
1 Background on Sobolev spaces

1.1 Weak derivatives

Let 
 be an open subset of Rn. Let u 2 Ck(
) and ' a generic in�nitely
di¤erentiable function with compact support, that is, ' 2 C1c (
). The
integration by parts formula leads toZ




uD�'dx = (�1)j�j
Z



'D�udx (1)

where � = (�1; :::; �n) is a multi-index of order k, that is, j�j = �1+:::+�n = k,
and where

D�u =
@j�ju

@x�11 :::@x�nn

The left hand side of relation (1) still makes sense if we only assume u to be
locally integrable u 2 L1loc(
), that is, its integral is �nite on every compact
subset of its domain of de�nition (clearly Ck(
) � L1loc(
)). This is true because
D�' has a compact support. Indeed there is an equivalent de�nition: u 2
L1loc(
) if Z




ju j dx <1

for each  2 C1c (
).
The extension of the left hand side of (1) from Ck(
) to L1loc(
) allow to

de�ne the weak derivative. If there exists a locally integrable function v, such
that Z




uD�'dx = (�1)j�j
Z



'vdx; ' 2 C1c (
); (2)

then v is called the weak �-th partial derivative of u, and we write v = D�u.
If there exists a weak �-th partial derivative of u, then it is uniquely de�ned
almost everywhere, and thus it is uniquely determined as an element of L1loc(
).
This means that if w = v a.e. then w is also a weak �-th partial derivative of
u. On the other hand, if u 2 Ck(
), then the classical and the weak derivative
coincide.
For example, the function

u(x) =

8>><>>:
1 + x � 1 < x < 0
2 x = 0
1� x 0 < x < 1
0 elsewhere

2 L1loc(R)

is not continuous at 0, and not di¤erentiable at �1; 0; 1. Anyway the function

v(x) =

8<: 1 � 1 < x < 0
�1 0 < x < 1
0 elsewhere

satis�es the de�nition of weak derivative of u.
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1.2 Sobolev spaces in one dimension

In the one-dimensional case the Sobolev space W k;p(
) for 1 � p � 1,

 � R, is the subset of Lp(
) containing the functions f such that f (i) 2 Lp(
)
for i = 0; :::; k, where the f (i) denotes the i-th weak derivative, that is,

W k;p(
) =

�
f :

Z



���f (i)���p dx <1; i = 0; :::; k� :
Clearly W 0;p(
) = Lp(
).
Let p <1. Denoting by k�kp the Lp norm, that is

kfkp =
�Z




jf jp dx
�1=p

;

by de�nition the Sobolev space W k;p(
) admits the natural norm

kfkWk;p =

�Xk

i=0




f (i)


p
p

�1=p
=

�Xk

i=0

Z



���f (i)���p dx�1=p (3)

For p =1, the natural norm is

kfkWk;1 = max
i=0;:::;k




f (i)



1

Using these norm, W k;p(
) assumes the stucture of Banach space.
In the case of p = 2 the notation

Hk(
) =W k;2(
)

is commonly used. We then have H0(
) = W 0;2(
) = L2(
). It can be shown
that the functional

hu; viHk =
Xk

i=0

D
u(i); v(i)

E
L2
=
Xk

i=0

Z



u(i)v(i)dx

de�nes an inner product so that Hk assumes the structure of Hilbert space. The
induced norm is

kukHk =

�Xk

i=0




u(i)


2
2

�1=2
=

�Xk

i=0

Z



���u(i)���2 dx�1=2
1.3 Multidimensional Sobolev spaces

Let k 2 N and 1 � p � 1. The Sobolev space W k;p(
) is de�ned to be the
set of all functions f on 
 such that for every multi-index � with jaj � k the
partial derivative

f (�) = D�f =
@j�jf

@x�11 :::@x�nn
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exists in the weak sense and belongs to Lp(
), that is,


f (�)



p
<1. Formally,

W k;p(
) =
n
f 2 Lp(
) : f (�) 2 Lp(
);8 jaj � k

o
The functional

kfkWk;p =

8<:
�P

jaj�k


f (�)

p

p

�1=p
1 � p <1

maxjaj�k


f (�)

1 p =1

de�nes the most commonly used norm for these spaces. With respect to this
normW k;p(
) is a Banach space. Conventionally,W k;2(
) is denoted by Hk(
)
and it is a Hilbert space with inner product

hu; viHk =
X

jaj�k

Z



D�uD�vdx

and norm

kukHk = (hu; uiHk)
1=2

=

�X
jaj�k

Z



jD�uj2 dx
�1=2

In what follows we also make use of the seminorm

bucHk =

�X
jaj=k

Z



jD�uj2 dx
�1=2

(4)

in which we only consider the higher order derivatives.

Theorem 1 Let p < 1 and assume that 
 is open. For each f 2 W k;p(
)
there exists a sequence of functions fm 2 C1(
) such that

kfm � fkWk;p ! 0

The above result states that C1(
) is dense in W k;p(
) with respect to the
norm k�kWk;p .

1.4 Functions vanishing at the boundary

The Sobolev space H1(
) = W 1;2(
) is a Hilbert space that has a very im-
portant subspace in the context of the solution of partial di¤erential equations.
H1
0 (
) is de�ned as the closure in H

1(
) of the set of the in�nitely di¤eren-
tiable functions compactly supported in 
, denoted by C1c (
). The closure is
intended with respect to the norm

kfkH1 =
�
kfk22 + krfk

2
2

�1=2
where

krfk22 =
Z



jrf j2 =
Z



Xn

i=0

�
@f

@xi

�2
dx
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De�nition 2 (informal) 
 is a Lipschitz domain (or domain with Lipschitz
boundary) if its boudary can be locally interpreted as the graph of a Lipschitz
continuous function.

When 
 is a Lipschitz domain, H1
0 (
) is the space of functions in H

1(
)
that vanish at the boundary in the sense of traces that we describe below. For
n = 1, if 
 = (a; b) is bounded, then H1(a; b) � C0([a; b]) and H1

0 (a; b) consists
of continuous functions on [a; b] of the form

f(x) =

Z x

a

f 0(t)dt;

where f 0 2 L2(a; b) is the weak derivative such thatZ b

a

f 0(t)dt = 0;

so that f(a) = f(b) = 0.

Theorem 3 (Poincaré inequality) If 
 is a bounded then there exists a con-
stant C = C(
) such thatZ




jf j2 � C2
Z



jrf j2 ; f 2 H1
0 (
) (5)

that is
kfk2 � C krfk2

Corollary 4 If 
 is bounded then the Poincaré inequality allows to show that
the seminorm (see (4))

bfcH1 := krfk2
is actually a norm on H1

0 (
), equivalent to k�kH1 .

Proof. By (5) we have that

C2 krfk22 + krfk
2
2 � kfk

2
2 + krfk

2
2

(simply adding krfk22 to both sides), which means

kfkH1 � (1 + C2)1=2 bfcH1

On the other side, the inequality bfcH1 � kfkH1 is obvious so that we have
proved the equivalence and the fact that b�cH1 is actually a norm.
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1.5 Further regularity results

We have already seen that for n = 1, if 
 = (a; b) is bounded, then H1(a; b) �
C0([a; b]), because we can write

f(x) =

Z x

a

f 0(t)dt; f 2 H1(a; b)

where f 0 is the weak derivative. This result cannot be extended in dimension
n � 2.

Proposition 5 Let 
 � Rn be a bounded Lipschitz domain and let 
 its closure.
Then

Hm(
) � C0(
) for m > n=2

In particular H2(
) � C0(
) for n � 3.

Proposition 6 Let 
 � Rn be a bounded Lipschitz domain and let 
 its closure.
Then for any k � 0

Hm(
) � Ck(
) for m > k + n=2

Example: in two dimensions H3(
) � C1(
)

1.6 Trace operator

When working with a continuous function v on 
, where 
 is bounded and open
in Rn, with boundary @
, the restriction vj@
 is well de�ned and continuous.
In this sense, the meaning of vj@
 = 0 is clear. On the other side, if v 2 H1(
)
then we do not know its behavior on the boundary. So for any x 2 @
, v(x)
should be de�ned as the limit of v(xn) for xn ! x. Unfortunately, since v may
be not continuous, it may happen that for some x we obtain di¤erent values of
v(x) approaching x from di¤erent directions. In order to solve this ambiguity
we need the de�nition of trace.

Theorem 7 (Trace theorem) Let 
 be a bounded Lipschitz domain. Let
C1(
) the set of the in�nitely di¤erentiable functions in 
. Then C1(
) is
dense in H1(
) and the operator


0 : v 2 C1(
)! 
0v = vj@
 2 C0(@
)

can be continuously extended to a linear operator


0 : H
1(
)! L2(@
):


0 is called trace operator and 
0v = vj@
 is the trace. The above theorem
can be used to prove the following results.

Proposition 8 Let 
 be a bounded Lipschitz domain. Then

H1
0 (
) = Ker(
0)
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In other words, for bounded Lipschitz domains we can write

H1
0 (
) =

�
v 2 H1(
) : vj@
 = 0

	
where vj@
 is intended in the sense of the trace. We remark that in one dimension
H1(a; b) � C0([a; b]), so that we don�t need the concept of trace.
In the applications sometimes we may have conditions only on subsets of the

boundary. In this view, if � is a portion of @
 of measure greater than 0, it is
possible to consider the trace


� : H
1(
)! L2(�)

and the space
H1
�(
) =

�
v 2 H1(
) : vj� = 
�v = 0

	
Poincaré inequality holds also in H1

�(
). The space of functions that are traces
on � � @
 of functions in H1(
) is denoted by H1=2(�).

1.7 Green formula

Proposition 9 (Green formula) Let 
 be a bounded Lipschitz domain and
let n = n(x), x 2 @
 be the unit vector orthogonal to @
 in x, directed outwards.
Then Z




@u

@xi
vdx = �

Z



u
@v

@xi
dx+

Z
@


uvnid
; u; v 2 H1(
)

where d
 denotes the arclength element.

The result can be proved by observing that the formula holds for u; v 2
C1(
) and then using the density stated by the above theorem. It is closely
related to (2).
Let

@u

@n
=
Xn

i=1

@u

@xi
ni

be the derivative along n, and assume that u is regular enough. Then we also
have Z




@2u

@x2i
vdx = �

Z



@u

@xi

@v

@xi
dx+

Z
@


@u

@xi
vnid
; v 2 H1(
): (6)

This relation allows to obtain the Green formula for the Laplacian oper-
ator

�u =
Xn

i=1

@2u

@x2i

that is Z



(��u)vdx =
Z



ru � rv dx�
Z
@


@u

@n
vd


that follows from (6) by taking the sum.
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