1 Background on Sobolev spaces

1.1 Weak derivatives

Let Q be an open subset of R". Let u € C*(2) and ¢ a generic infinitely
differentiable function with compact support, that is, ¢ € C2°(2). The
integration by parts formula leads to

/Qqudx:(q)‘a'/Qngaudz (1)

where @ = (aq, ..., a,) is a multi-index of order k, that is, || = a1 +...+a, =k,

and where
dlely,
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The left hand side of relation (1) still makes sense if we only assume u to be

locally integrable u € L}, .(Q2), that is, its integral is finite on every compact

subset of its domain of definition (clearly C*(2) c L} (£2)). This is true because

loc
D%y has a compact support. Indeed there is an equivalent definition: u €
L} () if

loc

D% =

lu| dz < oo
Q
for each ¢ € C°(Q).
The extension of the left hand side of (1) from C*(Q) to L}, .(Q) allow to
define the weak derivative. If there exists a locally integrable function v, such

that
/uDagad:U = (71)‘04/ pudz, € CI(Q), (2)
Q Q

then v is called the weak a-th partial derivative of u, and we write v = D%u.
If there exists a weak a-th partial derivative of u, then it is uniquely defined
almost everywhere, and thus it is uniquely determined as an element of L} (Q).
This means that if w = v a.e. then w is also a weak a-th partial derivative of
u. On the other hand, if u € C*((2), then the classical and the weak derivative
coincide.

For example, the function

142 —-1<z<0
2 =0

1—-2z 0<ax<1
0 elsewhere

u(z) = € Lioe(R)
is not continuous at 0, and not differentiable at —1,0,1. Anyway the function

1 —1<z<0
viz)=¢ -1 O0<z<1
0 elsewhere

satisfies the definition of weak derivative of u.



1.2 Sobolev spaces in one dimension

In the one-dimensional case the Sobolev space W*?(Q) for 1 < p < oo,
Q C R, is the subset of L?(Q) containing the functions f such that f(*) € L?(
for i =0, ..., k, where the f(*) denotes the i-th weak derivative, that is,

wee@ = {r: [ |50

Clearly WOP(Q) = LP(Q).
Let p < co. Denoting by |||, the L norm, that is

1/p
1l = ( / prdx) ,

by definition the Sobolev space W**(£) admits the natural norm

(RAl— (Zf_o Hf(z‘) Z>1/p _ (Zf_o /Q )f(i) pdx>1/P "

For p = oo, the natural norm is
— (@)
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P
d:r<oo7i:0,...,k}.
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Using these norm, W*P(2) assumes the stucture of Banach space.
In the case of p = 2 the notation

H*(Q) = Wh2(Q)

is commonly used. We then have H°(Q) = W%2(Q) = L?(Q). It can be shown
that the functional
k

<u’ U>Hk = Z 0 <u(i),U(i)>L2 = Zk 0/ u(l)v(l)dx
1= 1= Q

defines an inner product so that H* assumes the structure of Hilbert space. The

induced norm is
A 2y 1/2 i 2 1/2
_ (2) — (7)

1.3 Multidimensional Sobolev spaces

Let kK € Nand 1 < p < oo. The Sobolev space W’”’(Q) is defined to be the
set of all functions f on € such that for every multi-index o with |a| < k the
partial derivative
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exists in the weak sense and belongs to LP(2), that is, Hf(a) Hp < 00. Formally,

Wh(Q) = {f € 7)) € (), Vol < K}
The functional
1/p
Ul = 4 (S lF@E) 7 12p<o
max|q| < ||f(0t)Hoo p=0c0

defines the most commonly used norm for these spaces. With respect to this
norm W*P(Q) is a Banach space. Conventionally, W*:2(2) is denoted by H*()
and it is a Hilbert space with inner product

<'LL3 v>H’C = Zlalgk/ﬂDauDavdfx

and norm

1/2
l[ull g = (<U7U>Hk)l/2 - (Za|<k/9 |Dau2dm>

In what follows we also make use of the seminorm

[ g = (Za_k/QDau|2dx)1/2 (4)

in which we only consider the higher order derivatives.

Theorem 1 Let p < oo and assume that Q is open. For each f € WFP(Q)
there exists a sequence of functions fn,, € C*°(Q) such that

||fm - wak,p —0

The above result states that C°°(Q) is dense in W*P(Q) with respect to the
norm ||-{| yk.p-

1.4 Functions vanishing at the boundary

The Sobolev space H!(Q) = W2(Q) is a Hilbert space that has a very im-
portant subspace in the context of the solution of partial differential equations.
H(Q) is defined as the closure in H'(Q) of the set of the infinitely differen-
tiable functions compactly supported in 2, denoted by C$°(€2). The closure is
intended with respect to the norm

1/2
1l = (115 + 19£13)

n 8
Vo= [ et = [ Y (af

where

2
)d:zc



Definition 2 (informal) Q is a Lipschitz domain (or domain with Lipschitz
boundary) if its boudary can be locally interpreted as the graph of a Lipschitz
continuous function.

When Q is a Lipschitz domain, H{(f2) is the space of functions in H!(£2)
that vanish at the boundary in the sense of traces that we describe below. For
n =1, if Q = (a,b) is bounded, then H'(a,b) C C%([a,b]) and Hi(a,b) consists

of continuous functions on [a, b] of the form

fo) = | " e,

where f’ € L?(a,b) is the weak derivative such that

b
| rwi=o.
so that f(a) = f(b) =0.

Theorem 3 (Poincaré inequality) If Q is a bounded then there exists a con-
stant C = C(Q) such that

/\f|2§C2/ V2, fe HAQ) (5)
Q Q
that is

£l < CUIV Il

Corollary 4 If Q) is bounded then the Poincaré inequality allows to show that
the seminorm (see (4))

Ll = IV £l

is actually a norm on H}(SY), equivalent to ||| g -
Proof. By (5) we have that

C2IV Al + I 1113 = 11z + IV 113
(simply adding ||Vf||§ to both sides), which means

£l < A+ CHY2 L |

On the other side, the inequality |[f|;: < || f||: is obvious so that we have
proved the equivalence and the fact that |-] ;. is actually a norm. m



1.5 Further regularity results

We have already seen that for n = 1, if Q = (a,b) is bounded, then H'(a,b) C
C°([a, b]), because we can write

f(:r/):/w f'(t)dt, fe H'(a,b)

where f’ is the weak derivative. This result cannot be extended in dimension
n > 2.

Proposition 5 Let Q C R” be a bounded Lipschitz domain and let Q its closure.
Then -
H™(Q) c C%Q)  form >n/2

In particular H*(Q) C C°(Q) for n < 3.

Proposition 6 Let Q C R” be a bounded Lipschitz domain and let Q its closure.
Then for any k >0

H™(Q) c C*Q) form >k+n/2

Example: in two dimensions H?(Q) C C1(Q)

1.6 Trace operator

When working with a continuous function v on Q, where € is bounded and open
in R, with boundary 912, the restriction v)gq is well defined and continuous.
In this sense, the meaning of vjpq = 0 is clear. On the other side, if v € HY()
then we do not know its behavior on the boundary. So for any = € 99, v(x)
should be defined as the limit of v(x,,) for 2, — 2. Unfortunately, since v may
be not continuous, it may happen that for some x we obtain different values of
v(x) approaching = from different directions. In order to solve this ambiguity
we need the definition of trace.

Theorem 7 (Trace theorem) Let Q be a bounded Lipschitz domain. Let
C>(Q) the set of the infinitely differentiable functions in Q. Then C*°(R) is
dense in H'(Q) and the operator

Yo : v € CF(Q) = yov = vjpq € C°(IQ)
can be continuously extended to a linear operator
Yo : HY(Q) — L*(09).

7 is called trace operator and vyv = v)gq is the trace. The above theorem
can be used to prove the following results.

Proposition 8 Let Q be a bounded Lipschitz domain. Then
H&(Q) = Ker(v)



In other words, for bounded Lipschitz domains we can write
H{(Q) = {ve H(Q) :vjpq =0}

where v|sq is intended in the sense of the trace. We remark that in one dimension
H'(a,b) € C°([a,b]), so that we don’t need the concept of trace.

In the applications sometimes we may have conditions only on subsets of the
boundary. In this view, if I" is a portion of 02 of measure greater than 0, it is
possible to consider the trace

yr s H'(Q) — L*(T)

and the space
Hi(Q) = {ve H(Q) : vr = vpv =0}

Poincaré inequality holds also in H{ (). The space of functions that are traces
on T' C 99 of functions in H'(Q) is denoted by H/?(T).
1.7 Green formula

Proposition 9 (Green formula) Let Q be a bounded Lipschitz domain and
letn =n(z), x € 9N be the unit vector orthogonal to I in x, directed outwards.

Then 5 5
/ uvdx:—/u deJr/ wngdy, u,v e H'(Q)
o 0z o 0z 00

where dy denotes the arclength element.

The result can be proved by observing that the formula holds for u,v €
C>(2) and then using the density stated by the above theorem. It is closely
related to (2).

Let

Ju n Ou

on Z,-:l O,
be the derivative along n, and assume that u is regular enough. Then we also
have

0*u Ju Ov ou )
/anf”d””“ o 92, 00,0 | B oy v HI@)(6)

This relation allows to obtain the Green formula for the Laplacian oper-

ator o2
n u
Au = Zi:l —am?
that is
ou
/ (—Au)vdx = / Vu- Vv dx — —uvdry
Q Q a0 On

that follows from (6) by taking the sum.



