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Autoencoders 
Autoencoders are simply (deep) neural networks trained to 
copy the input x into the output: y=x.

The hidden layer h is the interesting point: it learns a non-linear representation 
of the input. Autoencoders are thus unsupervised learning methods for 
dimensionality reduction (generalising PCA).

Autoencoders with too much capacity will just learn the identity map. Hence one 
has to use a lower dimension hidden layer or regularise them. 



Sparse Autoencoders 

Sparse autoencoder

• Constrain the code to have sparsity
• Training: minimize a loss function

𝐿𝑅 = 𝐿(𝑥, 𝑔 𝑓 𝑥 ) + 𝑅(ℎ)

ℎ𝑥 𝑟

Sparse autoencoders 

- higher capacity on the hidden 

layer

- regularise by L1 penalty on the 

hidden layer.


Undercomplete autoencoder

• Constrain the code to have smaller dimension than the input
• Training: minimize a loss function

𝐿 𝑥, 𝑟 = 𝐿(𝑥, 𝑔 𝑓 𝑥 )

ℎ𝑥 𝑟

Undercomplete autoencoders 

- dimension of hidden layer is less 

than input.

- without nonlinearities and with 

square loss, it is the PCA.

- nonlinearity improves but model 

capacity has to be taken into 
control.




Denoising Autoencoders 
Denoising autoencoders: 
perturb the input and learn a 
noise correcting map. 

Minimise the loss L(x,g(f(x*))),

where x*= x + noise.  

(Goodfellow 2016)
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Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version x̃.
This is accomplished by minimizing the loss L = � log pdecoder(x | h = f(x̃)), where
x̃ is a corrupted version of the data example x, obtained through a given corruption
process C(x̃ | x). Typically the distribution pdecoder is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples x̃, given a data sample x. The autoencoder then learns a
reconstruction distribution preconstruct(x | x̃) estimated from training pairs
(x, x̃), as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version x̃ from C(x̃ | x = x).

3. Use (x, x̃) as a training example for estimating the autoencoder reconstruction
distribution preconstruct(x | x̃) = pdecoder(x | h) with h the output of encoder
f(x̃) and pdecoder typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log pdecoder(x | h).
So long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:

� Ex⇠p̂data(x)Ex̃⇠C(x̃|x) log pdecoder(x | h = f(x̃)) (14.14)

where p̂data(x) is the training distribution.
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Denoising Autoencoders 
learn a non-linear manifold 
containing the data points.  

(Goodfellow 2016)

Vector Field Learned by a 
Denoising Autoencoder
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by training with the squared error criterion

||g(f(x̃)) � x||
2 (14.16)

and corruption
C(x̃ = x̃|x) = N (x̃; µ = x, ⌃ = �2I) (14.17)

with noise variance �2. See figure 14.5 for an illustration of how this works.

Figure 14.5: Vector field learned by a denoising autoencoder around a 1-D curved manifold
near which the data concentrates in a 2-D space. Each arrow is proportional to the
reconstruction minus input vector of the autoencoder and points towards higher probability
according to the implicitly estimated probability distribution. The vector field has zeros
at both maxima of the estimated density function (on the data manifolds) and at minima
of that density function. For example, the spiral arm forms a one-dimensional manifold of
local maxima that are connected to each other. Local minima appear near the middle of
the gap between two arms. When the norm of reconstruction error (shown by the length
of the arrows) is large, it means that probability can be significantly increased by moving
in the direction of the arrow, and that is mostly the case in places of low probability.
The autoencoder maps these low probability points to higher probability reconstructions.
Where probability is maximal, the arrows shrink because the reconstruction becomes more
accurate. Figure reproduced with permission from Alain and Bengio (2013).

In general, there is no guarantee that the reconstruction g(f(x)) minus the
input x corresponds to the gradient of any function, let alone to the score. That is
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Contractive Autoencoders 

Contractive autoencoders

penalise with Frobenis norm of the Jacobian of h.


CAE also learn a non-linear manifold containing the data points.   

(Goodfellow 2016)

Contractive Autoencoders
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14.7 Contractive Autoencoders

The contractive autoencoder (Rifai et al., 2011a,b) introduces an explicit regularizer
on the code h = f(x), encouraging the derivatives of f to be as small as possible:

⌦(h) = �

����
@f(x)

@x

����
2

F

. (14.18)

The penalty ⌦(h) is the squared Frobenius norm (sum of squared elements) of the
Jacobian matrix of partial derivatives associated with the encoder function.

There is a connection between the denoising autoencoder and the contractive
autoencoder: Alain and Bengio (2013) showed that in the limit of small Gaussian
input noise, the denoising reconstruction error is equivalent to a contractive
penalty on the reconstruction function that maps x to r = g(f(x)). In other
words, denoising autoencoders make the reconstruction function resist small but
finite-sized perturbations of the input, while contractive autoencoders make the
feature extraction function resist infinitesimal perturbations of the input. When
using the Jacobian-based contractive penalty to pretrain features f(x) for use
with a classifier, the best classification accuracy usually results from applying the
contractive penalty to f(x) rather than to g(f(x)). A contractive penalty on f(x)
also has close connections to score matching, as discussed in section 14.5.1.

The name contractive arises from the way that the CAE warps space. Specifi-
cally, because the CAE is trained to resist perturbations of its input, it is encouraged
to map a neighborhood of input points to a smaller neighborhood of output points.
We can think of this as contracting the input neighborhood to a smaller output
neighborhood.

To clarify, the CAE is contractive only locally—all perturbations of a training
point x are mapped near to f(x). Globally, two different points x and x

0 may be
mapped to f(x) and f(x0) points that are farther apart than the original points.
It is plausible that f be expanding in-between or far from the data manifolds (see
for example what happens in the 1-D toy example of figure 14.7). When the ⌦(h)
penalty is applied to sigmoidal units, one easy way to shrink the Jacobian is to
make the sigmoid units saturate to 0 or 1. This encourages the CAE to encode
input points with extreme values of the sigmoid that may be interpreted as a
binary code. It also ensures that the CAE will spread its code values throughout
most of the hypercube that its sigmoidal hidden units can span.

We can think of the Jacobian matrix J at a point x as approximating the
nonlinear encoder f(x) as being a linear operator. This allows us to use the word
“contractive” more formally. In the theory of linear operators, a linear operator
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Contractive autoencoder

Figure 14.10: Illustration of tangent vectors of the manifold estimated by local PCA
and by a contractive autoencoder. The location on the manifold is defined by the input
image of a dog drawn from the CIFAR-10 dataset. The tangent vectors are estimated
by the leading singular vectors of the Jacobian matrix @h

@x of the input-to-code mapping.
Although both local PCA and the CAE can capture local tangents, the CAE is able to
form more accurate estimates from limited training data because it exploits parameter
sharing across different locations that share a subset of active hidden units. The CAE
tangent directions typically correspond to moving or changing parts of the object (such as
the head or legs). Images reproduced with permission from Rifai et al. (2011c).

if we do not impose some sort of scale on the decoder. For example, the encoder
could consist of multiplying the input by a small constant ✏ and the decoder
could consist of dividing the code by ✏. As ✏ approaches 0, the encoder drives the
contractive penalty ⌦(h) to approach 0 without having learned anything about the
distribution. Meanwhile, the decoder maintains perfect reconstruction. In Rifai
et al. (2011a), this is prevented by tying the weights of f and g. Both f and g are
standard neural network layers consisting of an affine transformation followed by
an element-wise nonlinearity, so it is straightforward to set the weight matrix of g
to be the transpose of the weight matrix of f .

14.8 Predictive Sparse Decomposition

Predictive sparse decomposition (PSD) is a model that is a hybrid of sparse
coding and parametric autoencoders (Kavukcuoglu et al., 2008). A parametric
encoder is trained to predict the output of iterative inference. PSD has been
applied to unsupervised feature learning for object recognition in images and video
(Kavukcuoglu et al., 2009, 2010; Jarrett et al., 2009; Farabet et al., 2011), as well
as for audio (Henaff et al., 2011). The model consists of an encoder f(x) and a
decoder g(h) that are both parametric. During training, h is controlled by the
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Generative Models
Goal is to learn a generative 
distribution p(x) of the input 
data. 


We can learn also the joint 
input/output p(x,y); 


we may want to learn the 
conditioning distribution w.r.t 
the class: p(x|y). 


Or also p(x’|x’’), conditioning on 
some input features x’’. 


Many approaches using DNN: 

• Boltzmann machines  

• Variational Autoencoders  

• GAN



Generative Adversarial Networks
Main Idea

Model learning as a two player game:

• a generator which generates new data points, 

starting from a  random latent seed

• a discriminator that tries to distinguish real 

inputs from generated ones


D(x): probability of being authentic

outputs different. The output in question is a single scalar. In GANs, one network produces a rich,
high dimensional vector that is used as the input to another network, and attempts to choose an input
that the other network does not know how to process. 3) The specification of the learning process
is different. Predictability minimization is described as an optimization problem with an objective
function to be minimized, and learning approaches the minimum of the objective function. GANs
are based on a minimax game rather than an optimization problem, and have a value function that
one agent seeks to maximize and the other seeks to minimize. The game terminates at a saddle point
that is a minimum with respect to one player’s strategy and a maximum with respect to the other
player’s strategy.

Generative adversarial networks has been sometimes confused with the related concept of “adversar-
ial examples” [28]. Adversarial examples are examples found by using gradient-based optimization
directly on the input to a classification network, in order to find examples that are similar to the
data yet misclassified. This is different from the present work because adversarial examples are
not a mechanism for training a generative model. Instead, adversarial examples are primarily an
analysis tool for showing that neural networks behave in intriguing ways, often confidently clas-
sifying two images differently with high confidence even though the difference between them is
imperceptible to a human observer. The existence of such adversarial examples does suggest that
generative adversarial network training could be inefficient, because they show that it is possible to
make modern discriminative networks confidently recognize a class without emulating any of the
human-perceptible attributes of that class.

3 Adversarial nets

The adversarial modeling framework is most straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s distribution pg over data x, we define a prior on
input noise variables pz(z), then represent a mapping to data space as G(z; ✓g), where G is a
differentiable function represented by a multilayer perceptron with parameters ✓g . We also define a
second multilayer perceptron D(x; ✓d) that outputs a single scalar. D(x) represents the probability
that x came from the data rather than pg . We train D to maximize the probability of assigning the
correct label to both training examples and samples from G. We simultaneously train G to minimize
log(1 � D(G(z))). In other words, D and G play the following two-player minimax game with
value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. The procedure is formally presented in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

G(z): transformed latent variable z

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.

7

Goals: for G is to deceive D, 

for D is to discriminate correctly. 

Both are DNNs


Training alternates are SGD steps for G 

and one step for D.



Boltzmann Machines 
Boltzmann machine

• Introduced by Ackley et al. (1985)

• General “connectionist” approach to learning arbitrary probability 
distributions over binary vectors

• Special case of energy model:  𝑝 𝑥 = exp(−𝐸 𝑥 )
𝑍

Boltzmann machine

• Energy model:  

𝑝 𝑥 =
exp(−𝐸 𝑥 )

𝑍
• Boltzmann machine: special case of energy model with

𝐸 𝑥 = −𝑥𝑇𝑈𝑥 − 𝑏𝑇𝑥
where 𝑈 is the weight matrix and 𝑏 is the bias parameter

Limitation: they encode only linear dependency among variables.



Boltzmann Machines (with latent variables)Boltzmann machine with latent variables

• Some variables are not observed

𝑥 = 𝑥𝑣, 𝑥ℎ , 𝑥𝑣 visible, 𝑥ℎ hidden

𝐸 𝑥 = −𝑥𝑣𝑇𝑅𝑥𝑣 − 𝑥𝑣𝑇𝑊𝑥ℎ − 𝑥ℎ𝑇𝑆𝑥ℎ − 𝑏𝑇𝑥𝑣 − 𝑐𝑇𝑥ℎ

• Universal approximator of probability mass functionsMaximum likelihood 

• Suppose we are given data 𝑋 = 𝑥𝑣1, 𝑥𝑣2, … , 𝑥𝑣𝑛

• Maximum likelihood is to maximize

log 𝑝 𝑋 =෍
𝑖

log 𝑝(𝑥𝑣𝑖 )

where
𝑝 𝑥𝑣 =෍

𝑥ℎ

𝑝(𝑥𝑣, 𝑥ℎ) =෍
𝑥ℎ

1
𝑍
exp(−𝐸(𝑥𝑣, 𝑥ℎ))

• 𝑍 = σexp(−𝐸(𝑥𝑣, 𝑥ℎ)): partition function, difficult to compute 



Restricted Boltzmann MachinesRestricted Boltzmann machine

• Invented under the name harmonium (Smolensky, 1986)
• Popularized by Hinton and collaborators to Restricted Boltzmann 

machine
Restricted Boltzmann machine

• Special case of Boltzmann machine with latent variables:  

𝑝 𝑣, ℎ =
exp(−𝐸 𝑣, ℎ )

𝑍
where the energy function is

𝐸 𝑣, ℎ = −𝑣𝑇𝑊ℎ − 𝑏𝑇𝑣 − 𝑐𝑇ℎ
with the weight matrix 𝑊 and the bias 𝑏, 𝑐

• Partition function

𝑍 =෍
𝑣

෍
ℎ

exp(−𝐸 𝑣, ℎ )

Restricted Boltzmann machine

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Restricted Boltzmann MachinesRestricted Boltzmann machine

• Conditional distribution is factorial

𝑝 ℎ|𝑣 =
𝑝(𝑣, ℎ)
𝑝(𝑣)

=ෑ
𝑗

𝑝(ℎ𝑗|𝑣)

and
𝑝 ℎ𝑗 = 1|𝑣 = 𝜎 𝑐𝑗 + 𝑣𝑇𝑊:,𝑗

is logistic functionRestricted Boltzmann machine

• Similarly,

𝑝 𝑣|ℎ =
𝑝(𝑣, ℎ)
𝑝(ℎ)

=ෑ
𝑖

𝑝(𝑣𝑖|ℎ)

and
𝑝 𝑣𝑖 = 1|ℎ = 𝜎 𝑏𝑖 +𝑊𝑖,:ℎ

is logistic function

Restricted Boltzmann machine

Figure from Deep Learning, 
Goodfellow, Bengio and Courville



Deep Boltzmann MachinesDeep Boltzmann machine
• Special case of energy model. Take 3 hidden layers and ignore bias:  

𝑝 𝑣, ℎ1, ℎ2, ℎ3 =
exp(−𝐸 𝑣, ℎ1, ℎ2, ℎ3 )

𝑍

• Energy function
𝐸 𝑣, ℎ1, ℎ2, ℎ3 = −𝑣𝑇𝑊1ℎ1 − (ℎ1)𝑇𝑊2ℎ2 − (ℎ2)𝑇𝑊3ℎ3

with the weight matrices 𝑊1,𝑊2,𝑊3

• Partition function
𝑍 = ෍

𝑣,ℎ1,ℎ2,ℎ3
exp(−𝐸 𝑣, ℎ1, ℎ2, ℎ3 )

Deep Boltzmann machine

Figure from Deep Learning, 
Goodfellow, Bengio and Courville
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