Risultati dell'esperimento di Rutherford, Geiger, Mardsen

Dipendenza del rateo di diffusione dal quadrato del numero atomico Z

L'andamento conferma le previsioni della formula di Rutherford.

$$\frac{\mathrm{d}\sigma\left(\vartheta\right)}{\mathrm{d}\Omega} = \left(\frac{Z_1 Z_2 e^2}{16\pi\epsilon_0 E_k}\right)^2 \frac{1}{\mathrm{sen}^4\vartheta/2}$$

Dipendenza del rateo di diffusione dall'energia cinetica per particelle α incidenti su un bersaglio sottile. L'andamento conferma le previsioni della formula di Rutherford.

Ci si aspetta che per le diffusioni multiple, il numero di particelle diffuse a un certo angolo $\vartheta > 1^\circ$ per diversi valori dello spessore Δz del bersaglio, vari $\propto \sqrt{\Delta z}$, mentre dovrebbe variare $\propto \Delta z$ per diffusioni singole, poiché la probabilità di subire singole deviazioni a grande angolo cresce in modo direttamente proporzionale al numero dei bersagli in grado di produrre tali deviazioni, come si vede dai dati sperimentali in figura.

Dipendenza da $\,artheta\,$ del rateo di diffusione per un sottile bersaglio d'oro. L'andamento conferma le previsioni della formula di Rutherford.

Approccio quantistico al concetto di sezione d'urto

Tasso di reazioni, fissate intensità del fascio e densità di centri diffusori, dipende dalle proprietà del potenziale d'interazione e dal numero di stati finali accessibili.

Si utilizza la Regola d'oro n. 2.

Il corrispondente elemento della matrice di transizione, detto anche ampiezza di probabilità per la transizione, è

$$\mathcal{M}_{fi} = \left\langle \psi_f \Big| \mathcal{H}_{int} \Big| \psi_i \right\rangle = \int\limits_{ ext{Tutto lo} ext{spazio}} \psi_f^* \; \mathcal{H}_{int} \; \psi_i \; \mathrm{d}V$$

Il numero di stati finali disponibili tien conto che nello *spazio delle fasi*, lo spazio esadimensionale di coordinate e impulsi, per il principio di indeterminazione, ogni particella occupa un volume $h^3 = (2\pi\hbar)^3$.

Si consideri una particella diffusa nel volume V con impulso di modulo compreso in $p' \div p' + dp'$. Questo, nello spazio degli impulsi, è un guscio sferico di raggio minore p', spessore dp' e volume $4\pi p'^2 dp'$. Trascurando lo spin, si ha per il numero finale di stati disponibili

$$dn(p') = rac{V \ 4\pi \ p'^2}{(2\pi\hbar)^3} \ dp$$

Volume di normalizz. contiene tutte le particelle incidenti nel tempo t in cui hanno luogo gli urti: $V = v_a t A = \frac{\Phi_a t}{n_a} = \frac{N_a}{n_a}$

con A la sezione retta del fascio, v_a il modulo della velocità di ogni particella del fascio, N_a la totalità delle particelle nel fascio, Φ_a ed n_a l'intensità del flusso incidente e la loro densità, supposte uniformi.

Energia totale e impulso di una particella sono legate dalla relazione dE' = v' dp'

si ha quindi per la densità degli stati finali nell'intervallo energetico dE': $\rho(E') = \frac{dn(E')}{dE'} = \frac{4\pi \ p'^2 \ V}{v' \ (2\pi\hbar)^3}$ La Regola d'oro n. 2 da' il tasso W di reazione per particella bersaglio e particella incidente : $W = \frac{dN(E)/dt}{N_b \ N_a}$ Sostituendo si ha : $W = \frac{dN(E)/dt}{N_b \ N_a} = \frac{\sigma \ v_a}{V}$, e per la sezione d'urto: $\sigma = \frac{2\pi}{\hbar \ v_a} \ |\mathcal{M}_{fi}|^2 \ \rho(E') \ V$

Noto il pot. d'interazione si può calcolare la sez. d'urto. Dai valori misurati della sez. d'urto si può ottenere l'elemento di matrice M_{fi} .

Si può ora ricalcolare la sez. d'urto di Rutherford quantisticamente. Delineeremo solo brevemente i punti salienti, il calcolo completo è negli appunti.

Anche qui si suppongono proiettile e bersaglio puntiformi di cariche $Z_1e \in Z_2e$, si trascurano gli spin e il rinculo del bersaglio; si può così utilizzare il tri-impulso e se $Z_2\alpha \ll 1$, si può applicare **l'approssimazione perturbativa di Born**. Le funzioni d'onda dei proiettili negli stati iniziale e finale sono quindi "onde piane". L'urto si suppone *elastico*.

Il volume di normalizzazione V deve essere abbastanza esteso da considerare lo "schermaggio" della carica bersaglio.

La Regola d'oro n. 2 da' $\frac{\sigma v_a}{V} = W = \frac{2\pi}{\hbar} |\langle \psi_f | \mathcal{H}_{int} | \psi_i \rangle|^2 \frac{\mathrm{d}n}{\mathrm{d}E_f} \qquad \text{con } E_f = \text{en. tot. dello stato finale.}$

Per le ipotesi fatte il solo effetto della diffusione dovuta al potenziale coulombiano è la deflessione elastica di un angolo ϑ fra gli impulsi iniziale e finale della particella incidente.

Per energie incidenti molto alte si può porre $v_a \simeq c$ e $|\vec{p}_f| \simeq E_f/c$, da cui $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{V^2 E_f^2}{4\pi^2 c^4 \hbar^4} |\langle \psi_f | \mathcal{H}_{int} | \psi_i \rangle|^2$

Calcolando l'elemento della matrice di transizione si ha infine $\sigma(\vartheta) = \frac{\mathrm{d}\sigma(\vartheta)}{\mathrm{d}\Omega} = \frac{V^2 E'^2}{(2\pi)^2 (\hbar c)^4} |\mathcal{M}(\vec{q})|^2 = \frac{E_f^2}{(2\pi)^2 c^4} \frac{Z_1^2 Z_2^2 e^4}{\epsilon_o^2 |\vec{q}|^4}$ $= \left(\frac{Z_1 Z_2 e^2}{16\pi\epsilon_0}\right)^2 \frac{4E_f^2}{p^4 c^4} \frac{1}{\mathrm{sen}^4 \vartheta/2}$

I limiti relativistico e non relativistico danno rispettivamente:

$$\frac{\mathrm{d}\sigma\left(\vartheta\right)}{\mathrm{d}\Omega} \simeq \left(\frac{Z_1 Z_2 e^2}{8\pi\epsilon_0 E_f}\right)^2 \frac{1}{\mathrm{sen}^4 \vartheta/2} \qquad \qquad \mathsf{e} \qquad \qquad \frac{\mathrm{d}\sigma\left(\vartheta\right)}{\mathrm{d}\Omega} \simeq \left(\frac{Z_1 Z_2 e^2}{16\pi\epsilon_0 E_k}\right)^2 \frac{1}{\mathrm{sen}^4 \vartheta/2}$$

Il limite non relativistico corrisponde al risultato classico e non dipende dall'aver utilizzato l'approssimazione di Born.

Fattore di forma Se si considera la carica $Z_2 e$ non puntiforme ma distribuita con simmetria sferica, il potenziale, conglobando in esso anche la carica $Z_1 e$ della particella incidente, è $\Phi(\vec{r}) = \frac{Z_1 Z_2 e^2}{4\pi\epsilon_0} \int \frac{\rho(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} \, \mathrm{d}\vec{r}\,'$, con $\int \rho(\vec{r}\,') \, \mathrm{d}\vec{r}\,' = 1$, dato che $|\vec{r} - \vec{r}\,'|$

è invariante per traslazione.

$$\mathcal{M}(\vec{q}) = \frac{Z_1 Z_2 e^2}{4\pi\epsilon_0 V} \int e^{i\vec{q}\cdot\vec{r}/\hbar} \, \mathrm{d}\vec{r} \, \int \frac{\rho(\vec{r}\,')}{|\vec{r}-\vec{r}\,'|} \, \mathrm{d}\vec{r}\,'$$

La matrice di transizione diventa allora :

in cui il secondo integrale, indicato

$$= \frac{Z_1 Z_2 e^2}{4\pi\epsilon_0 V} \int \frac{e^{i\vec{q}\cdot\vec{D}/\hbar}}{D} \, \mathrm{d}\vec{D} \, \int \rho\left(\vec{r}\,'\right) e^{i\vec{q}\cdot\vec{r}\,\,'/\hbar} \, \mathrm{d}\vec{r}\,'$$

con $F(\vec{q})$, è la trasformata di Fourier della distribuzione di densità di carica elettrica e viene detto fattore di forma della distribuzione di carica elettrica. $\frac{\mathrm{d}\sigma\left(\vartheta\right)}{\mathrm{d}\Omega} = \left(\frac{Z_1 Z_2 e^2}{16\pi\epsilon_0}\right)^2 \frac{4E_f^2}{\left(pc\right)^4} \frac{1}{\mathrm{sen}^4 \frac{\vartheta}{2}} \left|F\left(\vec{q}\right)\right|^2$

La sez. d'urto di diffusione coulombiana per una carica estesa si scrive dunque

Ciò vale solo in approssimazione di Born.

Differentemente dal caso classico, in cui le sez. d'urto da carica puntif. ed estesa coincidevano per ogni angolo $\vartheta < \vartheta_0$, nel caso quantistico esse coincidono soltanto per ϑ = 0, cioè $|\vec{q}| = 0$.

La sezione d'urto di Mott

Finora, solo per motivi di semplificazione, si è sempre trascurato il ruolo dello spin.

Se se ne tiene conto, come è giusto e come in certi casi è anche indispensabile, si ottiene per la sez. d'urto di diffusione coulombiana,

un risultato, sezione d'urto di Mott che

trascurando il rinculo del nucleo bersaglio,

per l'interazione *e*-nucleo si scrive :

$$\frac{\mathrm{d}\sigma_{Mott}\left(\vartheta\right)}{\mathrm{d}\Omega} \;=\; \frac{\mathrm{d}\sigma_{Ruth}\left(\vartheta\right)}{\mathrm{d}\Omega} \; \left(1-\beta^2 \mathrm{sen}^2 \frac{\vartheta}{2}\right)$$

10a Lezione

La sez. d'urto di Mott, al crescere della velocità, cala più rapidamente di quella di Rutherford, con l'angolo ϑ di diffusione.

Nei casi fortemente relativistici $\ eta=v/c
ightarrow 1$ e

Considerando il fattore di forma, si ha quindi, per la sez. d'urto coulombiana di un bersaglio esteso :

Non dedurremo la sez. d'urto di Mott, ma cercheremo di capirla nel limite di un urto con diffusione all'indietro, ovvero a π radianti. Introduciamo una nuova quantità H, detta *elicità*, corrispondente alla proiezione dello spin s lungo la direzione del moto, rappresentata dal versore $\vec{p}/|\vec{p}|$: $H = \frac{\vec{s} \cdot \vec{p}}{|\vec{s}| |\vec{p}|}$

Dall'equazione di Dirac si ha che H si conserva. Ciò implica, considerando

ad esempio la condizione d'urto in figura, che la proiezione dello spin \vec{s} sull'asse z dovrebbe cambiar segno con l'urto, impossibile con un bersaglio di spin nullo, per la conservazione del mom. ang. totale. Il mom. ang. orbitale \vec{L} è infatti \bot a z e non può quindi determinare modifiche nella componente lungo z del mom. angolare. Per particelle relativistiche la diffusione a π rad. dovrebbe quindi essere soppressa (sperim. confermato). Se il bersaglio ha invece spin $\neq 0$, la proiezione dello spin dell' e può essere modificata durante la diffusione a π rad., poiché

la conservazione del mom. ang. può trovare compensazione nel concomitante cambiamento di direzione dello spin del bersaglio.

7

Misure dei fattori di forma (elettrici)

Misurare le sez. d'urto in funzione dell'impulso trasferito $|\vec{q}|$ equivale a farlo in funzione di ϑ o dell'energia dei proiettili, quindi di $|\vec{p}|$, e da' i valori dei fattori di forma per i medesimi valori di $|\vec{q}|$. Interpolando si può ricavare $F(\vec{q}|^2)$ come funzione continua, e invertendola si deduce la distribuzione di carica. Ma invertire la trasf. di Fourier richiede di conoscere $F(\vec{q}|^2)$ per ogni valori di $|\vec{q}|$.

L'energia disponibile è però finita, quella E_k del canale d'ingresso, e ciò limita superiormente i valori di $|\vec{q}|$ esplorabili.

Si hanno risultati per la distribuzione di carica per valori $r > R \sim 2\pi \hbar / |\vec{q}|_{max}$, mentre per r < R dipende dall'ipotesi fatta per

estrapolare
$$F\left(\vec{q}^{\;2}
ight)$$
ı $\left|\vec{q}
ight|
ightarrow\infty$

Dal 1953, Hofstadter condusse una campagna di misure di diffusione di elettroni su nuclei e nucleoni.

In figura misura di sezione d'urto differenziale elastica con elettroni da $420\;MeV$ incidenti su bersaglio di ^{12}C .

La linea tratteggiata → calcolo immaginando onde piane incidenti su una distribuzione sferica e omogenea di carica con superficie diffusa, in approssimazione di Born; linea continua è il risultato di un fit sui dati sperimentali.

Si noti andamento diffrattivo, con minimo in $\pmb{\vartheta} \simeq 51^{
m o}$, associato al fattore di forma.

10a Lezione

				ρ(r)	F(q ²)	Example
In tabella sono riportati i fattori di forma calcolati per alcune specifiche forme analitiche della distribuzione di carica e in figura, ne sono illustrati				pointlike	constant	Electron
gli andamenti.				exponential	dipole	Proton
Distrib. carica	f(r)	$F(\vec{q}^{\ 2})$		gauss	gauss	⁶ Li
Puntif. Espon.	$\frac{\delta(r)/4\pi}{(a^3/8\pi) \cdot e^{-(ar)}}$	$(1 + \vec{q}^{2}/a^{2}\hbar^{2})^{-2}$	Cost. Dipol.	homogeneous	oscillating	_
Gauss. Sfera omog.	$\begin{cases} (a^2/2\pi)^{3/2} \cdot e^{-(a^2r^2/2)} \\ \begin{cases} 3/4\pi R^3 & \text{per } r \le R \\ 0 & \text{per } r > R \end{cases}$	$e^{-(\vec{q}\ ^2/2a^2\hbar^2)} egin{cases} 3lpha^{-3}({ m sen}lpha-lpha{ m cos}lpha) \ { m con}\ lpha= ec{q}\ R/\hbar \end{cases}$	Gauss. Oscill.	sphere with a diffuse surface	oscillating	⁴⁰ Ca
				r →		1

In figura le sezione d'urto differenziale per diffusione di e da 757 MeV su 40 Ca, moltiplicata per un fattore 10, e quella su 48 Ca, divisa per 10.

Ricordando l'ottica della diffrazione, se si immagina la distribuzione di carica d'un nucleo come un oggetto diffrangente, dalla posizione dei minimi nell'andamento in funzione di ϑ della sezione d'urto, si possono dedurre informazioni sull'estensione spaziale dell'oggetto diffrangente.

Detti λ la lunghezza d'onda di de Broglie associata alla particella incidente ed R il "*raggio*" della distribuzione di carica del nucleo

$$\frac{\lambda}{R} \approx \mathrm{sen} \vartheta_{min}$$

da cui, ricordando che $~\lambda=2\pi\hbar/\leftert ec{q}
ightec{}~,$

$$R \approx rac{2\pi\hbar}{|\vec{q}| \, \mathrm{sen}\vartheta_{min}}$$

I risultati della diffusione di e con energie di alcune centinaia di MeV mostrano che in prima approssimazione, la densità protonica nei nuclei è \approx costante, indipendentemente da A, ed è anche \approx costante in ogni nucleo; alla scala di 10^{-15} m i nuclei sono sostanzialmente compatti, senza zone vuote.

Il raggio quadratico medio della loro distribuzione di carica cresce come $R = R_0 A^{1/3}$, con $R_0 \simeq 1.2$ fm, come trovato con altri metodi.

Anche misure di sezioni d'urto differenziali per diffusione elastica di altre particelle, quali pioni, sensibili anche all'interazione nucleare con tutti i nucleoni del nucleo, oltre che a quella elettrica con i protoni, mostrano andamenti diffrattivi, per energie incidenti dell'ordine delle poche centinaia di MeV, come si vede in figura.

I migliori fit su dati sperimentali, per bersagli con $A \gtrsim 20$ si ottengono assumendo una densità di carica espressa dalla forma di **Wood-Saxon**

$$ho \left(r
ight) \; = \; rac{
ho_0}{1 + e^{(r-R)/a}}$$

dove a è un parametro che tiene conto dello *spessore* della superficie nucleare, e $\varrho_0 \simeq 0.17$ nucleoni/fm³ è una costante di normalizzazione che rappresenta la densità nucleonica media in un nucleo.

Distribuzione radiale di carica, misurata per alcuni nuclei.