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Mycobacterium with 600 genes.
Scaling to Eucaryotes is highly non-trivial.



Biological systems

A cell is made of many subsystems, performing
different tasks and interacting among them.

We have several classes of subsystems

sensor networks
signalling networks
gene networks
fransport Nnetworks Y -
metabolic networks ' o 2220




Bio-chemical networks

Most biological systems can be described as a set of bio-chemical
reactions, to be intended as a modelling language.
(warning: not suited for systems involving large protein complexes)
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We are typically interested in the dynamic behaviour.
Kinetic constants are crucial for this, but are hard to measure or infer.



Bio-chemical networks

Most biological systems can be described as a set of bio-chemical
reactions, to be intended as a modelling language.
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We are typically interested in the dynamic behaviour.
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Dynamic Modelling
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Dynamic Modelling
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d[S]/dt = -k1[S]|
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Dynamic Modelling

d[Sl/dt = -k1[S][E] + kO[ES
s e s d[EV/dt = -k1[S][E] + KO[ES] +k[ES]
A +PY— d[ES]/dt = -K[ES] - KO[ES] + K1[S][E]
V4 d[P]/dt
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Under time-scale separation, we can
assume d[ES]/dt = 0O, getting the
classic Michaelis Menten kinetics:

Cooperation/competition between enzyme _ e i
and substrate results in the Hill kinetics: AP }/dt=Vmax [SIV(K" + [S]")
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assume d[ES]/dt = 0O, getting the
classic Michaelis Menten kinetics:

S)/dt
E]/dt
ES]/dt

P]/dt

K1[S][E] + kO[ES]
K1[S][E] + kKO[ES] +K[ES]
K[ES] - KO[ES] + k1[S][E]

Concentration

Cooperation/competition between enzyme _ e i
and substrate results in the Hill kinetics: AP }/dt=Vmax [SIV(K" + [S]")



Signal transduction networks
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Signal transduction networks

Chuemok nes,

Honnones,
Suvival Faelors Irarsmtters ] hFoslos
I'IVI\'t. Fac o ) :- .CIUWl'I.rt. l.”:v. Fxtrazellinlar
[ey.. ICr1) (e, nerdenking, (2o, G FGE) M atrix

serotonr, eic.)

} | ! )

;_&ﬁbh—Iql
_ . negnis

HK ; RTK o "
;- o =Response to
l LTIy l or25oS Fiete l d : :
v | orn s & eaea— i @Xternal stimuli
',"1* —_—— Sre v

(/' ’:ﬂ PKC"' 0.r.a"w ate ] H:l Gaieap
g Akke NF‘_KB CYC:&SG P r.'*u( “~ s ':,‘-fdgehc-c
a '/ ,;' — . '

(C"'“*'_':j:""‘)—s ___% JAKS - |KB‘ ' Pl\(.ﬁ. MI-K'K MARK . MEKK 5-ca;enin ':'an C ru C I al I n m a n y
eq. EPC c TTA STAT3S \
1 . 4 .
5 /N \ *  diseases
Belxl \ \ || . . ,
TN ¢ Including cancer
~ =~
Casr:ase g
N
(Caspasa2 g ——» @
[
\ FADD Belz — \
N S
Avnurmaily o A
FasE  gepgor —* OIM—7

t

Deat faciors
(c.g.rasL, Trf)



Signal transduction networks

Proc. Nat. Acad. Sci. USA
Vol. 93, pp. 1007810083, September 199
Biochemistry

Ultrasensitivity in the mitogen-activated protein kinase cascade

CHI-YING F. HUANG AND JAMES E. FERRELL, JR.T

(input)
i | I - ] ]
KKK ——% KKK* KK: KK-P e KK-PP K e KP g @

7 T_T T_T (output)

EZ2 KK-P'ase K-P'ase



Signal transduction networks
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Signal transduction networks

Negative feedback and ultrasensitivity can bring about oscillations in the

mitogen-activated protein kinase cascades Ras/MKKKK
- 4_ ________________________________________ ~
Boris N. Kholodenko .
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Signal transduction networks
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mitogen-activated protein kinase cascades Ras/MKKKK
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Table 1. Kinetic equations comprising the computational model of the
MAPK cascade.

d[MKKK]/dt = v,-v;

d[MKKK-P]/dt = v;-v,

d[MKK]/dt = vg-v3

d[MKK-PJ/dt = v3 + V5 — V4 — Vg
d[MKK-PP]/dt = v, — V5
d[MAPK]/dt = vo-vy

d[MAPK-P]/dt = v; + vg — Vg — Vg
d[MAPK-PP]/dt = vg — Vg

Moiety conservation relations:
[MKKK]iota1 = [MKKK] + [MKKK-P]
[MKK]oa1 = [MKK] + [MKK-P] + [MKK-PP]
[MAPK ot = [MAPK] + [MAPK-P] + [MAPK-PP]




Signal transduction networks
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Signal transduction networks

Negative feedback and ultrasensitivity can bring about oscillations in the
mitogen-activated protein kinase cascades Ras/MKKKK
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Genetic Networks
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Genetic Networks

A typical example of genetic
regulatory network is the circadian
clock (here in cyanobacteria,
peculiar), an oscillatory module

regulated by alternation of light
and dark.

Hertel et al. 2013
odel simulation
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A Noisy Life

Stochastic Gene Expression in a Single Cell
Michael B. Elowitz, et al.

Science 297, 1183 (2002);
DQIl: 10.1126/science.107C
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C RP22Arcc/A IPTG

AYAAAS

Molecular interactions and gene
expression in single cells are
random events, the fewer the
molecules involved, the more the
effect of noise.

Models have to account for this.

D maG22,

Fig. 2. Noise in £. coli. CFP and YFP fluorescence images were combined in the green and red channels,
respectively. (A) In strain RP22, with promoters repressed by the wild-type lacf gere, red and green
indicate significant amounts of intrinsic noise. (B) RP22 grown in the presence of lac inducer, 2mM IPTG.
Both fluorescent proteins are expressed at higher levels and the cells exhibit less noise. (€) As in (8),
except the recA genc has been deleted, ‘naeasing intrinsic noise. (D) Another wild-type strain, MG22,
shows noise characteristics similar to those of RP22. (E) Expression levels and no'se 'n unrepressed fact
strain M22 are similar ta those in fac/  strains 'nduced vAth IPTG (B). (F) M22 cells regulated by the
Repressilator (16), an oscillatory network that amplifies intrinsic nolse.
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Repressilator (16), an oscillatory network that amplifies intrinsic nolse.

Intrinsic and extrinsic contributions to stochasticity in
gene expression

Peter S. Swain*!!, Michael B. Elowitz*$, and Eric D. Siggia*



Is Noise Always Detrimental?

What is the role of noise in cells?
Is It a nuisance to cope with, or it
has also been exploited by Nature?
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What is the role of noise in cells?
Is It a nuisance to cope with, or it
has also been exploited by Nature?

Stochasticity and Cell Fate
Richard Losick and Claude Desplan
Science 320, 65 (2008);

DOI: 10.1126/science.1147888

Fig. 1. Stochastic distributicn of cell fates in bacteria and in insect
photoreceptars. (A) Fluarescence micrograph of 8. subtilis cells containing the
coding sequence for GFP fused to the promoter for a gene under the control of
the competence ragulator ComK. The cells were visualized with a red stain;
the green fluorescence reveals the subpopulation of cells that are ON for
ComK. The cells are 1 to 2 um in length. (B) Photograph of a whole adult
Drosophilo retina whose X8 photoreceptors were stained with antibodies o
the green-sensitive photopigment Rhé6 (green) and the blue-sensitive phete-
pigment Rh5 (blue). The harizontal distance between photoreceptors is about
10 um.
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Noise-induced oscillations

dD 4/dt =
dDyg/dt =
dD,/dt =
dDg/dt =
dM ,/dt =

dA/dt =
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dR/dt =
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Mechanisms of noise-resistance in genetic oscillators

José M. G. Vilar*!, Hao Yuan Kueh*, Naama Barkal*, and Stanlislas Lelbler*ts



Noise-induced oscillations

D, D, Dy

@
TN\

s
AVAVAVAVAVAVAVAY)
MA /" MR

Y @ OR OR
. R, —»
| o (A

R

dDA/dt - OAD;‘I - ’YADAA

dDyg/dt =
dD,/dt =
dDg/dt =
dM ,/dt =

dA/dt =

(if‘f}q/(it =
dR/dt =
dC/dt =

OrDr — YrRDRA
YaD4A — 04D
YrRDRrA — 0rDy

ayD}y + auD 4 — 8y My

BaMy + 04D + 6RDR

— A(y4D4 + yrDr + ycR + 8,4)
arDp + arDg — 6y Mg

BrMpr — ycAR + 6,4,C — 0xR
YcAR — 8,4C,

2000

Mechanisms of noise-resistance in genetic oscillators

José M. G. Vilar~t, Hao Yuan Kueh*, Naama Barkal*, and Stanlislas Lelbler*tS

1500

i
‘“2‘.10[)0' P | |
|

500

UL

M{Ih‘ﬁ
[

2000

200 300

400

1500

1000

500

1

u i H
\ '\|\‘

Al |\‘| vy

| L
|| ‘I || - H | ['| ||_
I i
| [ | ‘

2000

1500

= 1000

500

200 300

J\
| “I M "

2000

1500 | L
I

& 1000 '“

| ‘h||| | PI

I
500 | \l"l I,1 L.

I| H|
200 300

time (hr)

400
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Noise can have a
stabilising effect:

It makes oscillations
persistent

near critical points.



Stochastic Modelling

Chemical Reaction Networks can be modelled as Markov Population Processes.
Variables count the amount of molecules per each species. Update vectors are
defined by reactions. Rates depend on the total population (mass action, Hill).
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Stochastic Modelling

Chemical Reaction Networks can be modelled as Markov Population Processes.
Variables count the amount of molecules per each species. Update vectors are
defined by reactions. Rates depend on the total population (mass action, Hill).

Counting variables:
gene —>kp gene + mrna Xgene, Xgene_repr, Xmrna, Xprotein, Xdimer
mrna —> mrna + protein Propensity of a reaction (expected frequency)
follows the mass action law:
. . . ai(X) = Kp Xgene; as(X) = Ko Xdimer Xgene,
dimer —>o protein + protein a3(X) = K1 Xprotein (Xprotein -1)/2;
dimer + gene —>w gene_repr  Update of a reaction: net variation of each species
gene_repr —>xy dimer + gene vi = (0,0,1,0,0), v3 = (0,0,0,-2,1), vs = (-1,1,0,0,-1)

protein + protein —>x1 dimer



Stochastic Modelling

Chemical Reaction Networks can be modelled as Markov Population Processes.
Variables count the amount of molecules per each species. Update vectors are
defined by reactions. Rates depend on the total population (mass action, Hill).

gene —>kp gene + mrna
mrna —>k: mrna + protein

protein + protein —>x1 dimer
dimer —>ko protein + protein

dimer + gene —>ko gene_repr
gene_repr —>ky dimer + gene
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Counting variables:

Xgene, Xgene_repr, Xmrna, Xprotein, Xdimer

Propensity of a reaction (expected frequency)
follows the mass action law:

a1(X) = Kp Xgene, as(X) = Kp Xdimer Xgene,

aS(X) = K1 Xprotein (Xprotein -1 )/2;

Update of a reaction: net variation of each species
vi = (0,0,1,0,0), v3 = (0,0,0,-2,1), vs = (-1,1,0,0,-1)

Typical rate functions

- Mass Action: rate proportional to
concentration/ numbers. The only one having
a physical interpretation.

- Hill Kinetics. Typically used for enzymatic
reactions or to implicitly model gene
expression.



Rates and Scaling

Biochemical reactions happen in a volume V. We can convert molecule numbers into
concentrations (often micro or nano-molar) dividing by V.

Molecule numbers: variables X count the number of molecules. Updates are integers.
Concentrations: variable x are concentrations. Updates are multiple of 1/V.

How do rates change while passing from numbers to concentrations”

Example: dimerisation (P monomer, P2 dimer)



Rates and Scaling

It we express the model in terms of concentrations, by multiplying rate and update
vector of each transition and adding them up, we obtain the standard deterministic
model of chemical kinetic, as a set of ODEs, the reaction rate equations.

Example: dimerisation.

Relation between stochastic and deterministic rate constants.



Example: gene networks

Self repressing gene module

Bistable switch



Example: gene networks

Repressilator

Feed Forward Loops



What about data?

Most of classic modelling approaches in systems biology (5-20 years
ago) make a limited use of data, mostly because there was not much

usable data available back then.

Kinetic rates were inferred from dedicated experiments (in vitro) and by
exploration of biological literature to make educated guesses.

This is a painstakingly time consuming and error prone process,
impossible for large models.



What about data?

Most of classic modelling approaches in systems biology (5-20 years
ago) make a limited use of data, mostly because there was not much
usable data available back then.

Kinetic rates were inferred from dedicated experiments (in vitro) and by
exploration of biological literature to make educated guesses.

This is a painstakingly time consuming and error prone process,
impossible for large models.

With the data revolution we are living in, more and more experimental
techniques are capable of producing data that is good to fit dynamic
models.

Typically, one needs time series data.

Examples of such technologies are flow cytometry, RNAsec, imaging
techniques...



Circadian Clock in O. Tauri
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Multiple light inputs to a simple clock circuit allow complex
biological rhythms

ODE model with 7 variables/ species

Data: luciferase time series, both
transcriptional (LUC attached to CCA1 and

TOC1), and translational (LUC attached to
promoters of CCA1 and TOC1),
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Circadian Clock in O. Tauri
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A switching diffusion
stochastic model (2
species) can predict
behaviour more
accurately.
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Take home messages

Modelling can help elucidating the role and functioning of
cellular components.

Multi scale modelling can deal with tissues, organs, and so on.
It also tests it current knowledge is consistent.

Modelling large scale systems (e.g. whole cell) can provide a
cheap in silico experimentation environment (e.g. for drug
testing)

Modelling is a key enabling technology in synthetic biology: it
allows cheap and fast exploration of the design space.

Modelling requires time-series data to estimate model
parameters. High quality data is required for proper model
identitication.



