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The Bayesian Inference problem

Bayesian inference provides an appealing mathematical
formulation to perform learning/ prediction in uncertain
scenarios
The world (system) is divided in two sets of random variables:
latent (or hidden) θ and visible (or observed) x
Assumptions are encoded in a prior distribution p(θ) and a
likelihood function connecting latent to visibles p(x|θ)
Then we update our beliefs on the latent world according to
Bayes rule

p(θ|x) =
p(x|θ)p(θ)

p(x)
(1)

where p(x) is the marginal likelihood (probability of the
visibles regardless of the latents).

IMPOSSIBLE: we’d need to evaluate the likelihood for all
possible configurations of the latents!!!!
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The Variational Principle

Various strategies exist for approximating posterior
distributions.
One popular class constructs Markov chains that
asymptotically sample from the posterior (MCMC).
Variational methods recast inference as optimisation in
function space, using methods of calculus of variation.
Specifically, one minimises the Kullback-Leibler divergence (or
cross-entropy)

KL[q(θ)‖p(θ|x)] =

∫
dθq(θ) log

q(θ)

p(θ|x)
(2)

where q(θ) is an approximating distribution
Since the marginal likelihood does not depend on the data, its
knowledge is not required to find the optimum
Free form optimisation problem is just as hard; need
approximations
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Why the KL: the ELBO

We’ve seen in the last lecture that EM is based on optimising
a lower bound on the log-marginal likelihood (evidence)

Explicitly

log p(x) = log

∫
dθp(x, θ) = log

∫
dθ

p(x, θ)

q(θ)
q(θ) ≥∫

dθq(θ) log
p(x, θ)

q(θ)
= p(x)− KL[q(θ)‖p(θ|x)]

(3)

Minimising the KL divergence makes the evidence lower
bound (ELBO) tight
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Why KL: the perturbative expansion

Consider a complicated probability distribution P = exp(H)

We would like to replace it with an easier probability
distribution Q = exp(H0)

We define an intermediate distribution
Qλ = exp(H0) exp[−λ(H0 − H)] that is P for λ = 1 and Q for
λ = 0

Taylor expand

P = exp(H) = exp(H0) exp[−λ(H0 − H)] =

= exp(H0)
[
1− λ(H0 − H) + O(λ2)

]
= Q

[
1− λQ log

Q

P
+ O(λ2)

]
So minimizing KL (on average) minimises the first order
correction
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How to minimise KL

KL is a functional of the approximating distribution q

Functionals can be thought of as functions of functions

To minimise a functional, one sets its functional derivative to
zero

Excursus: let’s work out on the board!
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What about parameters?

Functional optimisation of KL enables approximate posterior
inference

What about model parameters?

ELBO can be used as a surrogate of the marginal likelihood
and optimised w.r.t. to model parameters (either in the prior
or likelihood), directly (gradient descent) or analytically when
possible

Sometimes called VBEM
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Factorizing complicated distributions

Most complex models involve several latent variables
θ1, . . . , θN

Even if they are a priori independent, the data usually couples
the latent variables making inference complicated

Mean-field variational inference breaks these dependencies by
replacing them with averaged effects

Guido Sanguinetti Variational Inference - Lecture 2



Variational inference - mathematical foundations
Mean field - Variational Bayes

Parametric variational inference

Coordinate Ascent Variational Inference (CAVI)

Assume the approximating distribution is factorized

q (θ1, . . . , θN) = q1(θ1), · · · , qN(θN)

Computing functional derivatives of (3) and setting to zero we
get

qj ∝ exp〈log p(x, θ)〉j̃
where 〈〉j̃ means expectation w.r.t. all the latent variables
except θj

Provided you can compute these expectations, iterating these
fixed point equations leads to a (local) optimum
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Exercise

Consider a Gaussian mixture model with Dirichlet priors over the
mixing components and normal-inverse Wishart priors over the
component means/ variances. Work out the CAVI algorithm. See
excellent worked out example here
https://rpubs.com/cakapourani/variational-bayes-gmm
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Families of distributions

Mean-field posits a factorised form for the approximating
distribution but does not restrict the functional form of the
factors

Alternatively, one could choose a parametric family for the
approximating distribution (e.g. a Gaussian)

Then KL becomes a normal function of the parameters of the
distribution and one may compute its gradient and optimise

CAVEAT: you will still need to be able to compute
expectations to get this gradient analytically
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Exercise

Compute the Gaussian variational approximation for a standard
normal latent variable observed through an exponential link with
Poisson noise, i.e.

p(x|θ) = Poisson(exp(θ)), θ ∼ N (0, 1)
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