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GRAPHICAL MODELS

Graphical models:
They are graphical representations of conditional
(in)dependencies of joint probability distributions;
They allow a more efficient representation of joint p.d.
They allow faster inference;

We study three kind of GM:
Bayesian Networks;
Markov Random Fields;
Factor Graphs (for inference)
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BAYESIAN NETWORKS: DEFINITIONS

Factorization of joint pdf.
Graphical conventions
Complexity reduction
BN as generative models
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BAYESIAN NETWORKS: EXAMPLE
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BAYESIAN NETWORKS: EXAMPLE
314 Chapter 10. Directed graphical models (Bayes nets)

HRBP

ErrCauter

HRSAT

TPR

MinVol

PVSAT

PAP

 Pulm  
Embolus

Shunt

Intubation

Press

Disconnect VentMach
VentTube

VentLung

VentAlv

Artco2

BP

Anaphy
Laxis 

 Hypo  
Volemia

PCWP

CO
LvFailure

 Lved 
Volume

Stroke
Volume

History

CVP

Errlow
Output

HrEKG

HR

Insuff
Anesth

Catechol

SAO2

ExpCo2

MinVolset

Kinked
 Tube 

FIO2

(a)

IOX KHDUW�
GLVHDVH ERWXOLVP

VH[ ) DEGRPHQ�
SDLQ

����GLVHDVHV

�����V\PSWRPV

:%&�
FRXQW

(b)

Figure 10.5 (a) The alarm network. Figure generated by visualizeAlarmNetwork. (b) The QMR
network.

Expert System: Intensive Care Alarms
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BAYESIAN NETWORKS: EXAMPLE

ratio previously discussed. In the second case, we select two
classes, on the basis of the AVO anomalies described in Table 2.

As we mentioned in the Introduction, the choice of graphical
models is nothing more than an extension of the dependency mod-
els currently used in the oil and gas industry. The advantage of
our approach is that the dependency can be more complex than
the traditional total and partial dependencies currently used by the
industry. A situation of total dependency, for example, can be
encoded by a common-parent counting network with two states,
and a1 equal to the largest of the risk-factor marginal-segment
probabilities.

The different risk factors are then considered independent, fol-
lowing an assumption that is largely used in exploration when
risking a segment or a prospect. The resulting network, presented
in Fig. 3, is then the multiplication of the subnetworks used to
represent the decencies for the single risk factors. Here, we can
see on the top part the two subnetworks for RP and PR—on the
left, the Trap (TR) subnetwork, made by TS and TG, on the bot-

tom the Source (SO) subnetwork, made by SP and SM, and on the
right the SA subnetwork.

The different subnetworks are then linked together through the
Bottom Nodes A, B, C, D, and E. The bottom nodes are not binary
as are all the other nodes of the network, but they have three
states: dry, partial oil, and commercial oil. The positive/negative
outcome of the SA nodes controls this partition.

Because the basic assumption of the model is the independ-
ence of the subnetworks, the CPT of one of the bottom nodes, say
A, given its parents, is a simple table structured in the following
way: The probability of the states partial oil and commercial oil
are nonzero only when all the parents SO, TR, RP, and PR are
unity and the final parent SA is zero or unity, respectively. This
means that, unless all the major factors are unity, there is no possi-
bility of a geological or commercial discovery; but it is, of course,
possible that the results of an exploration are not limited to a dry/
oil observation. In the next section, we will discuss the different
observables (i.e., the possible outcomes of an exploration well),

PRI2 PRI1 rpA rpB rpC rpD rpE

RP

prA prB prC prD prE

TS

tsE

tgE

trE

trD

trC

trB

trA

tgD

tsD

tsC

tsB

tsA

tgC

tgB

tgA A

B

C

D

E saE

saD

saC

saB

saA

SA

soA

smA

spA

SPI3 SPI2 SPI1

spB spC spD spE

smB smC smD smE

soB soC soD soE

Fig. 3—BN representation of the basin. The Prospects A through E are in the center nodes. Their immediate parents are the
observable success factors, and these are again linked through networks. On the left is the trap subnetwork, on the top the pro-
ducibility (PR) and the reservoir presence (RP) subnetworks, on the right the source abundance (SA) subnetwork, on the bottom
the source subnetwork.

TABLE 4—CPT FOR MULTILEVEL NETWORK, FROM FIRST
TO SECOND LEVEL

L1/L2 0 1

0 1 0

1 1 – c1 c1

TABLE 5—CPT FOR MULTILEVEL NETWORK, FROM LEVEL
NODES TO CHILDREN NODES

LN1\Ci 0 1

0 1 0

1 1 – bi bi

568 August 2014 SPE Journal

Expert System: Strategies for petroleum exploration
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BAYESIAN NETWORKS: EXAMPLE

Naive Bayes Classifier
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BAYESIAN NETWORKS: CONDITIONAL INDEPENDENCE

Conditions for conditional independence of A and B given C:
Tail to Tail
Head to Tail
Head to Head
Markov blanket
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MARKOV RANDOM FIELDS: DEFINITIONS

Conditional Independence in MRF
Factors in MRF
Joint probability distribution
Boltzmann distributions
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MARKOV RANDOM FIELD: EXAMPLE

Ising Model (binary RVs, energy: Jx1x2, per edge (x1, x2))
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MARKOV RANDOM FIELD: EXAMPLE

3. Methods
Given a noisy image X , where X(i, j) (also denoted as

xi,j) is the pixel value at row i and column j. Assume the
original image is Y . Denoising can be treated as a proba-
bilistic inference, where we perform maximum a posteriori
(MAP) estimation by maximizing the a posteriori distribu-
tion p(y|x). By Bayes Theorem,

p(y|x) =
p(x|y)p(y)

p(x)
.

By taking logarithm on both sides, we get

log p(y|x) = log p(x|y) + log p(y) � log p(x).

X is given, so MAP estimation corresponds to minimizing

� log p(x|y) � log p(y).

3.1. Markov Random Field

A Markov Random Field (MRF) is a graph G = (V, E),
where V = v1, v2, ..., vN is the set of nodes, each of which
is associated with a random variable vi. The neighborhood
of node vi, denoted N(vi), is the set of nodes to which vi is
adjacent, i.e., vj 2 N(vi) and (vi, vj) 2 E. In a MRF,
given N(vi), vi is independent on the rest of the nodes.
Therefore, N(vi) is often called the Markov blanket of node
vi.

A classic structure used in image denoising domain is the
pairwise MRF, shown in Figure 1. The yellow nodes (orig-
inal image Y ) are what we want to find, but we only have
information about the green nodes (noisy image X). Each
node y is only connected with its corresponding output x
and four direct neighbors (up, down, left, right). Therefore,
given a pixel y its 5 neighbors, we can determine the prob-
ability distribution of y without looking into other pixels.

3.2. Gibbs Sampling

In its basic version, Gibbs sampling is a special case
of the MetropolisHastings algorithm. It is a Markov chain
Monte Carlo (MCMC) algorithm that samples each random
variable of a graphical model, one at a time. The point of
Gibbs sampling is that given a multivariate distribution it
is simpler to sample from a conditional distribution than to
marginalize by integrating over a joint distribution. In our
case, we sample one value of a single pixel yi,j at a time,
while keeping everything else fixed. Assume the input im-
age has a size of M ⇥ N . The algorithm is as shown in
Algorithm 1.

3.2.1 Gibbs Sampling for binary images

As a warn-up and small test on the efficiency of Gibbs Sam-
pling and pairwise MRF, I implemented an algorithm for bi-

Figure 1. Pairwise MRF.

Initialize starting values of yi,j for i = 1, ..., M and
j = 1, ..., N ;

while not at convergence do
Pick an order of the M ⇥ N variables;
for each variable yi,j do

Sample yi,j based on P (yi,j |N(yi,j));
Update yi,j to Y ;

end
end

Algorithm 1: Gibbs Sampling

nary images. Figure 2 shows the work. The original image
contains a clean formula. Then, I generated an noisy image
such that each pixel from the original has a 20% chance of
been flipped. I set the sampling probability of each pixel
using the Ising model. After only a few iterations, I got the
output which recovered most part of the original image with
an error rate of 0.8%.

3.3. Energy

The distribution over random variables can be expressed
in terms of an energy function E. Here we define the energy
E for variable yi,j as a sum of loss (L), sparse gradient prior
(R) and window-wise products (W)

E(yi,j |X) = E(yi,j |N(yi,j))

= L(yi,j |N(yi,j))+�rR(yi,j |N(yi,j))��wW (yi,j |N(yi,j))

The probability distributions of yi,j is defined as

p(yi,j |N(yi,j)) =
1

Z
exp(�E(yi,j |X)),

Figure 2. Using Gibbs Sampling and Pairwise MRF for binary im-
age denoising. From top to bottom: original image, noisy image
with a flip rate of 20%, de-noised image with an error of 0.8%

where Z is the normalization factor. Therefore, higher en-
ergy means lower chance of getting sampled, the way we
compute the energy depends on MRF.

3.3.1 Loss

Loss is defined as the closeness of yi,j to its neighbors
and corresponding xi,j . Therefore, the closer they are, the
smaller the loss. We can define loss as the sum of the norm
of distances:

L(yi,j |X) =
X

z2N(yi,j)\xi,j

||z�yi,j ||n1
n1

+�||xi,j �yi,j ||n1
n1

.

The first term penalizes the difference between yi,j and its
neighbors in y, and the second term penalizes the difference
between yi,j and the noisy pixel xi,j . I found that � = 1
is a good setting, and also helps with vectorization. The
problem with L-2 norm is that it could be largely effected
by outliers, but L-1 could create unnecessary patches.

Lorentzian function is robust to outliers, and does not
generate as many patches as L-1 norm. It is written as:

⇢(z,�) = log(1 +
1

2
(
z

�
)2).

By plugging this into the loss function, we get:

L(yi,j |X) =
X

z2N(yi,j)\xi,j

⇢(z�yi,j ,�)+⇢(xi,j �yi,j ,�).

� is a hyper parameter here, it controls the bandwidth.

3.3.2 Sparse gradient prior

We can also add our assumptions about images as a prior
term here. I assumed the image has sparse gradient. There-
fore, we also penalize for large gradients. The prior term
is:

R(yi,j |X) =
X

z2N(yi,j)\xi,j

||z � yi,j

z
||n2

n2
.

Where here I approximated the gradient between yi,j and
z as the ratio of their difference to value of z, because this
makes vectorization easy. Again, there is a trade-off be-
tween L-1 and L-2 norms.

3.3.3 Window-wise product

Inspired from the Non-local Means (NL-means) method
[3] and Fields of Experts [7], I thought it could be help-
ful to derive common patterns within an image, instead of
training on some dataset. The advantage of doing this is
it saves time, and could be scene-specific. Although the
disadvantage is also obvious: could be biased. If we can
find ’patterns’ within a m ⇥ n window, then dot product
these patterns with the window the Gibbs sampler is cur-
rently looking at could yield some useful information. The
most straight forward pattern is just the mean: go through
the image with a m⇥n sliding window and then average the
sum of pixel values that the window has seen. This turned
out to be not helpful, since the mean tend to be plain. The
second thing I tried was PCA: taking out the first s principle
components and their corresponding explained variance. I
denote components as filters f , the variance explained value
as ↵, and the current window as w. Therefore, the third term
in our energy function becomes:

W (yi,j |X) =

k=sX

k=1

↵k|fk · w|

4. Results and analysis
PSNR and MSE are the two major criteria, results having

higher PSNR generally will have lower MSE. Computation
time is also considered. I used Gaussian smoothing as the
baseline model, and Non-local Means as the state of art (in
general, BM3D performs better, but since it is not a free
package in OpenCV, I used NLM). The original image is
shown in Figure 3, every color of a pixel reads in as an
integer ranging from 0 to 255. After applying a Gaussian
noise with standard deviation of 100 and clipping the out
of boundary values, the noisy image is shown in Figure 4.
It has a PSNR of 10.26 dB. Gaussian smoothing can get
to a PSNR of 18.56 dB, and NL-means gives 26.99 dB, as

Image denoising: xij , yij ∈ {0,1}
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MARKOV RANDOM FIELD: EXAMPLES

Restricted Boltzmann Machine: bipartite graph, binary nodes
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INFERENCE IN PGM: DEFINITIONS

Inference goals
Elimination: idea
Factor Graphs
Message passing algorithms in FG: sum-product, max-sum
Junction trees
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