like the amplitude
or the lengthscale of the Gaussian kernel.

• For GP, we can compute the marginal likelihood analytically:

L = log p(y|X) = log
∫

p(f|X)p(y|f, X)df

which gives

L = −
1
2

yT (K + σ2I)−1y −
1
2

log |(K + σ2I)| −
N
2

log 2π

• This follows also by observing that y ∼ N(0,K + σ2I).

The log marginal likelihood

L = −
1
2

yT (K + σ2I)−1y −
1
2

log |(K + σ2I)| −
N
2

log 2π

has three terms

• − 1
2 yT (K + σ2I)−1y is the data fit.

• − 1
2 log |(K + σ2I)| is a complexity penalty.

• − N
2 log 2π is a constant.

10

Data from 1dim example with Gaussian kernels

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.4 Model Selection for GP Regression 113

100−100

−80

−60

−40

−20

0

20

40
lo

g
pr

ob
ab

ilit
y

characteristic lengthscale

minus complexity penalty
data fit
marginal likelihood

100−100

−80

−60

−40

−20

0

20

Characteristic lengthscale

lo
g

m
ar

gi
na

l l
ik

el
ih

oo
d

95% conf int

 8
21
55

(a) (b)

Figure 5.3: Panel (a) shows a decomposition of the log marginal likelihood into
its constituents: data-fit and complexity penalty, as a function of the characteristic
length-scale. The training data is drawn from a Gaussian process with SE covariance
function and parameters (`,�f ,�n) = (1, 1, 0.1), the same as in Figure 2.5, and we are
fitting only the length-scale parameter ` (the two other parameters have been set in
accordance with the generating process). Panel (b) shows the log marginal likelihood
as a function of the characteristic length-scale for di↵erent sizes of training sets. Also
shown, are the 95% confidence intervals for the posterior length-scales.

and we re-state the result here

log p(y|X,✓) = �1

2
y>K�1

y y � 1

2
log |Ky|� n

2
log 2⇡, (5.8)

where Ky = Kf +�2
nI is the covariance matrix for the noisy targets y (and Kf

is the covariance matrix for the noise-free latent f), and we now explicitly write
the marginal likelihood conditioned on the hyperparameters (the parameters of
the covariance function) ✓. From this perspective it becomes clear why we call
eq. (5.8) the log marginal likelihood, since it is obtained through marginaliza- marginal likelihood

tion over the latent function. Otherwise, if one thinks entirely in terms of the
function-space view, the term “marginal” may appear a bit mysterious, and
similarly the “hyper” from the ✓ parameters of the covariance function.4

The three terms of the marginal likelihood in eq. (5.8) have readily inter- interpretation

pretable rôles: the only term involving the observed targets is the data-fit
�y>K�1

y y/2; log |Ky|/2 is the complexity penalty depending only on the co-
variance function and the inputs and n log(2⇡)/2 is a normalization constant.
In Figure 5.3(a) we illustrate this breakdown of the log marginal likelihood.
The data-fit decreases monotonically with the length-scale, since the model be-
comes less and less flexible. The negative complexity penalty increases with the
length-scale, because the model gets less complex with growing length-scale.
The marginal likelihood itself peaks at a value close to 1. For length-scales
somewhat longer than 1, the marginal likelihood decreases rapidly (note the

4Another reason that we like to stick to the term “marginal likelihood” is that it is the
likelihood of a non-parametric model, i.e. a model which requires access to all the training
data when making predictions; this contrasts the situation for a parametric model, which
“absorbs” the information from the training data into its (posterior) parameter (distribution).
This di↵erence makes the two “likelihoods” behave quite di↵erently as a function of ✓.

Data from 1dim example with Gaussian kernels

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

114 Model Selection and Adaptation of Hyperparameters

100 101

10−1

100

characteristic lengthscale

no
is

e
st

an
da

rd
 d

ev
ia

tio
n

Figure 5.4: Contour plot showing the log marginal likelihood as a function of the
characteristic length-scale and the noise level, for the same data as in Figure 2.5 and
Figure 5.3. The signal variance hyperparameter was set to �2

f = 1. The optimum is
close to the parameters used when generating the data. Note, the two ridges, one
for small noise and length-scale ` = 0.4 and another for long length-scale and noise
�2

n = 1. The contour lines spaced 2 units apart in log probability density.

log scale!), due to the poor ability of the model to explain the data, compare to
Figure 2.5(c). For smaller length-scales the marginal likelihood decreases some-
what more slowly, corresponding to models that do accommodate the data,
but waste predictive mass at regions far away from the underlying function,
compare to Figure 2.5(b).

In Figure 5.3(b) the dependence of the log marginal likelihood on the charac-
teristic length-scale is shown for di↵erent numbers of training cases. Generally,
the more data, the more peaked the marginal likelihood. For very small numbers
of training data points the slope of the log marginal likelihood is very shallow
as when only a little data has been observed, both very short and intermediate
values of the length-scale are consistent with the data. With more data, the
complexity term gets more severe, and discourages too short length-scales.

To set the hyperparameters by maximizing the marginal likelihood, we seekmarginal likelihood
gradient the partial derivatives of the marginal likelihood w.r.t. the hyperparameters.

Using eq. (5.8) and eq. (A.14-A.15) we obtain

@

@✓j
log p(y|X,✓) =

1

2
y>K�1 @K

@✓j
K�1y � 1

2
tr
�
K�1 @K

@✓j

�

=
1

2
tr
⇣
(↵↵> �K�1)

@K

@✓j

⌘
where ↵ = K�1y.

(5.9)

The complexity of computing the marginal likelihood in eq. (5.8) is dominated
by the need to invert the K matrix (the log determinant of K is easily com-
puted as a by-product of the inverse). Standard methods for matrix inversion of
positive definite symmetric matrices require time O(n3) for inversion of an n by
n matrix. Once K�1 is known, the computation of the derivatives in eq. (5.9)
requires only time O(n2) per hyperparameter.5 Thus, the computational over-

5Note that matrix-by-matrix products in eq. (5.9) should not be computed directly: in the
first term, do the vector-by-matrix multiplications first; in the trace term, compute only the
diagonal terms of the product.

Data coming from a sample of a 1dim GP with Gaussian kernel and hyperparameters λ = 1,
α = 1, σ = 0.1.

11

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

20 Regression

−5 0 5

−3

−2

−1

0

1

2

3

input, x
ou

tp
ut

, y
(a), ` = 1

−5 0 5

−3

−2

−1

0

1

2

3

input, x

ou
tp

ut
, y

−5 0 5

−3

−2

−1

0

1

2

3

input, x

ou
tp

ut
, y

(b), ` = 0.3 (c), ` = 3

Figure 2.5: (a) Data is generated from a GP with hyperparameters (`,�f ,�n) =
(1, 1, 0.1), as shown by the + symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.

The covariance is denoted ky as it is for the noisy targets y rather than for the
underlying function f . Observe that the length-scale `, the signal variance �2

f

and the noise variance �2
n can be varied. In general we call the free parametershyperparameters

hyperparameters.11

In chapter 5 we will consider various methods for determining the hyperpa-
rameters from training data. However, in this section our aim is more simply to
explore the e↵ects of varying the hyperparameters on GP prediction. Consider
the data shown by + signs in Figure 2.5(a). This was generated from a GP
with the SE kernel with (`,�f ,�n) = (1, 1, 0.1). The figure also shows the 2
standard-deviation error bars for the predictions obtained using these values of
the hyperparameters, as per eq. (2.24). Notice how the error bars get larger
for input values that are distant from any training points. Indeed if the x-axis

11We refer to the parameters of the covariance function as hyperparameters to emphasize
that they are parameters of a non-parametric model; in accordance with the weight-space
view, section 2.1, the parameters (weights) of the underlying parametric model have been
integrated out.

4.2 Hyperparameter optimisation
• In order to set the hyperparameters, we can maximise the log marginal likelihood:

L = −
1
2

yT (K + σ2I)−1y −
1
2

log |(K + σ2I)| −
N
2

log 2π

• Its derivative w.r.t. an hyperparameter θ is

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

114 Model Selection and Adaptation of Hyperparameters

100 101

10−1

100

characteristic lengthscale

no
is

e
st

an
da

rd
 d

ev
ia

tio
n

Figure 5.4: Contour plot showing the log marginal likelihood as a function of the
characteristic length-scale and the noise level, for the same data as in Figure 2.5 and
Figure 5.3. The signal variance hyperparameter was set to �2

f = 1. The optimum is
close to the parameters used when generating the data. Note, the two ridges, one
for small noise and length-scale ` = 0.4 and another for long length-scale and noise
�2

n = 1. The contour lines spaced 2 units apart in log probability density.

log scale!), due to the poor ability of the model to explain the data, compare to
Figure 2.5(c). For smaller length-scales the marginal likelihood decreases some-
what more slowly, corresponding to models that do accommodate the data,
but waste predictive mass at regions far away from the underlying function,
compare to Figure 2.5(b).

In Figure 5.3(b) the dependence of the log marginal likelihood on the charac-
teristic length-scale is shown for di↵erent numbers of training cases. Generally,
the more data, the more peaked the marginal likelihood. For very small numbers
of training data points the slope of the log marginal likelihood is very shallow
as when only a little data has been observed, both very short and intermediate
values of the length-scale are consistent with the data. With more data, the
complexity term gets more severe, and discourages too short length-scales.

To set the hyperparameters by maximizing the marginal likelihood, we seekmarginal likelihood
gradient the partial derivatives of the marginal likelihood w.r.t. the hyperparameters.

Using eq. (5.8) and eq. (A.14-A.15) we obtain

@

@✓j
log p(y|X,✓) =

1

2
y>K�1 @K

@✓j
K�1y � 1

2
tr
�
K�1 @K

@✓j

�

=
1

2
tr
⇣
(↵↵> �K�1)

@K

@✓j

⌘
where ↵ = K�1y.

(5.9)

The complexity of computing the marginal likelihood in eq. (5.8) is dominated
by the need to invert the K matrix (the log determinant of K is easily com-
puted as a by-product of the inverse). Standard methods for matrix inversion of
positive definite symmetric matrices require time O(n3) for inversion of an n by
n matrix. Once K�1 is known, the computation of the derivatives in eq. (5.9)
requires only time O(n2) per hyperparameter.5 Thus, the computational over-

5Note that matrix-by-matrix products in eq. (5.9) should not be computed directly: in the
first term, do the vector-by-matrix multiplications first; in the trace term, compute only the
diagonal terms of the product.

• The derivative is relatively cheap to compute, once we invert the matrix K. Hence we can
use gradient methods to optimise L.

• Purely Bayesian methods (giving a prior on hyperparameters) are complicated by the in
general complex functional form (no conjugate prior).

12

4.3 Non-constant prior mean
• The typical choice for the prior mean is the zero function. Data is processed by subtracting

the sample mean from the observations.

• As an alternative, one can either use a deterministic function for the priori mean (and
subtract if from data, adding it back to predictions), or use a generalised linear model for
the prior mean:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

28 Regression

whose coe�cients, �, are to be inferred from the data. Considerstochastic mean
function

g(x) = f(x) + h(x)>�, where f(x) ⇠ GP
�
0, k(x,x0)

�
, (2.39)

here f(x) is a zero mean GP, h(x) are a set of fixed basis functions, and � are
additional parameters. This formulation expresses that the data is close to a
global linear model with the residuals being modelled by a GP. This idea was
explored explicitly as early as 1975 by Blight and Ott [1975], who used the GP
to model the residuals from a polynomial regression, i.e. h(x) = (1, x, x2, . . .).polynomial regression

When fitting the model, one could optimize over the parameters � jointly with
the hyperparameters of the covariance function. Alternatively, if we take the
prior on � to be Gaussian, � ⇠ N (b, B), we can also integrate out these
parameters. Following O’Hagan [1978] we obtain another GP

g(x) ⇠ GP
�
h(x)>b, k(x,x0) + h(x)>Bh(x0)

�
, (2.40)

now with an added contribution in the covariance function caused by the un-
certainty in the parameters of the mean. Predictions are made by plugging
the mean and covariance functions of g(x) into eq. (2.39) and eq. (2.24). After
rearranging, we obtain

ḡ(X⇤) = H>
⇤ �̄ + K>

⇤ K�1
y (y �H>�̄) = f̄(X⇤) + R>�̄,

cov(g⇤) = cov(f⇤) + R>(B�1 + HK�1
y H>)�1R,

(2.41)

where the H matrix collects the h(x) vectors for all training (and H⇤ all test)
cases, �̄ = (B�1 + HK�1

y H>)�1(HK�1
y y + B�1b), and R = H⇤ �HK�1

y K⇤.
Notice the nice interpretation of the mean expression, eq. (2.41) top line: �̄ is
the mean of the global linear model parameters, being a compromise between
the data term and prior, and the predictive mean is simply the mean linear
output plus what the GP model predicts from the residuals. The covariance is
the sum of the usual covariance term and a new non-negative contribution.

Exploring the limit of the above expressions as the prior on the � param-
eter becomes vague, B�1 ! O (where O is the matrix of zeros), we obtain a
predictive distribution which is independent of b

ḡ(X⇤) = f̄(X⇤) + R>�̄,

cov(g⇤) = cov(f⇤) + R>(HK�1
y H>)�1R,

(2.42)

where the limiting �̄ = (HK�1
y H>)�1HK�1

y y. Notice that predictions under
the limit B�1 ! O should not be implemented näıvely by plugging the modified
covariance function from eq. (2.40) into the standard prediction equations, since
the entries of the covariance function tend to infinity, thus making it unsuitable
for numerical implementation. Instead eq. (2.42) must be used. Even if the
non-limiting case is of interest, eq. (2.41) is numerically preferable to a direct
implementation based on eq. (2.40), since the global linear part will often add
some very large eigenvalues to the covariance matrix, a↵ecting its condition
number.

• If we put a Gaussian prior over coefficients β, we can treat them in a Bayesian way, and
get a GP:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

28 Regression

whose coe�cients, �, are to be inferred from the data. Considerstochastic mean
function

g(x) = f(x) + h(x)>�, where f(x) ⇠ GP
�
0, k(x,x0)

�
, (2.39)

here f(x) is a zero mean GP, h(x) are a set of fixed basis functions, and � are
additional parameters. This formulation expresses that the data is close to a
global linear model with the residuals being modelled by a GP. This idea was
explored explicitly as early as 1975 by Blight and Ott [1975], who used the GP
to model the residuals from a polynomial regression, i.e. h(x) = (1, x, x2, . . .).polynomial regression

When fitting the model, one could optimize over the parameters � jointly with
the hyperparameters of the covariance function. Alternatively, if we take the
prior on � to be Gaussian, � ⇠ N (b, B), we can also integrate out these
parameters. Following O’Hagan [1978] we obtain another GP

g(x) ⇠ GP
�
h(x)>b, k(x,x0) + h(x)>Bh(x0)

�
, (2.40)

now with an added contribution in the covariance function caused by the un-
certainty in the parameters of the mean. Predictions are made by plugging
the mean and covariance functions of g(x) into eq. (2.39) and eq. (2.24). After
rearranging, we obtain

ḡ(X⇤) = H>
⇤ �̄ + K>

⇤ K�1
y (y �H>�̄) = f̄(X⇤) + R>�̄,

cov(g⇤) = cov(f⇤) + R>(B�1 + HK�1
y H>)�1R,

(2.41)

where the H matrix collects the h(x) vectors for all training (and H⇤ all test)
cases, �̄ = (B�1 + HK�1

y H>)�1(HK�1
y y + B�1b), and R = H⇤ �HK�1

y K⇤.
Notice the nice interpretation of the mean expression, eq. (2.41) top line: �̄ is
the mean of the global linear model parameters, being a compromise between
the data term and prior, and the predictive mean is simply the mean linear
output plus what the GP model predicts from the residuals. The covariance is
the sum of the usual covariance term and a new non-negative contribution.

Exploring the limit of the above expressions as the prior on the � param-
eter becomes vague, B�1 ! O (where O is the matrix of zeros), we obtain a
predictive distribution which is independent of b

ḡ(X⇤) = f̄(X⇤) + R>�̄,

cov(g⇤) = cov(f⇤) + R>(HK�1
y H>)�1R,

(2.42)

where the limiting �̄ = (HK�1
y H>)�1HK�1

y y. Notice that predictions under
the limit B�1 ! O should not be implemented näıvely by plugging the modified
covariance function from eq. (2.40) into the standard prediction equations, since
the entries of the covariance function tend to infinity, thus making it unsuitable
for numerical implementation. Instead eq. (2.42) must be used. Even if the
non-limiting case is of interest, eq. (2.41) is numerically preferable to a direct
implementation based on eq. (2.40), since the global linear part will often add
some very large eigenvalues to the covariance matrix, a↵ecting its condition
number.

• In this way, we obtain the following predictive distribution at a point x∗:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

28 Regression

whose coe�cients, �, are to be inferred from the data. Considerstochastic mean
function

g(x) = f(x) + h(x)>�, where f(x) ⇠ GP
�
0, k(x,x0)

�
, (2.39)

here f(x) is a zero mean GP, h(x) are a set of fixed basis functions, and � are
additional parameters. This formulation expresses that the data is close to a
global linear model with the residuals being modelled by a GP. This idea was
explored explicitly as early as 1975 by Blight and Ott [1975], who used the GP
to model the residuals from a polynomial regression, i.e. h(x) = (1, x, x2, . . .).polynomial regression

When fitting the model, one could optimize over the parameters � jointly with
the hyperparameters of the covariance function. Alternatively, if we take the
prior on � to be Gaussian, � ⇠ N (b, B), we can also integrate out these
parameters. Following O’Hagan [1978] we obtain another GP

g(x) ⇠ GP
�
h(x)>b, k(x,x0) + h(x)>Bh(x0)

�
, (2.40)

now with an added contribution in the covariance function caused by the un-
certainty in the parameters of the mean. Predictions are made by plugging
the mean and covariance functions of g(x) into eq. (2.39) and eq. (2.24). After
rearranging, we obtain

ḡ(X⇤) = H>
⇤ �̄ + K>

⇤ K�1
y (y �H>�̄) = f̄(X⇤) + R>�̄,

cov(g⇤) = cov(f⇤) + R>(B�1 + HK�1
y H>)�1R,

(2.41)

where the H matrix collects the h(x) vectors for all training (and H⇤ all test)
cases, �̄ = (B�1 + HK�1

y H>)�1(HK�1
y y + B�1b), and R = H⇤ �HK�1

y K⇤.
Notice the nice interpretation of the mean expression, eq. (2.41) top line: �̄ is
the mean of the global linear model parameters, being a compromise between
the data term and prior, and the predictive mean is simply the mean linear
output plus what the GP model predicts from the residuals. The covariance is
the sum of the usual covariance term and a new non-negative contribution.

Exploring the limit of the above expressions as the prior on the � param-
eter becomes vague, B�1 ! O (where O is the matrix of zeros), we obtain a
predictive distribution which is independent of b

ḡ(X⇤) = f̄(X⇤) + R>�̄,

cov(g⇤) = cov(f⇤) + R>(HK�1
y H>)�1R,

(2.42)

where the limiting �̄ = (HK�1
y H>)�1HK�1

y y. Notice that predictions under
the limit B�1 ! O should not be implemented näıvely by plugging the modified
covariance function from eq. (2.40) into the standard prediction equations, since
the entries of the covariance function tend to infinity, thus making it unsuitable
for numerical implementation. Instead eq. (2.42) must be used. Even if the
non-limiting case is of interest, eq. (2.41) is numerically preferable to a direct
implementation based on eq. (2.40), since the global linear part will often add
some very large eigenvalues to the covariance matrix, a↵ecting its condition
number.

• The new predictive distribution has mean HT
∗ β̄ (from the linear model) plus a term coming

from the GP model of residuals.

• Taking a flat prior (limit for B−1→ matrix of zeros):

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

28 Regression

whose coe�cients, �, are to be inferred from the data. Considerstochastic mean
function

g(x) = f(x) + h(x)>�, where f(x) ⇠ GP
�
0, k(x,x0)

�
, (2.39)

here f(x) is a zero mean GP, h(x) are a set of fixed basis functions, and � are
additional parameters. This formulation expresses that the data is close to a
global linear model with the residuals being modelled by a GP. This idea was
explored explicitly as early as 1975 by Blight and Ott [1975], who used the GP
to model the residuals from a polynomial regression, i.e. h(x) = (1, x, x2, . . .).polynomial regression

When fitting the model, one could optimize over the parameters � jointly with
the hyperparameters of the covariance function. Alternatively, if we take the
prior on � to be Gaussian, � ⇠ N (b, B), we can also integrate out these
parameters. Following O’Hagan [1978] we obtain another GP

g(x) ⇠ GP
�
h(x)>b, k(x,x0) + h(x)>Bh(x0)

�
, (2.40)

now with an added contribution in the covariance function caused by the un-
certainty in the parameters of the mean. Predictions are made by plugging
the mean and covariance functions of g(x) into eq. (2.39) and eq. (2.24). After
rearranging, we obtain

ḡ(X⇤) = H>
⇤ �̄ + K>

⇤ K�1
y (y �H>�̄) = f̄(X⇤) + R>�̄,

cov(g⇤) = cov(f⇤) + R>(B�1 + HK�1
y H>)�1R,

(2.41)

where the H matrix collects the h(x) vectors for all training (and H⇤ all test)
cases, �̄ = (B�1 + HK�1

y H>)�1(HK�1
y y + B�1b), and R = H⇤ �HK�1

y K⇤.
Notice the nice interpretation of the mean expression, eq. (2.41) top line: �̄ is
the mean of the global linear model parameters, being a compromise between
the data term and prior, and the predictive mean is simply the mean linear
output plus what the GP model predicts from the residuals. The covariance is
the sum of the usual covariance term and a new non-negative contribution.

Exploring the limit of the above expressions as the prior on the � param-
eter becomes vague, B�1 ! O (where O is the matrix of zeros), we obtain a
predictive distribution which is independent of b

ḡ(X⇤) = f̄(X⇤) + R>�̄,

cov(g⇤) = cov(f⇤) + R>(HK�1
y H>)�1R,

(2.42)

where the limiting �̄ = (HK�1
y H>)�1HK�1

y y. Notice that predictions under
the limit B�1 ! O should not be implemented näıvely by plugging the modified
covariance function from eq. (2.40) into the standard prediction equations, since
the entries of the covariance function tend to infinity, thus making it unsuitable
for numerical implementation. Instead eq. (2.42) must be used. Even if the
non-limiting case is of interest, eq. (2.41) is numerically preferable to a direct
implementation based on eq. (2.40), since the global linear part will often add
some very large eigenvalues to the covariance matrix, a↵ecting its condition
number.

5 GP classification
• The idea behind GP classification is to extend logistic (or probit) regression, by assuming

the following model for the class conditionals:

π(x) = p(C1|x) = σ(f (x)) where f ∼ GP(µ, k)

• f is often call latent function. Note that π is a random function, as f is.

13

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

40 Classification

−4

−2

0

2

4

input, x

la
te

nt
 fu

nc
tio

n,
 f(

x)

0

1

input, x

cl
as

s
pr

ob
ab

ilit
y,

 π
(x

)

(a) (b)

Figure 3.2: Panel (a) shows a sample latent function f(x) drawn from a Gaussian
process as a function of x. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, �(z) = (1 + exp(�z))�1 to obtain the class
probability ⇡(x) = �(f(x)).

regression model and parallels the development from linear regression to GP
regression that we explored in section 2.1. Specifically, we replace the linear
f(x) function from the linear logistic model in eq. (3.6) by a Gaussian process,
and correspondingly the Gaussian prior on the weights by a GP prior.

The latent function f plays the rôle of a nuisance function: we do notnuisance function

observe values of f itself (we observe only the inputs X and the class labels y)
and we are not particularly interested in the values of f , but rather in ⇡, in
particular for test cases ⇡(x⇤). The purpose of f is solely to allow a convenient
formulation of the model, and the computational goal pursued in the coming
sections will be to remove (integrate out) f .

We have tacitly assumed that the latent Gaussian process is noise-free, andnoise-free latent process

combined it with smooth likelihood functions, such as the logistic or probit.
However, one can equivalently think of adding independent noise to the latent
process in combination with a step-function likelihood. In particular, assuming
Gaussian noise and a step-function likelihood is exactly equivalent to a noise-
free8 latent process and probit likelihood, see exercise 3.10.1.

Inference is naturally divided into two steps: first computing the distribution
of the latent variable corresponding to a test case

p(f⇤|X,y,x⇤) =

Z
p(f⇤|X,x⇤, f)p(f |X,y) df , (3.9)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior over the latent vari-
ables, and subsequently using this distribution over the latent f⇤ to produce a
probabilistic prediction

⇡̄⇤ , p(y⇤=+1|X,y,x⇤) =

Z
�(f⇤)p(f⇤|X,y,x⇤) df⇤. (3.10)

8This equivalence explains why no numerical problems arise from considering a noise-free
process if care is taken with the implementation, see also comment at the end of section 3.4.3.

• Let X, y the observations, with yi ∈ {0, 1}.

5.1 GP classification
• f is often call latent or nuisance function. It is not observed directly. We only observe at

a point x the realisation of a Bernoulli random variable with probability π(x).

• Inference at a test point x∗ is done, as usual in a Bayesian setting, in two steps:

1. Compute the posterior f ∗ of f at the prediction point x∗.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

40 Classification

−4

−2

0

2

4

input, x

la
te

nt
 fu

nc
tio

n,
 f(

x)

0

1

input, x

cl
as

s
pr

ob
ab

ilit
y,

 π
(x

)

(a) (b)

Figure 3.2: Panel (a) shows a sample latent function f(x) drawn from a Gaussian
process as a function of x. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, �(z) = (1 + exp(�z))�1 to obtain the class
probability ⇡(x) = �(f(x)).

regression model and parallels the development from linear regression to GP
regression that we explored in section 2.1. Specifically, we replace the linear
f(x) function from the linear logistic model in eq. (3.6) by a Gaussian process,
and correspondingly the Gaussian prior on the weights by a GP prior.

The latent function f plays the rôle of a nuisance function: we do notnuisance function

observe values of f itself (we observe only the inputs X and the class labels y)
and we are not particularly interested in the values of f , but rather in ⇡, in
particular for test cases ⇡(x⇤). The purpose of f is solely to allow a convenient
formulation of the model, and the computational goal pursued in the coming
sections will be to remove (integrate out) f .

We have tacitly assumed that the latent Gaussian process is noise-free, andnoise-free latent process

combined it with smooth likelihood functions, such as the logistic or probit.
However, one can equivalently think of adding independent noise to the latent
process in combination with a step-function likelihood. In particular, assuming
Gaussian noise and a step-function likelihood is exactly equivalent to a noise-
free8 latent process and probit likelihood, see exercise 3.10.1.

Inference is naturally divided into two steps: first computing the distribution
of the latent variable corresponding to a test case

p(f⇤|X,y,x⇤) =

Z
p(f⇤|X,x⇤, f)p(f |X,y) df , (3.9)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior over the latent vari-
ables, and subsequently using this distribution over the latent f⇤ to produce a
probabilistic prediction

⇡̄⇤ , p(y⇤=+1|X,y,x⇤) =

Z
�(f⇤)p(f⇤|X,y,x⇤) df⇤. (3.10)

8This equivalence explains why no numerical problems arise from considering a noise-free
process if care is taken with the implementation, see also comment at the end of section 3.4.3.

with p(f|X, y) = p(y|f)p(f|X)/p(y/X) by Bayes theorem.

2. Compute the predictive distribution at x∗

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

40 Classification

−4

−2

0

2

4

input, x

la
te

nt
 fu

nc
tio

n,
 f(

x)

0

1

input, x

cl
as

s
pr

ob
ab

ilit
y,

 π
(x

)

(a) (b)

Figure 3.2: Panel (a) shows a sample latent function f(x) drawn from a Gaussian
process as a function of x. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, �(z) = (1 + exp(�z))�1 to obtain the class
probability ⇡(x) = �(f(x)).

regression model and parallels the development from linear regression to GP
regression that we explored in section 2.1. Specifically, we replace the linear
f(x) function from the linear logistic model in eq. (3.6) by a Gaussian process,
and correspondingly the Gaussian prior on the weights by a GP prior.

The latent function f plays the rôle of a nuisance function: we do notnuisance function

observe values of f itself (we observe only the inputs X and the class labels y)
and we are not particularly interested in the values of f , but rather in ⇡, in
particular for test cases ⇡(x⇤). The purpose of f is solely to allow a convenient
formulation of the model, and the computational goal pursued in the coming
sections will be to remove (integrate out) f .

We have tacitly assumed that the latent Gaussian process is noise-free, andnoise-free latent process

combined it with smooth likelihood functions, such as the logistic or probit.
However, one can equivalently think of adding independent noise to the latent
process in combination with a step-function likelihood. In particular, assuming
Gaussian noise and a step-function likelihood is exactly equivalent to a noise-
free8 latent process and probit likelihood, see exercise 3.10.1.

Inference is naturally divided into two steps: first computing the distribution
of the latent variable corresponding to a test case

p(f⇤|X,y,x⇤) =

Z
p(f⇤|X,x⇤, f)p(f |X,y) df , (3.9)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior over the latent vari-
ables, and subsequently using this distribution over the latent f⇤ to produce a
probabilistic prediction

⇡̄⇤ , p(y⇤=+1|X,y,x⇤) =

Z
�(f⇤)p(f⇤|X,y,x⇤) df⇤. (3.10)

8This equivalence explains why no numerical problems arise from considering a noise-free
process if care is taken with the implementation, see also comment at the end of section 3.4.3.5.2 Laplace Approximation

• As in Bayesian logistic regression, the computation of the posterior p(f|X, y) cannot be
carried out analytically.

• However, we can do a Laplace approximation of the posterior around the MAP f̂ . The
unnormalised log posterior is:

14

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

42 Classification

−2 0 2

−3

−2

−1

0

1

latent times target, zi=yifi

lo
g

lik
el

ih
oo

d,
 lo

g
p(

y i|f i)

log likelihood
1st derivative
2nd derivative

−2 0 2

−6

−4

−2

0

2

latent times target, zi=yifi

lo
g

lik
el

ih
oo

d,
 lo

g
p(

y i|f i)

log likelihood
1st derivative
2nd derivative

(a), logistic (b), probit

Figure 3.3: The log likelihood and its derivatives for a single case as a function of
zi = yifi, for (a) the logistic, and (b) the cumulative Gaussian likelihood. The two
likelihood functions are fairly similar, the main qualitative di↵erence being that for
large negative arguments the log logistic behaves linearly whereas the log cumulative
Gaussian has a quadratic penalty. Both likelihoods are log concave.

3.4.1 Posterior

By Bayes’ rule the posterior over the latent variables is given by p(f |X,y) =
p(y|f)p(f |X)/p(y|X), but as p(y|X) is independent of f , we need only consider
the un-normalized posterior when maximizing w.r.t. f . Taking the logarithmun-normalized posterior

and introducing expression eq. (2.29) for the GP prior gives

 (f) , log p(y|f) + log p(f |X)

= log p(y|f)� 1

2
f>K�1f � 1

2
log |K|� n

2
log 2⇡.

(3.12)

Di↵erentiating eq. (3.12) w.r.t. f we obtain

r (f) = r log p(y|f)�K�1f , (3.13)

rr (f) = rr log p(y|f)�K�1 = �W �K�1, (3.14)

where W , �rr log p(y|f) is diagonal, since the likelihood factorizes over
cases (the distribution for yi depends only on fi, not on fj 6=i). Note, that if the
likelihood p(y|f) is log concave, the diagonal elements of W are non-negative,
and the Hessian in eq. (3.14) is negative definite, so that (f) is concave and
has a unique maximum (see section A.9 for further details).

There are many possible functional forms of the likelihood, which gives the
target class probability as a function of the latent variable f . Two commonly
used likelihood functions are the logistic, and the cumulative Gaussian, seelog likelihoods

and their derivatives Figure 3.3. The expressions for the log likelihood for these likelihood functions
and their first and second derivatives w.r.t. the latent variable are given in the

where W is diagonal, as observations are i.i.d.

• It can be optimised with a Newton-Rapson scheme:

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.4 The Laplace Approximation for the Binary GP Classifier 43

following table:

log p(yi|fi)
@

@fi
log p(yi|fi)

@2

@f2
i

log p(yi|fi)

� log
�
1 + exp(�yifi)

�
ti � ⇡i �⇡i(1� ⇡i) (3.15)

log�(yifi)
yiN (fi)

�(yifi)
� N (fi)

2

�(yifi)2
� yifiN (fi)

�(yifi)
(3.16)

where we have defined ⇡i = p(yi = 1|fi) and t = (y + 1)/2. At the maximum
of (f) we have

r = 0 =) f̂ = K
�
r log p(y|f̂)

�
, (3.17)

as a self-consistent equation for f̂ (but since r log p(y|f̂) is a non-linear function

of f̂ , eq. (3.17) cannot be solved directly). To find the maximum of we use
Newton’s method, with the iteration Newton’s method

fnew = f � (rr)�1r = f + (K�1 + W)�1(r log p(y|f)�K�1f)

= (K�1 + W)�1
�
W f +r log p(y|f)

�
. (3.18)

To gain more intuition about this update, let us consider what happens to
datapoints that are well-explained under f so that @ log p(yi|fi)/@fi and Wii

are close to zero for these points. As an approximation, break f into two
subvectors, f1 that corresponds to points that are not well-explained, and f2 to
those that are. Then it is easy to show (see exercise 3.10.4) that

fnew
1 = K11(I11 + W11K11)

�1
�
W11f1 +r log p(y1|f1)

�
,

fnew
2 = K21K

�1
11 fnew

1 ,
(3.19)

where K21 denotes the n2 ⇥ n1 block of K containing the covariance between
the two groups of points, etc. This means that fnew

1 is computed by ignoring intuition on influence of
well-explained pointsentirely the well-explained points, and fnew

2 is predicted from fnew
1 using the

usual GP prediction methods (i.e. treating these points like test points). Of
course, if the predictions of fnew

2 fail to match the targets correctly they would
cease to be well-explained and so be updated on the next iteration.

Having found the maximum posterior f̂ , we can now specify the Laplace
approximation to the posterior as a Gaussian with mean f̂ and covariance matrix
given by the negative inverse Hessian of from eq. (3.14)

q(f |X,y) = N
�
f̂ , (K�1 + W)�1

�
. (3.20)

One problem with the Laplace approximation is that it is essentially un-
controlled, in that the Hessian (evaluated at f̂) may give a poor approximation
to the true shape of the posterior. The peak could be much broader or nar-
rower than the Hessian indicates, or it could be a skew peak, while the Laplace
approximation assumes it has elliptical contours.

• The Laplace approximation around the MAP f̂ is a Gaussian q with mean

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

44 Classification

3.4.2 Predictions

The posterior mean for f⇤ under the Laplace approximation can be expressed
by combining the GP predictive mean eq. (2.25) with eq. (3.17) intolatent mean

Eq[f⇤|X,y,x⇤] = k(x⇤)
>K�1f̂ = k(x⇤)

>r log p(y|f̂). (3.21)

Compare this with the exact mean, given by Opper and Winther [2000] as

Ep[f⇤|X,y,x⇤] =

Z
E[f⇤|f , X,x⇤]p(f |X,y)df (3.22)

=

Z
k(x⇤)

>K�1f p(f |X,y)df = k(x⇤)
>K�1E[f |X,y],

where we have used the fact that for a GP E[f⇤|f , X,x⇤] = k(x⇤)>K�1f and
have let E[f |X,y] denote the posterior mean of f given X and y. Notice the
similarity between the middle expression of eq. (3.21) and eq. (3.22), where the
exact (intractable) average E[f |X,y] has been replaced with the modal value

f̂ = Eq[f |X,y].

A simple observation from eq. (3.21) is that positive training examples will
give rise to a positive coe�cient for their kernel function (as ri log p(yi|fi) > 0sign of kernel

coe�cients in this case), while negative examples will give rise to a negative coe�cient;
this is analogous to the solution to the support vector machine, see eq. (6.34).
Also note that training points which have ri log p(yi|fi) ' 0 (i.e. that are

well-explained under f̂) do not contribute strongly to predictions at novel test
points; this is similar to the behaviour of non-support vectors in the support
vector machine (see section 6.4).

We can also compute Vq[f⇤|X,y], the variance of f⇤|X,y under the Gaussian
approximation. This comprises of two terms, i.e.

Vq[f⇤|X,y,x⇤] = Ep(f⇤|X,x⇤,f)[(f⇤ � E[f⇤|X,x⇤, f])
2]

+ Eq(f |X,y)[(E[f⇤|X,x⇤, f]� E[f⇤|X,y,x⇤])
2].

(3.23)

The first term is due to the variance of f⇤ if we condition on a particular value
of f , and is given by k(x⇤,x⇤) � k(x⇤)>K�1k(x⇤), cf. eq. (2.19). The second
term in eq. (3.23) is due to the fact that E[f⇤|X,x⇤, f] = k(x⇤)>K�1f depends
on f and thus there is an additional term of k(x⇤)>K�1 cov(f |X,y)K�1k(x⇤).
Under the Gaussian approximation cov(f |X,y) = (K�1 + W)�1, and thuslatent variance

Vq[f⇤|X,y,x⇤] = k(x⇤,x⇤)�k>
⇤ K�1k⇤ + k>

⇤ K�1(K�1 + W)�1K�1k⇤

= k(x⇤,x⇤)�k>
⇤ (K + W�1)�1k⇤, (3.24)

where the last line is obtained using the matrix inversion lemma eq. (A.9).

Given the mean and variance of f⇤, we make predictions by computingaveraged predictive
probability

⇡̄⇤ ' Eq[⇡⇤|X,y,x⇤] =

Z
�(f⇤)q(f⇤|X,y,x⇤) df⇤, (3.25)

and variance

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

44 Classification

3.4.2 Predictions

The posterior mean for f⇤ under the Laplace approximation can be expressed
by combining the GP predictive mean eq. (2.25) with eq. (3.17) intolatent mean

Eq[f⇤|X,y,x⇤] = k(x⇤)
>K�1f̂ = k(x⇤)

>r log p(y|f̂). (3.21)

Compare this with the exact mean, given by Opper and Winther [2000] as

Ep[f⇤|X,y,x⇤] =

Z
E[f⇤|f , X,x⇤]p(f |X,y)df (3.22)

=

Z
k(x⇤)

>K�1f p(f |X,y)df = k(x⇤)
>K�1E[f |X,y],

where we have used the fact that for a GP E[f⇤|f , X,x⇤] = k(x⇤)>K�1f and
have let E[f |X,y] denote the posterior mean of f given X and y. Notice the
similarity between the middle expression of eq. (3.21) and eq. (3.22), where the
exact (intractable) average E[f |X,y] has been replaced with the modal value

f̂ = Eq[f |X,y].

A simple observation from eq. (3.21) is that positive training examples will
give rise to a positive coe�cient for their kernel function (as ri log p(yi|fi) > 0sign of kernel

coe�cients in this case), while negative examples will give rise to a negative coe�cient;
this is analogous to the solution to the support vector machine, see eq. (6.34).
Also note that training points which have ri log p(yi|fi) ' 0 (i.e. that are

well-explained under f̂) do not contribute strongly to predictions at novel test
points; this is similar to the behaviour of non-support vectors in the support
vector machine (see section 6.4).

We can also compute Vq[f⇤|X,y], the variance of f⇤|X,y under the Gaussian
approximation. This comprises of two terms, i.e.

Vq[f⇤|X,y,x⇤] = Ep(f⇤|X,x⇤,f)[(f⇤ � E[f⇤|X,x⇤, f])
2]

+ Eq(f |X,y)[(E[f⇤|X,x⇤, f]� E[f⇤|X,y,x⇤])
2].

(3.23)

The first term is due to the variance of f⇤ if we condition on a particular value
of f , and is given by k(x⇤,x⇤) � k(x⇤)>K�1k(x⇤), cf. eq. (2.19). The second
term in eq. (3.23) is due to the fact that E[f⇤|X,x⇤, f] = k(x⇤)>K�1f depends
on f and thus there is an additional term of k(x⇤)>K�1 cov(f |X,y)K�1k(x⇤).
Under the Gaussian approximation cov(f |X,y) = (K�1 + W)�1, and thuslatent variance

Vq[f⇤|X,y,x⇤] = k(x⇤,x⇤)�k>
⇤ K�1k⇤ + k>

⇤ K�1(K�1 + W)�1K�1k⇤

= k(x⇤,x⇤)�k>
⇤ (K + W�1)�1k⇤, (3.24)

where the last line is obtained using the matrix inversion lemma eq. (A.9).

Given the mean and variance of f⇤, we make predictions by computingaveraged predictive
probability

⇡̄⇤ ' Eq[⇡⇤|X,y,x⇤] =

Z
�(f⇤)q(f⇤|X,y,x⇤) df⇤, (3.25)

• The prediction π∗ can be computed by the integral

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

44 Classification

3.4.2 Predictions

The posterior mean for f⇤ under the Laplace approximation can be expressed
by combining the GP predictive mean eq. (2.25) with eq. (3.17) intolatent mean

Eq[f⇤|X,y,x⇤] = k(x⇤)
>K�1f̂ = k(x⇤)

>r log p(y|f̂). (3.21)

Compare this with the exact mean, given by Opper and Winther [2000] as

Ep[f⇤|X,y,x⇤] =

Z
E[f⇤|f , X,x⇤]p(f |X,y)df (3.22)

=

Z
k(x⇤)

>K�1f p(f |X,y)df = k(x⇤)
>K�1E[f |X,y],

where we have used the fact that for a GP E[f⇤|f , X,x⇤] = k(x⇤)>K�1f and
have let E[f |X,y] denote the posterior mean of f given X and y. Notice the
similarity between the middle expression of eq. (3.21) and eq. (3.22), where the
exact (intractable) average E[f |X,y] has been replaced with the modal value

f̂ = Eq[f |X,y].

A simple observation from eq. (3.21) is that positive training examples will
give rise to a positive coe�cient for their kernel function (as ri log p(yi|fi) > 0sign of kernel

coe�cients in this case), while negative examples will give rise to a negative coe�cient;
this is analogous to the solution to the support vector machine, see eq. (6.34).
Also note that training points which have ri log p(yi|fi) ' 0 (i.e. that are

well-explained under f̂) do not contribute strongly to predictions at novel test
points; this is similar to the behaviour of non-support vectors in the support
vector machine (see section 6.4).

We can also compute Vq[f⇤|X,y], the variance of f⇤|X,y under the Gaussian
approximation. This comprises of two terms, i.e.

Vq[f⇤|X,y,x⇤] = Ep(f⇤|X,x⇤,f)[(f⇤ � E[f⇤|X,x⇤, f])
2]

+ Eq(f |X,y)[(E[f⇤|X,x⇤, f]� E[f⇤|X,y,x⇤])
2].

(3.23)

The first term is due to the variance of f⇤ if we condition on a particular value
of f , and is given by k(x⇤,x⇤) � k(x⇤)>K�1k(x⇤), cf. eq. (2.19). The second
term in eq. (3.23) is due to the fact that E[f⇤|X,x⇤, f] = k(x⇤)>K�1f depends
on f and thus there is an additional term of k(x⇤)>K�1 cov(f |X,y)K�1k(x⇤).
Under the Gaussian approximation cov(f |X,y) = (K�1 + W)�1, and thuslatent variance

Vq[f⇤|X,y,x⇤] = k(x⇤,x⇤)�k>
⇤ K�1k⇤ + k>

⇤ K�1(K�1 + W)�1K�1k⇤

= k(x⇤,x⇤)�k>
⇤ (K + W�1)�1k⇤, (3.24)

where the last line is obtained using the matrix inversion lemma eq. (A.9).

Given the mean and variance of f⇤, we make predictions by computingaveraged predictive
probability

⇡̄⇤ ' Eq[⇡⇤|X,y,x⇤] =

Z
�(f⇤)q(f⇤|X,y,x⇤) df⇤, (3.25)

which can be approximated with the same logit-probit-logit trick used for Bayesian logis-
tic regression.

5.3 Expectation Propagation
• A (better) alternative to Laplace approximation is to use a variational method, typically

for the probit activation function.

• A first option is to approximate the posterior distribution by a Gaussian q, minimising the
(reversed) KL divergence KL(q(f|X, y), p(f|X, y)) (the minimisation of the KL divergence
KL(p(f|X, y), q(f|X, y)) is intractable).

• Alternatively, one can use the Expectation Propagation algorithm, which constructs itera-
tively (over obs i, until convergence) a Gaussian approximation of the posterior by

1. taking the current Gaussian approximation and factoring out the term for the i-th
likelihood p(yi| fi), obtaining a distribution for all observations but the i-th one.

2. multiplying the cavity by the exact likelihood of the i-th observation, and finding
a Gaussian approximation by moment matching of such a (non-Gaussian) distribu-
tion.

15

• EP is more accurate than Laplace approximation, and provides also an approximation of
the Marginal likelihood.

5.4 Pitfalls of GP prediction
• Addition of a new observation always reduces uncertainty at all points → vulnerable to

outliers

• Optimisation of hyperparameters often tricky: works well if σ2 is known, otherwise it can
be seriously multimodal

• MAIN PROBLEM: GP prediction relies on a matrix inversion which scales cubically
with the number of points!

• Sparsification methods have been proposed but in high dimension GP regression is likely
to be tricky nevertheless

16

