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Convolutional NetworksMany other applications

Speech recognition

Used everywhere for Vision



Convolution

Convolution can be seen as a sort of localised 
noise filtering (a moving average in 1d). 

Convolution: discrete version

• Given array 𝑢𝑡 and 𝑤𝑡, their convolution is a function 𝑠𝑡

• Written as 

• When  𝑢𝑡 or 𝑤𝑡 is not defined, assumed to be 0

𝑠𝑡 = 
𝑎=−∞

+∞

𝑢𝑎𝑤𝑡−𝑎

𝑠 = 𝑢 ∗ 𝑤 or 𝑠𝑡 = 𝑢 ∗ 𝑤 𝑡



Convolutional Layers
They are the standard approach for input data distributed in a grid, e.g. images. 

They work also for sequence data and 3D data.

Convolution layers are the core of convolutional networks. 

The same convolution is applied to each 
possible subset of the image.

(Zero padding may be used at boundaries)

(One can impose a stride in each direction)

Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Convolutional layer,  ≤ 𝑚 × 𝑘 edges

𝑚 output nodes

𝑛 input nodes

𝑘 kernel sizeAdvantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Multiple convolutional layers: larger receptive field

It enforces: 

- sparse connectivity 

- parameter sharing  

(kernels are localised and shared)




Convolutional Layers

Typically, multiple convolutions 
are applied in parallel

Multiple convolutionsChannels

Colored image = tensor of shape (height, width, channels)

Convolutions are usually computed for each channel and summed:

5x5x3

28x28x3

24x24

(k ⋆ i ) = ⋆ imcolor ∑
c= 0

2
kc mc

Multiple convolutions

5x5x3x4

28x28x3

24x24x4

Kernel size aka receptive field (usually 1, 3, 5, 7, 11)

Output dimension: length - kernel_size + 1

Multiple convolutions

5x5x3x4

28x28x3

24x24x4



CNN - Detector Stage and Pooling
Each convolution layer applies three operations (or can 
be seen as three layers, like in Keras): 

1. convolution with a local kernel (linear filter)

2. application of a non-linear activation function 

(detector stage)

3. pooling the values in a neighbourhood of pixels

Pooling (e.g. max or averaging in a neighbourhood) 
enforces invariance to small translations of the input. 
Useful also to deal with images of different sizes. 

Pooling

• Summarizing the input (i.e., output the max of the input)

Figure from Deep Learning, by Goodfellow, Bengio, and Courville



CNN - An example of architecture

LeNet-5

• Proposed in “Gradient-based learning applied to document 
recognition” , by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner, 
in Proceedings of the IEEE, 1998

• Apply convolution on 2D images (MNIST) and use backpropagation

• Structure: 2 convolutional layers (with pooling) + 3 fully connected layers
• Input size: 32x32x1
• Convolution kernel size: 5x5
• Pooling: 2x2 



CNN - An example of architecture

LeNet-5 

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



CNN - An example of architecture

LeNet-5 

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Filter 5x5, stride 1x1
#filters 6

Pooling 2x2
stride 2

Filter 5x5x6, stride 1x1
#filters 16

Pooling 2x2
stride 2

Weight: 120x84

Weight: 400x120

Weight: 84x10



CNN - An example of architectureLeNet-5 

Figure from Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Fully Connected Network: MLP

input_image = Input(shape=(28, 28, 1))
x = Flatten()(input_image)
x = Dense(256, activation='relu')(x)
x = Dense(10, activation='softmax')(x)
mlp = Model(inputs=input_image, outputs=x)

Convolutional Network

input_image = Input(shape=(28, 28, 1))
x = Conv2D(32, 5, activation='relu')(input_image)
x = MaxPool2D(2, strides=2)(x)
x = Conv2D(64, 3, activation='relu')(x)
x = MaxPool2D(2, strides=2)(x)
x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dense(10, activation='softmax')(x)
convnet = Model(inputs=input_image, outputs=x)

2D spatial organization of features preserved untill Flatten.

Fully Connected Network: MLP

input_image = Input(shape=(28, 28, 1))
x = Flatten()(input_image)
x = Dense(256, activation='relu')(x)
x = Dense(10, activation='softmax')(x)
mlp = Model(inputs=input_image, outputs=x)

Convolutional Network

input_image = Input(shape=(28, 28, 1))
x = Conv2D(32, 5, activation='relu')(input_image)
x = MaxPool2D(2, strides=2)(x)
x = Conv2D(64, 3, activation='relu')(x)
x = MaxPool2D(2, strides=2)(x)
x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dense(10, activation='softmax')(x)
convnet = Model(inputs=input_image, outputs=x)



Hierarchical representation
VGG-16

Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image
recognition." (2014)

Hierarchical representation



Architecture: VGG-16VGG in Keras

    model.add(Convolution2D(64, 3, 3, activation='relu',input_shape=(3,224,224)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Flatten())
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000, activation='softmax'))

VGG-16

Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image
recognition." (2014)

VGG in Keras

    model.add(Convolution2D(64, 3, 3, activation='relu',input_shape=(3,224,224)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Flatten())
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000, activation='softmax')) 57 / 84

VGG-16

Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image
recognition." (2014)
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Architecture: VGG-16 in KerasMemory and Parameters

           Activation maps          Parameters
INPUT:     [224x224x3]   = 150K     0
CONV3-64:  [224x224x64]  = 3.2M     (3x3x3)x64    =       1,728
CONV3-64:  [224x224x64]  = 3.2M     (3x3x64)x64   =      36,864
POOL2:     [112x112x64]  = 800K     0
CONV3-128: [112x112x128] = 1.6M     (3x3x64)x128  =      73,728
CONV3-128: [112x112x128] = 1.6M     (3x3x128)x128 =     147,456
POOL2:     [56x56x128]   = 400K     0
CONV3-256: [56x56x256]   = 800K     (3x3x128)x256 =     294,912
CONV3-256: [56x56x256]   = 800K     (3x3x256)x256 =     589,824
CONV3-256: [56x56x256]   = 800K     (3x3x256)x256 =     589,824
POOL2:     [28x28x256]   = 200K     0
CONV3-512: [28x28x512]   = 400K     (3x3x256)x512 =   1,179,648
CONV3-512: [28x28x512]   = 400K     (3x3x512)x512 =   2,359,296
CONV3-512: [28x28x512]   = 400K     (3x3x512)x512 =   2,359,296
POOL2:     [14x14x512]   = 100K     0
CONV3-512: [14x14x512]   = 100K     (3x3x512)x512 =   2,359,296
CONV3-512: [14x14x512]   = 100K     (3x3x512)x512 =   2,359,296
CONV3-512: [14x14x512]   = 100K     (3x3x512)x512 =   2,359,296
POOL2:     [7x7x512]     =  25K     0
FC:        [1x1x4096]    = 4096     7x7x512x4096  = 102,760,448
FC:        [1x1x4096]    = 4096     4096x4096     =  16,777,216
FC:        [1x1x1000]    = 1000     4096x1000     =   4,096,000

TOTAL activations: 24M x 4 bytes ~=  93MB / image (x2 for backward)
TOTAL parameters: 138M x 4 bytes ~= 552MB (x2 for plain SGD, x4 for Adam)
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VGG in Keras

    model.add(Convolution2D(64, 3, 3, activation='relu',input_shape=(3,224,224)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Flatten())
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000, activation='softmax')) 57 / 84



Architecture: VGG-16 - parametersMemory and Parameters

           Activation maps          Parameters
INPUT:     [224x224x3]   = 150K     0
CONV3-64:  [224x224x64]  = 3.2M     (3x3x3)x64    =       1,728
CONV3-64:  [224x224x64]  = 3.2M     (3x3x64)x64   =      36,864
POOL2:     [112x112x64]  = 800K     0
CONV3-128: [112x112x128] = 1.6M     (3x3x64)x128  =      73,728
CONV3-128: [112x112x128] = 1.6M     (3x3x128)x128 =     147,456
POOL2:     [56x56x128]   = 400K     0
CONV3-256: [56x56x256]   = 800K     (3x3x128)x256 =     294,912
CONV3-256: [56x56x256]   = 800K     (3x3x256)x256 =     589,824
CONV3-256: [56x56x256]   = 800K     (3x3x256)x256 =     589,824
POOL2:     [28x28x256]   = 200K     0
CONV3-512: [28x28x512]   = 400K     (3x3x256)x512 =   1,179,648
CONV3-512: [28x28x512]   = 400K     (3x3x512)x512 =   2,359,296
CONV3-512: [28x28x512]   = 400K     (3x3x512)x512 =   2,359,296
POOL2:     [14x14x512]   = 100K     0
CONV3-512: [14x14x512]   = 100K     (3x3x512)x512 =   2,359,296
CONV3-512: [14x14x512]   = 100K     (3x3x512)x512 =   2,359,296
CONV3-512: [14x14x512]   = 100K     (3x3x512)x512 =   2,359,296
POOL2:     [7x7x512]     =  25K     0
FC:        [1x1x4096]    = 4096     7x7x512x4096  = 102,760,448
FC:        [1x1x4096]    = 4096     4096x4096     =  16,777,216
FC:        [1x1x1000]    = 1000     4096x1000     =   4,096,000

TOTAL activations: 24M x 4 bytes ~=  93MB / image (x2 for backward)
TOTAL parameters: 138M x 4 bytes ~= 552MB (x2 for plain SGD, x4 for Adam)

Memory and Parameters

           Activation maps          Parameters
INPUT:     [224x224x3]   = 150K     0
CONV3-64:  [224x224x64]  = 3.2M     (3x3x3)x64    =       1,728
CONV3-64:  [224x224x64]  = 3.2M     (3x3x64)x64   =      36,864
POOL2:     [112x112x64]  = 800K     0
CONV3-128: [112x112x128] = 1.6M     (3x3x64)x128  =      73,728
CONV3-128: [112x112x128] = 1.6M     (3x3x128)x128 =     147,456
POOL2:     [56x56x128]   = 400K     0
CONV3-256: [56x56x256]   = 800K     (3x3x128)x256 =     294,912
CONV3-256: [56x56x256]   = 800K     (3x3x256)x256 =     589,824
CONV3-256: [56x56x256]   = 800K     (3x3x256)x256 =     589,824
POOL2:     [28x28x256]   = 200K     0
CONV3-512: [28x28x512]   = 400K     (3x3x256)x512 =   1,179,648
CONV3-512: [28x28x512]   = 400K     (3x3x512)x512 =   2,359,296
CONV3-512: [28x28x512]   = 400K     (3x3x512)x512 =   2,359,296
POOL2:     [14x14x512]   = 100K     0
CONV3-512: [14x14x512]   = 100K     (3x3x512)x512 =   2,359,296
CONV3-512: [14x14x512]   = 100K     (3x3x512)x512 =   2,359,296
CONV3-512: [14x14x512]   = 100K     (3x3x512)x512 =   2,359,296
POOL2:     [7x7x512]     =  25K     0
FC:        [1x1x4096]    = 4096     7x7x512x4096  = 102,760,448
FC:        [1x1x4096]    = 4096     4096x4096     =  16,777,216
FC:        [1x1x1000]    = 1000     4096x1000     =   4,096,000

TOTAL activations: 24M x 4 bytes ~=  93MB / image (x2 for backward)
TOTAL parameters: 138M x 4 bytes ~= 552MB (x2 for plain SGD, x4 for Adam)



Architecture: ResNet
ResNet

A block learns the residual w.r.t.
identity

He, Kaiming, et al. "Deep residual
learning for image recognition." CVPR.
2016.
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ResNet

Even deeper models:

34, 50, 101, 152 layers

He, Kaiming, et al. "Deep residual
learning for image recognition." CVPR.
2016.

ResNet

A block learns the residual w.r.t.
identity

He, Kaiming, et al. "Deep residual
learning for image recognition." CVPR.
2016.

ResNet

Even deeper models:

34, 50, 101, 152 layers

He, Kaiming, et al. "Deep residual
learning for image recognition." CVPR.
2016.

ResNet

A block learns the residual w.r.t.
identity

He, Kaiming, et al. "Deep residual
learning for image recognition." CVPR.
2016.

ResNet

Even deeper models:

34, 50, 101, 152 layers

He, Kaiming, et al. "Deep residual
learning for image recognition." CVPR.
2016.

ResNet

A block learns the residual w.r.t.
identity

Good optimization properties

He, Kaiming, et al. "Deep residual
learning for image recognition." CVPR.
2016.

ResNet

A block learns the residual w.r.t.
identity

He, Kaiming, et al. "Deep residual
learning for image recognition." CVPR.
2016.

Deeper is better

from Kaiming He slides "Deep residual learning for image recognition." ICML. 2016.

ResNet

ResNet50 Compared to VGG:

Superior accuracy in all vision tasks 
5.25% top-5 error vs 7.1%

Less parameters 
25M vs 138M

Computational complexity 
3.8B Flops vs 15.3B Flops

Fully Convolutional until the last layer

He, Kaiming, et al. "Deep residual
learning for image recognition." CVPR.
2016.



Deeper is better
State of the art

Finding right architectures: Active area or research

Deeper is better

from Kaiming He slides "Deep residual learning for image recognition." ICML. 2016.



Comparison of models

Top 1-accuracy, performance and size on ImageNet

Canziani, Paszke, and Culurciello. "An Analysis of Deep Neural Network Models for Practical
Applications." (May 2016).

State of the art

Finding right architectures: Active area or research

Automated Architecture search:

reinforcement learning

evolutionary algorithms

Esteban Real, et al. Regularized Evolution for Image Classifier Architecture Search (Feb 2018)

The right architectureState of the art

Finding right architectures: Active area or research

Modular building blocks engineering

from He slides "Deep residual learning for image recognition." ICML. 2016.

State of the art

Finding right architectures: Active area or research

Esteban Real, et al. Regularized Evolution for Image Classifier Architecture Search (Feb 2018)



Pre-trained models
Pre-trained models

Training a model on ImageNet from scratch takes days or weeks.

Many models trained on ImageNet and their weights are publicly
available!

Fine-tuning

Retraining the (some) parameters of the network (given enough data)

Pre-trained models

Training a model on ImageNet from scratch takes days or weeks.

Many models trained on ImageNet and their weights are publicly
available!

Transfer learning

Use pre-trained weights, remove last layers to compute

representations of images

Train a classification model from these features on a new

classification task

The network is used as a generic feature extractor

Better than handcrafted feature extraction on natural images



Fine-tuning

Data AugmentationPre-trained models

Training a model on ImageNet from scratch takes days or weeks.

Many models trained on ImageNet and their weights are publicly
available!

Fine-tuning

Retraining the (some) parameters of the network (given enough data)

Truncate the last layer(s) of the pre-trained network

Freeze the remaining layers weights

Add a (linear) classifier on top and train it for a few epochs

Then fine-tune the whole network or the few deepest layers

Use a smaller learning rate when fine tuning



Data Augmentation

Data Augmentation

With Keras:

from keras.preprocessing.image import ImageDataGenerator

image_gen = ImageDataGenerator(
    rescale=1. / 255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    channel_shift_range=9,
    fill_mode='nearest'
)

train_flow = image_gen.flow_from_directory(train_folder)
model.fit_generator(train_flow, train_flow.n)

Data Augmentation Lab 3: Room B551-553 and
C48 in 15min!

Data Augmentation

With Keras:

from keras.preprocessing.image import ImageDataGenerator

image_gen = ImageDataGenerator(
    rescale=1. / 255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    channel_shift_range=9,
    fill_mode='nearest'
)

train_flow = image_gen.flow_from_directory(train_folder)
model.fit_generator(train_flow, train_flow.n)



Adversarial Examples

(Goodfellow 2016)

Adversarial ExamplesCHAPTER 7. REGULARIZATION FOR DEEP LEARNING

+ .007 ⇥ =

x sign(rxJ(✓, x, y))
x +

✏ sign(rxJ(✓, x, y))
y =“panda” “nematode” “gibbon”
w/ 57.7%
confidence

w/ 8.2%
confidence

w/ 99.3 %
confidence

Figure 7.8: A demonstration of adversarial example generation applied to GoogLeNet
(Szegedy et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose
elements are equal to the sign of the elements of the gradient of the cost function with
respect to the input, we can change GoogLeNet’s classification of the image. Reproduced
with permission from Goodfellow et al. (2014b).

to optimize. Unfortunately, the value of a linear function can change very rapidly
if it has numerous inputs. If we change each input by ✏, then a linear function
with weights w can change by as much as ✏||w||1, which can be a very large
amount if w is high-dimensional. Adversarial training discourages this highly
sensitive locally linear behavior by encouraging the network to be locally constant
in the neighborhood of the training data. This can be seen as a way of explicitly
introducing a local constancy prior into supervised neural nets.

Adversarial training helps to illustrate the power of using a large function
family in combination with aggressive regularization. Purely linear models, like
logistic regression, are not able to resist adversarial examples because they are
forced to be linear. Neural networks are able to represent functions that can range
from nearly linear to nearly locally constant and thus have the flexibility to capture
linear trends in the training data while still learning to resist local perturbation.

Adversarial examples also provide a means of accomplishing semi-supervised
learning. At a point x that is not associated with a label in the dataset, the
model itself assigns some label ŷ. The model’s label ŷ may not be the true label,
but if the model is high quality, then ŷ has a high probability of providing the
true label. We can seek an adversarial example x

0 that causes the classifier to
output a label y0 with y0

6= ŷ. Adversarial examples generated using not the true
label but a label provided by a trained model are called virtual adversarial
examples (Miyato et al., 2015). The classifier may then be trained to assign the
same label to x and x

0. This encourages the classifier to learn a function that is

269

Figure 7.8

Training on adversarial examples is mostly 
intended to improve security, but can sometimes 
provide generic regularization.

Training on adversarial examples is mostly intended to improve security, 
but can sometimes provide generic regularisation. 

Adversarial examples are often generated from white-box models, following 
the gradient at a given image to maximise the loss. 



Computer Vision with CNN
Beyond Image ClassificationBeyond Image ClassificationOutline

Simple Localisation as regression

Beyond Image ClassificationOutline

Simple Localisation as regression

Beyond Image Classification



Example: classification + localisationClassification + Localisation

CNN
conv feature map

7x7x2048

class scores

box coordinates

Use a pre-trained CNN on ImageNet (ex. ResNet)

The "localisation head" is trained seperately with regression

Possible end-to-end finetuning of both tasks

Classification + Localisation

CNN
conv feature map

7x7x2048

class scores

box coordinates

Use a pre-trained CNN on ImageNet (ex. ResNet)

The "localisation head" is trained seperately with regression

Classification + Localisation

CNN
conv feature map

7x7x2048

class scores

box coordinates

$C$ classes, $4$ output dimensions ($1$ box)

Classification + Localisation

CNN
conv feature map

7x7x2048

class scores

box coordinates

Use a pre-trained CNN on ImageNet (ex. ResNet)

The "localisation head" is trained seperately with regression

Possible end-to-end finetuning of both tasks

At test time, use both heads



Recurrent Neural Networks
They are the mainstream approach for time series data, or sequence data (like 
sentences in natural language). 

We can observe input/output pairs x(t),y(t) at each time step t.

The basic idea is that of keeping a form of memory depending on the sequence of 
symbols/ inputs x(1),…,x(t-1) seen up to time t, in the form of an hidden state h(t-1), 
which is then combined with the input x(t) at time t to compute a new hidden state, 
and from it the output o(t). 

Formally, we define a dynamical system by a recurrent equation



Recurrent Neural Networks

Recurrent neural networks

Figure from Deep Learning, by Goodfellow, Bengio and Courville

Label

Loss

Output

State

Input

Recurrent NN produce an output for each time-step, and then compute a loss 
from an observed output.
Networks are trained by unfolding the graph in time and evaluating the 
gradient with backpropagation on the unfolded graph: this is called 
backpropagation through time.



Recurrent Neural Networks
Deep RNN are commonly used to improve model capacity.

Downsides 

- long-term dependencies tend to be  forgotten in h(t) exponentially fast.  

- Tend to have very small (or very large) gradients. 

- Gradient clipping is often used. 

Advantages

- Hidden state keeps info about the past

- Shared functions and params across time: reduce model capacity, 

good for generalization. 

- Still powerful: RNN of finite size are Turing complete (they can 

emulate any Turing Machine.



RNN Variants

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Example: use the output at the 
previous step



RNN Variants

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Example: only output at the end



RNN Variants

BiRNNs

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Bidirectional RNN tackle the problem 
of output dependency on the whole 
input sequence, like for speech 
recognition.

They have two recurrent equations, 
one going forward and one backward 
in time.

The graph unfolded in time is still 
acyclic, hence back propagation in time 
still works.  



Gated Recurrent Neural Networks
A way to improve the ability of RNNs to keep a long term memory is to use gated 
RNNs. Gated units control how information is accumulated or forgotten, in an input 
dependent way. 

The most common gRNN is the Long-Short Term Memory (LSTM) NN. 


The core unit is a leaky unit, 
namely a node that accumulate 
information linearly, with an 
exponential decaying factor close 
to one: 



Gated Recurrent Neural Networks
In LSTM networks, leaky units have a decay rate controlled by a forget gate f, and 
modulated by the input and the hidden states. There are also input gates g and 
output gates q controlling the state and the hidden layer.

s - state of the LSTM cell

h - output of the LSTM cell

f - forget gate

g - input gate

q - output gate

fgx q

s

h



Neural Turing Machines
Another way to keep track of long term effects is to have an explicit memory, 
which can be read or written. 

Neural Turing Machines extend a 
NN with an array of memory cells, 
and with mechanisms to read and 
write on them.

Reading and writing are done via 
soft addressing, namely each cell 
is read with a certain weight, or 
probability, which can be a 
function of the cell content 
(content-based addressing).
Soft read and write rules can be  
learned during training using a 
SGD approach. 

Variants of such memory are heavily used for sequence 
modelling, under the umbrella of attention mechanisms. 


