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What is deep learning?
Deep learning is a particular kind of 
machine learning that achieves great power 
and flexibility by learning to represent the 
world as a nested hierarchy of concepts 
[representation learning], with each concept 
defined in relation to simpler concepts, and 
more abstract representations computed in 
terms of less abstract ones. 


The mainstream tool in 
deep learning are 
(Artificial) Neural 
Networks, also called 
Multi-Layer Perceptrons.



Why deep learning?
Most of the concepts and ideas of 
deep learning have a long tradition. 

This is the third wave of Neural 
Networks. Why now? 

1. Availability of very large datasets

2. Availability of large computational power, in 

particular GPU clusters, which allows us 
to train larger and deeper models. 


3. Some improvements in the science and 
technology of NN (ReLU, improved SGD, 
improved regularisation).

As of 2016, a rough rule of thumb is that a 
supervised deep learning algorithm will 
generally achieve acceptable performance 
with around 5,000 labeled examples per 
category, and will match or exceed human 
performance when trained with a dataset 
containing at least 10 million labeled examples 



Deep Learning: reshaping AI
Deep Learning has many impressive achievements in computer vision

Colouring black and white pictures

Face reconstruction from low 
resolution images

Another field in which deep learning is having a 
profound impact is natural language processing

Handwritten text generated by deep learning



Deep Learning: reshaping AI
Image recognition and automatic captioning



Deep Learning: reshaping AI
Automatic text recognition and translation in images 

Advanced image 
recognition in 
automatically 
controlled systems…



Deep Learning: success stories

ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC), recognising more 
than 1000 different kinds of objects 
(superhuman performance, i.e. below 
average human error rate, around 4% ) 


Other success stories:


• Speech recognition

• Pedestrian detection and image segmentation

• Traffic sign classification (superhuman)

• Image captioning and description

• Machine translation

• Neural Turing machines and self-programming

• Reinforcement Learning (AlphaGO)
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Mastering the game of Go with deep 
neural networks and tree search
David Silver1*, Aja Huang1*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,  
Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1, 
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,  
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s), 
which determines the outcome of the game, from every board position 
or state s, under perfect play by all players. These games may be solved 
by recursively computing the optimal value function in a search tree 
containing approximately bd possible sequences of moves, where b is 
the game’s breadth (number of legal moves per position) and d is its 
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and 
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but 
the effective search space can be reduced by two general principles. 
First, the depth of the search may be reduced by position evaluation: 
truncating the search tree at state s and replacing the subtree below s 
by an approximate value function v(s) ≈ v*(s) that predicts the outcome 
from state s. This approach has led to superhuman performance in 
chess4, checkers5 and othello6, but it was believed to be intractable in Go 
due to the complexity of the game7. Second, the breadth of the search 
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example, 
Monte Carlo rollouts8 search to maximum depth without branching 
at all, by sampling long sequences of actions for both players from a 
policy p. Averaging over such rollouts can provide an effective position 
evaluation, achieving superhuman performance in backgammon8 and 
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts 
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant 
values become more accurate. The policy used to select actions during 
search is also improved over time, by selecting children with higher 
values. Asymptotically, this policy converges to optimal play, and the 
evaluations converge to the optimal value function12. The strongest 
current Go programs are based on MCTS, enhanced by policies that 
are trained to predict human expert moves13. These policies are used 
to narrow the search to a beam of high-probability actions, and to 
sample actions during rollouts. This approach has achieved strong 
amateur play13–15. However, prior work has been limited to shallow 

policies13–15 or value functions16 based on a linear combination of 
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many 
layers of neurons, each arranged in overlapping tiles, to construct 
increasingly abstract, localized representations of an image20. We 
employ a similar architecture for the game of Go. We pass in the board 
position as a 19 × 19 image and use convolutional layers to construct a 
representation of the position. We use these neural networks to reduce 
the effective depth and breadth of the search tree: evaluating positions 
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several 
stages of machine learning (Fig. 1). We begin by training a supervised 
learning (SL) policy network pσ directly from expert human moves. 
This provides fast, efficient learning updates with immediate feedback 
and high-quality gradients. Similar to prior work13,15, we also train a 
fast policy pπ that can rapidly sample actions during rollouts. Next, we 
train a reinforcement learning (RL) policy network pρ that improves 
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games, 
rather than maximizing predictive accuracy. Finally, we train a value 
network vθ that predicts the winner of games played by the RL policy 
network against itself. Our program AlphaGo efficiently combines the 
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work 
on predicting expert moves in the game of Go using supervised  
learning13,21–24. The SL policy network pσ(a |  s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The 
input s to the policy network is a simple representation of the board state 
(see Extended Data Table 2). The policy network is trained on randomly  

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its 
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach 
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep 
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement 
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state- 
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a 
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, 
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go 
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the 
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved



Features and Representation LearningFeatures

Color Histogram

Red Green Blue

Extract 
features

𝑥

𝑦 = 𝑤𝑇𝜙 𝑥
build 
hypothesis

Features: part of the model

𝑦 = 𝑤𝑇𝜙 𝑥
build 
hypothesis

Linear model

Nonlinear model



Features: (polynomial) basis functions
Example: Polynomial kernel SVM 

𝑥1

𝑥2

𝑦 = sign(𝑤𝑇𝜙(𝑥) + 𝑏)

Fixed 𝜙 𝑥



Features and Representation Learning

Motivation: representation learning

• Why don’t we also learn 𝜙 𝑥 ?

Learn 𝜙 𝑥

𝑥

𝑦 = 𝑤𝑇𝜙 𝑥
Learn 𝑤𝜙 𝑥

Feedforward networks

• Typically, set 𝜙𝑖 𝑥 = 𝑟(𝜃𝑖𝑇𝑥) where 𝑟(⋅) is some nonlinear function

𝑥 𝜙 𝑥

𝑦 = 𝑤𝑇𝜙 𝑥

…
…



Adaptive Basis Functions
Feedforward networks

• Typically, set 𝜙𝑖 𝑥 = 𝑟(𝜃𝑖𝑇𝑥) where 𝑟(⋅) is some nonlinear function
𝑥 𝜙 𝑥

𝑦 = 𝑤𝑇𝜙 𝑥

…
…

Feedforward networks

• View each dimension of 𝜙 𝑥 as something to be learned

𝑥 𝜙 𝑥

𝑦 = 𝑤𝑇𝜙 𝑥

…
…

Feedforward networks

• Linear functions 𝜙𝑖 𝑥 = 𝜃𝑖𝑇𝑥 don’t work: need some nonlinearity

𝑥 𝜙 𝑥

𝑦 = 𝑤𝑇𝜙 𝑥

…
…

Feedforward networks

• Typically, set 𝜙𝑖 𝑥 = 𝑟(𝜃𝑖𝑇𝑥) where 𝑟(⋅) is some nonlinear function

𝑥 𝜙 𝑥

𝑦 = 𝑤𝑇𝜙 𝑥

…
…Hence, basis functions ‘adapt’ to data. 


The model above is a (simple) feedforward neural network



Feedforward Neural Networks
A FNN is visually described by an acyclic graph. Nodes are of three 
categories:

• input units/nodes (layer 0)

• output units/nodes (layer n)

• hidden units/nodes (inner layers) 



Feedforward Neural Networks

Output nodes work similarly, but they 
apply an output activation function 𝜎.

Each unit on an hidden layer takes an 
affine combination of values of input 
nodes, and then applies a non-linear 
activation function h. 

A 1 hidden layer NN with linear output 
represents a linear combination of 
parametric non-linear basis functions, 
but learns also their parameters. This 
greatly enhances expressivity. 



Input Units

Data normalisation is a crucial step! Don’t forget it!


Input

• Represented as a vector

• Sometimes require some
preprocessing, e.g.,

• Subtract mean
• Normalize to [-1,1]

Expand



Output units
The design of output units and their activation functions is driven by what we want 
to learn with our network. Typically, we want to learn a conditional probability 
distribution pmodel(y|x), optimising the cross-entropy: 

Output layers

• Regression: 𝑦 = 𝑤𝑇ℎ + 𝑏
• Linear units: no nonlinearity

ℎ

𝑦

Output layer



Output units
The design of output units and their activation functions is driven by what we want 
to learn with our network. Typically, we want to learn a conditional probability 
distribution pmodel(y|x), optimising the cross-entropy: 

Output layers

• Multi-dimensional regression: 𝑦 = 𝑊𝑇ℎ + 𝑏
• Linear units: no nonlinearity

ℎ

𝑦

Output layer



Output units
The design of output units and their activation functions is driven by what we want 
to learn with our network. Typically, we want to learn a conditional probability 
distribution pmodel(y|x), optimising the cross-entropy: 

Output layers

• Binary classification: 𝑦 = 𝜎(𝑤𝑇ℎ + 𝑏)
• Corresponds to using logistic regression on ℎ

ℎ

𝑦

Output layer



Output units
The design of output units and their activation functions is driven by what we want 
to learn with our network. Typically, we want to learn a conditional probability 
distribution pmodel(y|x), optimising the cross-entropy: 

Output layers

• Multi-class classification: 
• 𝑦 = softmax 𝑧 where 𝑧 = 𝑊𝑇ℎ + 𝑏
• Corresponds to using multi-class

logistic regression on ℎ

ℎ

𝑦

Output layer

𝑧



Output units
The design of output units and their activation functions is driven by what we want 
to learn with our network. Typically, we want to learn a conditional probability 
distribution pmodel(y|x), optimising the cross-entropy: 

More general output units can be obtained by selecting more complex pmodel(y|x).
Example: pmodel(y|x) Gaussian, with heteroschedastic variance

Mixture density Neural Network: pmodel(y|x) is 
a mixture of Gaussians

Output units for mixture components are softmax, linear for the mean and the 
(factor of the) covariance matrix. This is typically assumed diagonal.



Hidden Units
Hidden units have typically non-linear activation functions (otherwise 
the NN becomes a linear model). 

There are different choices of activation functions, driven by 
architectural constraints but also easiness in the learning phase.  

Hidden layers

• 𝑦 = 𝑟(𝑤𝑇𝑥 + 𝑏)

• Typical activation function 𝑟
• Threshold t 𝑧 = 𝕀[𝑧 ≥ 0]
• Sigmoid 𝜎 𝑧 = 1/ 1 + exp(−𝑧)
• Tanh tanh 𝑧 = 2𝜎 2𝑧 − 1

𝑦𝑥
𝑟(⋅)



Hidden Units
Hidden units have typically non-linear activation functions (otherwise 
the NN becomes a linear model). 

There are different choices of activation functions, driven by 
architectural constraints but also easiness in the learning phase.  Hidden layers

• Problem: saturation

𝑦𝑥
𝑟(⋅)

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

Too small gradient



Hidden Units
Hidden units have typically non-linear activation functions (otherwise 
the NN becomes a linear model). 

There are different choices of activation functions, driven by 
architectural constraints but also easiness in the learning phase.  Hidden layers

• Activation function ReLU (rectified linear unit)
• ReLU 𝑧 = max{𝑧, 0}

Gradient 0

Gradient 1



Hidden Units
Hidden units have typically non-linear activation functions (otherwise 
the NN becomes a linear model). 

There are different choices of activation functions, driven by 
architectural constraints but also easiness in the learning phase.  Hidden layers

• Generalizations of ReLU gReLU 𝑧 = max 𝑧, 0 + 𝛼min{𝑧, 0}
• Leaky-ReLU 𝑧 = max{𝑧, 0} + 0.01min{𝑧, 0}
• Parametric-ReLU 𝑧 : 𝛼 learnable

𝑧

gReLU 𝑧



Maxout Unit: computes k affine transformations 

of the input, and than takes the max:


Can have multidimensional output. 

Hidden Units
Hidden units have typically non-linear activation functions (otherwise 
the NN becomes a linear model). 

There are different choices of activation functions, driven by 
architectural constraints but also easiness in the learning phase.  

Other types of hidden units include: cosine, Gaussian Radial Basis Functions, 
softplus or smoothed rectifier  

Maxout Networks

a series of hidden layers h = {h(1), . . . , h(L)}. Dropout
trains an ensemble of models consisting of the set of
all models that contain a subset of the variables in
both v and h. The same set of parameters ◊ is used
to parameterize a family of distributions p(y | v; ◊, µ)
where µ œ M is a binary mask determining which vari-
ables to include in the model. On each presentation of
a training example, we train a di�erent sub-model by
following the gradient of log p(y | v; ◊, µ) for a di�erent
randomly sampled µ. For many parameterizations of p
(such as most multilayer perceptrons) the instantiation
of di�erent sub-models p(y | v; ◊, µ) can be obtained by
elementwise multiplication of v and h with the mask
µ. Dropout training is similar to bagging (Breiman,
1994), where many di�erent models are trained on dif-
ferent subsets of the data. Dropout training di�ers
from bagging in that each model is trained for only
one step and all of the models share parameters. For
this training procedure to behave as if it is training an
ensemble rather than a single model, each update must
have a large e�ect, so that it makes the sub-model in-
duced by that µ fit the current input v well.

The functional form becomes important when it comes
time for the ensemble to make a prediction by aver-
aging together all the sub-models’ predictions. Most
prior work on bagging averages with the arithmetic
mean, but it is not obvious how to do so with the
exponentially many models trained by dropout. For-
tunately, some model families yield an inexpensive ge-
ometric mean. When p(y | v; ◊) = softmax(vT W + b),
the predictive distribution defined by renormalizing
the geometric mean of p(y | v; ◊, µ) over M is simply
given by softmax(vT W/2+b). In other words, the aver-
age prediction of exponentially many sub-models can
be computed simply by running the full model with
the weights divided by 2. This result holds exactly
in the case of a single layer softmax model. Previous
work on dropout applies the same scheme in deeper ar-
chitectures, such as multilayer perceptrons, where the
W/2 method is only an approximation to the geometric
mean. The approximation has not been characterized
mathematically, but performs well in practice.

3. Description of maxout

The maxout model is simply a feed-forward achitec-
ture, such as a multilayer perceptron or deep convo-
lutional neural network, that uses a new type of ac-
tivation function: the maxout unit. Given an input
x œ Rd (x may be v, or may be a hidden layer’s state),
a maxout hidden layer implements the function

hi(x) = max
jœ[1,k]

zij

where zij = xT W···ij + bij , and W œ Rd◊m◊k and
b œ Rm◊k are learned parameters. In a convolutional
network, a maxout feature map can be constructed
by taking the maximum across k a�ne feature maps
(i.e., pool across channels, in addition spatial loca-
tions). When training with dropout, we perform the
elementwise multiplication with the dropout mask im-
mediately prior to the multiplication by the weights in
all cases–we do not drop inputs to the max operator.
A single maxout unit can be interpreted as making a
piecewise linear approximation to an arbitrary convex
function. Maxout networks learn not just the rela-
tionship between hidden units, but also the activation
function of each hidden unit. See Fig. 1 for a graphical
depiction of how this works.

x

h
i
(x

)

Rectifier

x

h
i
(x

)

Absolute value

x

h
i
(x

)

Quadratic

Figure 1. Graphical depiction of how the maxout activa-
tion function can implement the rectified linear, absolute
value rectifier, and approximate the quadratic activation
function. This diagram is 2D and only shows how max-
out behaves with a 1D input, but in multiple dimensions a
maxout unit can approximate arbitrary convex functions.

Maxout abandons many of the mainstays of traditional
activation function design. The representation it pro-
duces is not sparse at all (see Fig. 2), though the
gradient is highly sparse and dropout will artificially
sparsify the e�ective representation during training.
While maxout may learn to saturate on one side or
the other this is a measure zero event (so it is almost
never bounded from above). While a significant pro-
portion of parameter space corresponds to the function
being bounded from below, maxout is not constrained
to learn to be bounded at all. Maxout is locally lin-
ear almost everywhere, while many popular activation
functions have signficant curvature. Given all of these
departures from standard practice, it may seem sur-
prising that maxout activation functions work at all,
but we find that they are very robust and easy to train
with dropout, and achieve excellent performance.

4. Maxout is a universal approximator

A standard MLP with enough hidden units is a uni-
versal approximator. Similarly, maxout networks are
universal approximators. Provided that each individ-
ual maxout unit may have arbitrarily many a�ne com-
ponents, we show that a maxout model with just two
hidden units can approximate, arbitrarily well, any



Architecture Design
The architecture design, a part from output and hidden units, requires to 
choose the number of units, and how they are arranged: width and depth of 
the network. 

MLP with one hidden layer and sigmoid activation functions (and others) are 
universal approximators, meaning that the set of functions that can be 
represented by such a MLP (with n hidden nodes, n unbounded) is dense in 
the set of measurable functions.      

However: we need to fix the number of nodes. One may need exponentially 
many of them (there are bounds but very loose). 

And there is a No free lunch theorem: there is no universal machine 
learning algorithm. 


Other things can also go wrong:  SGD may fail, overfitting. 



Architecture Design
Advantage of depth > 1: MLP with depth d 
and ReLU can learn piecewise linear 
functions with a number of regions 
exponential in d. Hence depth can reduce 
parameters considerably.

Statistical argument for deep networks:

a deep MLP expresses the belief that our 
model must be composed by the composition 
of many simple functions.  

Example: accuracy vs depth 
for multi digit transcription.

Skip connections: connect directly layer j+1 
with layer j-1, i.e. the input to layer j+1 
becomes  zj+1 = hj(zj) + zj


(this reduces vanishing gradient problem)



Computing Gradients: Backpropogation

Warning: the learning problem is highly non-convex.   Many local minima, also due to 
the presence of many symmetries in the weight space.   

MLP are typically trained by Stochastic Gradient Descent (with multistart): 

The error function is usually given by cross-entropy:

(updates each training point in sequence)



Computing Gradients: Backpropogation

The error function is usually given by cross-entropy:

The gradient of E(𝛉)=J(𝛉) can be computed efficiently by backpropagation

Backpropagation is a dynamic programming algorithm that computes the 
gradient by going from output nodes back to input nodes in the network.

It has two steps: 

1. Forward propagate input xn computing the value of all hidden and output 

nodes.


2. Backward propagate the gradient from output nodes to input ones. 



Computing Gradients: Backpropogation

ak = ∑j wkj h(aj)

We have and Call Then

For linear output nodes: For other nodes: 

Now, as it holds that



Frameworks for DL
Computation Graph

Neural network = parametrized, non-linear function

Libraries & Frameworks

Automatic differentiation: TensorFlow, MXnet, CNTK, Theano

Dynamic and high level: Torch & PyTorch , Chainer, MinPy, DyNet...

Keras: high level frontend for TensorFlow, mxnet, theano, cntk



Computational GraphsComputation Graph

Computation graph: Directed graph of functions, depending on
parameters (neuron weights)

Computation Graph

Neural network = parametrized, non-linear function



Computational Graphs
Computation Graph

Combination of linear (parametrized) and non-linear functions

47 / 53

Computation Graph

Computation graph: Directed graph of functions, depending on
parameters (neuron weights)



Computational Graphs
Computation Graph

Not only sequential application of functions

Computation Graph

Combination of linear (parametrized) and non-linear functions



Computational Graphs
Computation Graph

Automatic computation of gradients: all modules are differentiable!

Computation Graph

Not only sequential application of functions



Computational Graphs

Lab 1: Room C48 - F900 in
15min!

Computation Graph

Automatic computation of gradients: all modules are differentiable!

Tensorflow, theano, etc. build a static computation graph

Torch, pytorch, etc. rely on dynamic differentiable modules

All frameworks enable parallel computation on CPU and GPU


