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OVERVIEW

We will look at the relationship between the fluid equation and a
Markov population model from the point of view of the average
of the stochastic process.

We will start from an heuristic argument.
We then look at it more carefully and show a method to get
ODE for the moments (mean, variance, and so on) of the
process.
Next, we will look at another kind of expansion, the linear
noise, that will bring us to the central limit theorem
(Gaussian Process approximation).
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AVERAGE OF CTMC MODEL

ODE FOR THE AVERAGE

Sometimes we are interested only in the (transient) average
behaviour of the CTMC.
From Kolmogorov equations, we can derive an ODE for the
average state Et [X] of the CTMC:

dEt [X]

dt
= Et [F (X)] =

∑
τ∈T

vτEt [fτ(X)].

APPROXIMATIONS

If it holds that Et [F (X)] = F (Et [X]), i.e. Et [fτ(X)] = fτ(Et [X]) for
all τ, then the previous equation boils down to the fluid ODE.
But this can be done exactly only if F (X) is a linear function.
Otherwise, one can resort to an approximation of the ODE for
the true average.
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ODE FOR THE AVERAGE

SIMPLE SHARED RESOURCE MODEL

dEt [XP1]

dt
= k2Et [XP2] − Et [min{k1XP1,h1XR1}]

dEt [XP1]

dt
≈ k2Et [XP2] −min{k1Et [XP1],h1Et [XR1]}

SYNCHRONIZATION BY RATE PRODUCT

dEt [XP1]

dt
= k2Et [XP2] − k1h1Et [XP1XR1].

dEt [XP1]

dt
≈ k2Et [XP2] − k1h1Et [XP1]Et [XR1].

In this case, the equation for the true average depends on
higher order moments.
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EXAMPLE: SIR EPIDEMICS
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We obtain the same equation
of the fluid approximation!


dE[XS ]

dt = kSE[XR] − kIE[XI ]E[XS]
dE[XI ]

dt = kIE[XI ]E[XS] − kRE[XI ]
dE[XR ]

dt = kRE[XI ] − kSE[XR]
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MOMENT CLOSURE

DINKIN’S FORMULA FOR NON-CENTRED MOMENTS

dEt [X m1
1 · · ·X

mn
n ]

dt
=
∑
τ∈T

Et

fτ(X)

 n∏
j=1

(Xj + vτ,j )mj − X m1
1 · · ·X

mn
n


 .

SIR MODEL EXAMPLE

dEt [X 2
S ]

dt
= Et [kI/N · XSXI((XS − 1)2 − X 2

S)] + Et [kS · XR((XS + 1)2 − X 2
S)]

= kI/NEt [XSXI ] − 2kI/NEt [X 2
SXI ] + 2kSEt [XSXR] + kSEt [XR]

The equation for the variance of XS depends on third order moments.

For the SIR model, the equation for a moment of order N depend on
moments of order k + 1, due to quadratic non-linearity.
If we have polynomial rates of maximum degree m, then moments of order N
depend on moments of order k + m − 1.
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MOMENT CLOSURE

DINKIN’S FORMULA FOR NON-CENTRED MOMENTS

dEt [X m1
1 · · ·X

mn
n ]

dt
=
∑
τ∈T

Et

fτ(X)

 n∏
j=1

(Xj + vτ,j )mj − X m1
1 · · ·X

mn
n
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If rate functions fτ are polynomial the previous equation depends only
on non-centred moments. However, equations for moments of order
k generally depend on moments of higher order: the system of ODE
is not closed (infinite dimensional).
For smooth rate functions, one can approximate the rate with a Taylor
polynomial.
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MOMENT CLOSURE

DINKIN’S FORMULA FOR NON-CENTRED MOMENTS

dEt [X m1
1 · · ·X

mn
n ]

dt
=
∑
τ∈T

Et

fτ(X)
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(Xj + vτ,j )mj − X m1
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CLOSING THE EQUATIONS

Equations can be closed by replacing higher order moment with
non-linear functions of lower order moments.
One example is normal moment closure (assume that moments from
third on satisfy relation of a normal distribution).
Another example is log-normal moment closure.
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NORMAL MOMENT CLOSURE

MOMENTS OF MULTIVARIATE NORMAL DISTRIBUTION

The central moments have a relatively simple form. The k -th centred
moment, k ≥ 3, is:

zero, if k odd.

Let i1, . . . , ik be indices in {1, . . . ,n}, non necessarily distinct, and
let L be an allocation of i1, . . . , ik into k/2 unordered pairs. Then

E[(Xi1 − µi1 ) · · · (Xik − µik )] =
∑
L

∏
(j ,h)∈L

COV (Xij ,Xih )

Example: E[(X1 − µ1)2(X2 − µ2)(X3 − µ3)] =
VAR(X1,X1)COV (X2,X3) + 2COV (X1,X2)COV (X1,X3).

To close the equation for the second order moment of XS, we can
expand the definition of the third centred moment and use
E[X 2

SXI ] = 2E[XS]E[XSXI ] + E[X 2
S ]E[XI ] − 2E[XS]2E[XI ].
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THE LINEAR NOISE ANSATZ

Fluctuations around the counting process are of order N
1
2 . We

assume that the PCTMC at level N fluctuates around the
solution of the fluid equation:

X(N)(t) ≈ Nx(t) + N
1
2 ξ,

where ξ is a continuous random variable. This means that

X̂(N)(t) ≈ x(t) + N−
1
2 ξ
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DERIVING THE EQUATIONS

One proceeds as follows
1 Write the master equation in terms of normalized variables;
2 Apply the Ansatz
3 Expand probability and propensity functions around x(t).

This makes sense if N−
1
2 ξ is small.

4 Introduce a new probability density Π(x, t) for the noise
term ξ

5 Collect terms in order 1
2 of N to get the fluid equation for

x(t), and in order 0 of N to get the PDE equation for Π.
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LINEAR NOISE APPROXIMATION

DRIFT, JACOBIAN, DIFFUSION MATRIX

F (x) =
∑
η∈T

vηfη(x)

Jij (t) =
∑
η∈T

vη[i]∂j fη(x(t))

Dik (x) =
∑
η∈T

vη[i]vη[k ]fη(x)

NOISE: LINEAR FOKKER-PLANK EQUATION

∂Π(x, t)
∂(t)

=
∑
i ,j

Ji ,j (t)∂i (ξj Π(x, t)) +
1
2

∑
i ,j

Dij∂ij Π(x, t).
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LINEAR NOISE APPROXIMATION

LINEAR FOKKER-PLANK EQUATION

Linear Fokker-Plank equations have solutions which are Gaussian
Processes! We can obtain the equations for average and variance
from Π, and solve them to fully determine the noise term ξ(t).

AVERAGE
dE[ξ(t)]

dt = JE [ξ(t)] , So if E [ξ(0)] = 0, then E [ξ(t)] = 0.

COVARIANCE MATRIX C
dC
dt

= JC + CJT + D

SOLUTION TO THE SYSTEM

X̂(N)(t) ≈ x(t) + N−
1
2 ξ(t) is a Gaussian Process.

At time t , it is a multivariate Gaussian distribution with mean x(t) and
covariance N−1C.
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CENTRAL LIMIT THEOREM

We can look at the linear noise approximation from a limit
theorem point of view.

X(N)(t) = Nx(t) + N
1
2 ξ(N)(t),

where we defined

ξ(N)(t) = N−
1
2 (X(N)(t) − Nx(t))

CENTRAL LIMIT THEOREM (KURTZ)

If rate functions are of class C1, then

ξ(N) ⇒ ξ (weakly)
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EXAMPLE: SIR EPIDEMICS
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Three variables: XS,XI ,XR.
State space:
D = {(n1,n2,n3) | n1 + n2 + n3 =
N} ⊂ {0, . . . ,N}3.

Transitions:
(inf ,>, (−1,1,0)kI

XI
N XS)

(rec,>, (0,−1,1), kRXI)

(susc,>, (1,0,−1), kSXR)
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EXAMPLE: SIR EPIDEMICS

REDUCE THE SYSTEM DIMENSION

As XR = N − XS − XI , we can reduce to two dimensions: xS = x
and xI = y . Call also u = VAR(ξS), v = VAR(ξI),
c = COV (ξS , ξI)

AVERAGE: FLUID EQUATIONS
dx
dt = −kIxy + kS(1 − x − y)
dy
dt = kIxy − kRy

VARIANCE u OF x , v OF y , COVARIANCE c
du
dt = −2u(kiy + ks) − 2c(kix + ks) + kixy + ks(1 − x − y)
dv
dt = 2c(kiy) + 2v(kix − kr) + kixy + kr y
dc
dt = −c(kiy + ks) − v(kix + ks) + kiyu + c(kix − kr ) − kixy
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SIR EPIDEMICS: FLUID EQUATIONS
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SIR EPIDEMICS: LN ESTIMATED STANDARD DEVIATION

OF S AND I
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SIR EPIDEMICS: LN ESTIMATED CORRELATION OF S
AND I
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SIR EPIDEMICS: LN ESTIMATED P{I(t) ≥ 750}

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr[I(t) > 750] −− N=1000

time

pr
ob

ab
ili

ty

stat mc (10000 runs)
linear noise



MOMENTS LINEAR NOISE 24 / 24

REFERENCES

T. Kurtz, S. Ethier, Markov Processes - Characterisation and
Convergence, Wiley, 1986.
L. Bortolussi, J. Hillston, D. Latella, M. Massink. Continuous
Approximation of Collective Systems Behaviour: a Tutorial. Submitted
to Performance Evaluation.
A. Singh, J.P. Hespanha. Lognormal moment closures for bio-chemical
reactions, Proc. of IEEE CDC 2006.
J. Bradley, R. Hayden. A Fluid analysis framework for a Markovian
Process Algebra, Theor. Comp. Science, 2010.
Luca Bortolussi: On the Approximation of Stochastic Concurrent
Constraint Programming by Master Equation. Electr. Notes Theor.
Comput. Sci. 220(3): 163-180 (2008)
Elf, J and Ehrenberg, M (2003) Fast evaluation of fluctuations in
biochemical networks with the linear noise approximation Genome
Research 13, 2475-2484.
Grima R. 2010. An effective rate equation approach to reaction kinetics
in small volumes: theory and application to biochemical reactions in
nonequilibrium steady-state conditions. Journal of Chemical Physics,
133.


	Fluid Equation and Moments
	Linear Noise Approximation

