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Lesson 1. Affine algebraic sets and Zariski topology.

The aim of this course is to introduce the notion of algebraic variety in the
classical sense, over a field K.

Roughly speaking, algebraic varieties are sets of solutions of a system of alge-
braic equations, i.e. equations given by polynomials. The natural space where to
look at these solutions seems to be the affine space, but one realizes that the pro-
jective ambient is more convenient. On one hand the projective space extends the
affine space and includes it naturally, on the other the projective ambient allows
to prove more general and complete results.

After introducing the notions of affine and projective varieties, we will study
the notion of dimensions. Then we will introduce two kinds of transformations
of algebraic varieties: regular and rational maps. They give rise to two types
of equivalence or isomorphism: biregular isomorphism and birational equivalence,
and therefore to two classification problems.

In this course we will see many examples of varieties, and of regular and
rational maps. In particular we will see some classes of varieties related to the
notion of tensor (without symmetries, symmetric, skew-symmetric); they are much
studied because of many recent applications in fields as control theory, signal
transmission, etc. We will see also examples of rational and unirational varieties,
and we will have a taste of the modern classification problems. We will then study
the notions of tangent space, and of smoothness.

Classical algebraic geometry is the basis and gives the motivations for modern
algebraic geometry: from schemes, introduced by Grothendieck in the sixties of last
century, to the stacks, due to Mumford and Artin. All these notions are strongly
based on commutative algebra, i.e. the theory of commutative rings, in particular
polynomial rings and their quotients, local rings, and homological algebra.

The reference books I’ve chosen, all of which have become classics, have dif-
ferent flavours: the book of Šafarevič is complete and precise, and contains almost
all algebraic notions needed; Harris’ book has a more geometric flavour, proofs are
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not complete but there are many many examples and ideas; Harthshorne’s book,
the “Bible” of algebraic geometry since its appearance, treats classical varieties
quickly in the first chapter, then moves to modern language, but always with an
eye to classical problems.

1. Affine and projective spaces.

In this first section, we begin by fixing the ambient in which we will work:
the affine and the projective space over any field K. In particular we recall some
basic facts about the projective space.

Let K be a field. For us the affine space of dimension n over K will simply be
the set Kn : on it, the additive group of Kn acts naturally by translation. The
affine space will be denoted by An

K or simply An. So the points of An
K are n−tuples

(a1, . . . , an), where ai ∈ K for i = 1, . . . , n.

Let V be a K−vector space of dimension n + 1. Let V ∗ = V \ {0} be the
subset of non–zero vectors. The following relation in V ∗ is an equivalence relation
(relation of proportionality):

v ∼ v′ if and only if ∃λ 6= 0, λ ∈ K such that v′ = λv.
The quotient set V ∗/∼ is called the projective space associated to V and

is denoted by P(V ). The points of P(V ) are the lines of V (through the origin)
deprived of the origin. In particular, P(Kn+1) is denoted by Pn

K (or simply Pn)
and called the numerical projective n-space. By definition, the dimension of P(V )
is equal to dimV − 1.

There is a canonical surjection p : V ∗ → P(V ) which takes a vector v to its
equivalence class [v]. If (x0, . . . , xn) ∈ (Kn+1)∗, then the corresponding point of
Pn is denoted by [x0, . . . , xn]. So [x0, . . . , xn]=[x′0, . . . , x

′
n] if and only if ∃λ ∈ K∗

such that x′0 = λx0, . . . , x
′
n = λxn.

If a basis e0, . . . , en of V is fixed, then a system of homogeneous coordinates
is introduced in V , in the following way: if v = x0e0 + . . .+ xnen, then x0, . . . , xn

are called homogeneous coordinates of the corresponding point P =[v]= p(v) in
P(V ). We also write P [x0, . . . , xn]. Note that homogeneous coordinates of a point
P are not uniquely determined by P , but are defined only up to multiplication
by a non–zero constant. If dimV = n + 1, a system of homogeneous coordinates
allows to define a bijection

P(V ) −→ Pn

P = [v] −→ [x0, . . . , xn]

where v = x0e0 + . . .+ xnen.
The points E0[1, 0, . . . , 0], . . . , En[0, 0, . . . , 1] are the fundamental points, and

U [1, . . . , 1] the unit point of the given system of coordinates.
A projective (or linear) subspace of P(V ) is a subset of the form P(W ), where

W ⊂ V is a subspace.
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If W,U are vector subspaces of V , the following Grassmann relation holds:

dimU + dimW = dim(U ∩W ) + dim(U +W ).

From this relation, observing that P(U ∩W ) = P(U) ∩ P(W ), we get in P(V ):

dimP(U) + dimP(W ) = dim(P(U) ∩ P(W )) + dimP(U +W ).

Note that P(U +W ) is the minimal linear subspace of P(V ) containing both P(U)
and P(W ): it is denoted P(U) + P(W ).

1.1. Example. Let V = K3, P(V ) = P2, U,W ⊂ K3 subspaces of dimension
2. Then P(U),P(V ) are lines in the projective plane. There are two cases:
(i) U = W = U +W = U ∩W ;
(ii) U 6= W , dimU ∩W = 1, U +W = K3.
In case (i) the two lines in P2 coincide; in case (ii) P(U)∩P(W ) = P(U ∩W ) = [v],
if v 6= 0 is a vector generating U ∩W. Observe that never P(U) ∩ P(W ) = ∅.

What are the possible reciprocal positions in P3 for two lines? For two planes?
For a line and a plane?

Let T ⊂ P(V ) be a non–empty set. The linear span 〈T 〉 of T is the intersection
of the projective subspaces of P(V ) containing T , i.e. the minimum subspace
containing T .

For example, assume that T = {P1, . . . , Pt} is a finite set, and that v1, . . . , vt

are vectors such that P1 = [v1], . . . , Pt = [vt]. Then 〈P1, . . . , Pt〉 = P(W ), where
W is the vector subspace of V generated by v1, . . . , vt.

So dim〈P1, . . . , Pt〉 ≤ t − 1 and equality holds if and only if v1, . . . , vt are
linearly independent; in this case, also the points P1, . . . , Pt are called linearly
independent. In particular, for t = 2, two points are linearly independent if they
generate a line, for t = 3, three points are linearly independent if they generate a
plane, etc. It is clear that, if P1, . . . , Pt are linearly independent, then t ≤ n + 1,
and any subset of {P1, . . . , Pt} is formed by linearly independent points.

P1, . . . , Pt are said to be in general position if either t ≤ n + 1 and they are
linearly independent or t > n + 1 and any n + 1 points among them are linearly
independent.

1.2. Proposition. The fundamental points E0, . . . , En and the unit point
U of a system of homogeneous coordinates on Pn are n + 2 points in general
position. Conversely, if P0, . . . , Pn, Pn+1 are n + 2 points in general position,
then there exists a system of homogeneous coordinates in which P0, . . . , Pn are the
fundamental points and Pn+1 is the unit point.

Proof. The proof is linear algebra.
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If e0, . . . , en is a basis, then clearly the n+1 vectors e0, . . . , êi, . . . , en, e0+. . .+
en are linearly independent: this proves the first claim. To prove the second claim,
we fix vectors v0, . . . , vn+1 such that Pi = [vi] for all i. So v0, . . . , vn is a basis and
there exist λ0, . . . , λn in K such that vn+1 = λ0v0 + . . .+ λnvn. The assumption
of general position easily implies that λ0, . . . , λn are all different from 0, hence
λ0v0, . . . , λnvn is a new basis such [λivi] = Pi and Pn+1 is the corresponding unit
point. �

b) Embedding of the affine in the projective space

Let H0 = 〈E1, . . . , En〉, H1 = 〈E0, E2, . . . , En〉, . . . ,Hn = 〈E0, . . . , En−1〉 be
n + 1 hyperplanes in Pn (subspaces of codmension 1). Note that Hi is simply
defined by the equation xi = 0. These hyperplanes are called the fundamental
hyperplanes.

Let Ui = Pn \Hi = {P [x0, . . . , xn] | xi 6= 0}. Note that Pn = U0∪U1∪ . . .∪Un,
because no point in Pn has all coordinates equal to zero.

There is a map φ0 : U0 −→ An(= Kn) defined by

φ0([x0, . . . , xn]) = (
x1

x0

, . . . ,
xn

x0

).

φ0 is bijective and the inverse map is j0 : An −→ U0 such that j0(y1, . . . , yn) =
[1, y1, . . . , yn].

So φ0 and j0 establish a bijection between the affine space An and the subset U0

of the projective space Pn. There are other similar maps φi and ji for i = 1, . . . , n.
So Pn is covered by n+ 1 subsets, each one in natural bijection with An.

There is a natural way of thinking of Pn as a completion of An; this is done
by identifying An with Ui via φi, and by interpreting the points of Hi(= Pn \ Ui)
as points at infinity of An, or directions in An. We do this explicity for i = 0. First
of all we identify An with U0 via φ0 and j0. So if P [a0, . . . , an] ∈ Pn, either a0 6= 0
and P ∈ An, or a0 = 0 and P [0, a1, . . . , an] /∈ An. Then we consider in An the line
L, passing through O(0, . . . , 0) and of direction given by the vector (a1, . . . , an).
Parametric equations for L are the following:

x1 = a1t
x2 = a2t
. . .
xn = ant

with t ∈ K. The points of L are identified with points of U0 (via j0) with homoge-
neous coordinates x0, . . . , xn given by:

x0 = 1
x1 = a1t
x2 = a2t
. . .
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or equivalently, if t 6= 0, by: 
x0 = 1

t
x1 = a1

x2 = a2

. . .

.

Now, roughly speaking, if t tends to infinity, this point goes to P [0, a1, . . . , an].
Clearly this is not a rigorous argument, but just a hint to the intuition.

In this way Pn can be interpreted as An with the points at infinity added,
each point at infinity corresponding to one direction in An.

Exercise 1.
Let V be a vector space of finite dimension over a field K. Let V̌ denote the

dual of V , i.e. the space of linear forms (or functionals) on V . Prove that P(V̌ )
can be put in bijection with the set of the hyperplanes of P(V ) (hint: the kernel
of a non-zero linear form on V is a subvector space of V of codimension one).

2. Algebraic sets.

Roughly speaking, algebraic subsets of the affine or of the projective space are
sets of solutions of systems of algebraic equations, i.e. common roots of sets of
polynomials.

Examples of algebraic sets are: linear subspaces of both the affine and the pro-
jective space, plane algebraic curves, quadrics, graphics of polynomials functions,
. . .

Algebraic geometry is the branch of mathematics which studies algebraic sets
(and their generalizations). Our first aim is to give a formal definition of algebraic
sets.

a) Affine algebraic sets

Let K[x1, . . . , xn] be the polynomial ring in n variables over the field K. If
P (a1, . . . , an) ∈ An, and F = F (x1, . . . , xn) ∈ K[x1, . . . , xn], we can consider the
value of F at P , i.e. F (P ) = F (a1, . . . , an) ∈ K. We say that P is a zero of F if
F (P ) = 0.

For example the points P1(1, 0), P2(−1, 0), P3(0, 1) are zeroes of F = x21 +
x22 − 1 over any field. If G = x21 + x22 + 1 then G has no zeroes in A2

R , but it does
have zeroes in A2

C .

2.1. Definition. A subset X of An
K is an affine algebraic set, or an affine variety,

if X is the set of common zeroes of a family of polynomials of K[x1, . . . , xn].

Remark. In some texts the term “variety” is reserved to the affine algebraic
sets which are irreducible.
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X is an affine algebraic set means that there exists a subset S ⊂ K[x1, . . . , xn]
such that

X = {P ∈ An | F (P ) = 0 ∀ F ∈ S}.

In this case X is called the zero set of S and is denoted V (S) (or in some books
Z(S), e.g. this is the notation of Hartshorne’s book). In particular, if S = {F},
then V (S) will be simply denoted by V (F ).

2.2. Examples and remarks.
1. S = K[x1, . . . , xn]: then V (S) = ∅, because S contains non–zero constants.
2. S = {0}: then V (S) = An.
3. S = {xy − 1} : then V (xy − 1) is the hyperbola.
4. If S ⊂ T , then V (S) ⊃ V (T ).

Let S ⊂ K[x1, . . . , xn] be a set of polynomials, let α := 〈S〉 be the ideal generated
by S. Recall that α = {finite sums of products of the form HF where F ∈ S, H ∈
K[x1, . . . , xn]}.

2.3. Proposition. V (S) = V (α).

Proof. If P ∈ V (α), then F (P ) = 0 for any F ∈ α; in particular for any F ∈ S
because S ⊂ α.

Conversely, if P ∈ V (S), let G =
∑

iHiFi be a polynomial of α (Fi ∈ S ∀ i).
Then G(P ) = (

∑
HiFi)(P ) =

∑
Hi(P )Fi(P ) = 0. �

The above Proposition is important in view of the following:

Hilbert’s Basis Theorem. If R is a Noetherian ring, then the polynomial ring
R[x] is Noetherian.

Proof. Assume by contradiction that R[x] is not Noetherian. Let I ⊂ R[x] be a
not finitely generated ideal. Let f1 ∈ I be a non-zero polynomial of minimum
degree. We define by induction as follows a sequence {fk}k∈N of polynomials: if
fk (k ≥ 1) has already been chosen, let fk+1 be a polynomial of minimum degree
in I \〈f1, . . . , fk〉. Let nk be the degree of fk and ak be its leading coefficient. Note
that, by the very choice of fk, the chain of the degrees is increasing: n1 ≤ n2 ≤ . . ..

We will prove now that 〈a1〉 ⊂ 〈a1, a2〉 ⊂ . . . is a chain of ideals, that
does not become stationary: this will give the required contradiction. Indeed,
if 〈a1, . . . , ar〉 = 〈a1, . . . , ar, ar+1〉, then ar+1 =

∑r
i=1 biai, for suitable bi ∈ R. In

this case, we consider the element g := fr+1 −
∑r

i=1 bix
nr+1−nifi: g belongs to

I, but g /∈ 〈f1, . . . , fr〉, and its degree is strictly lower than the degree of fr+1:
contradiction. �

2.4. Corollary. Any affine algebraic set X ⊂ An is the zero set of a finite
number of polynomials, i.e. there exist F1, . . . , Fr ∈ K[x1, . . . , xn] such that X =
V (F1, . . . , Fr).
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�

Note that V (F1, . . . , Fr) = V (F1)∩. . .∩V (Fr), so every algebraic set is a finite
intersection of algebraic sets of the form V (F ), i.e. zeroes of a unique polynomial
F . If F = 0, then V (0) = An; if F = c ∈ K \ {0}, then V (c) = ∅; if deg F > 0,
then V (F ) is called a hypersurface.

2.5. Proposition. The affine algebraic sets of An satisfy the axioms of the
closed sets of a topology, called the Zariski topology.

Proof. It is enough to check that finite unions and arbitrary intersections of alge-
braic sets are again algebraic sets.

Let V (α), V (β) be two algebraic sets, with α, β ideals of K[x1, . . . , xn]. Then
V (α) ∪ V (β) = V (α ∩ β) = V (αβ), where αβ is the product ideal, defined by:

αβ = {
∑
fin

aibi | ai ∈ α, bi ∈ β}.

Indeed: αβ ⊂ α ∩ β so V (α ∩ β) ⊂ V (αβ), and both α ∩ β ⊂ α and α ∩ β ⊂ β
so V (α) ∪ V (β) ⊂ V (α ∩ β). Assume now that P ∈ V (αβ) and P /∈ V (α): hence
∃F ∈ α such that F (P ) 6= 0; on the other hand, if G ∈ β then FG ∈ αβ so
(FG)(P ) = 0 = F (P )G(P ), which implies G(P ) = 0.

Let V (αi), i ∈ I, be a family of algebraic sets, αi ⊂ K[x1, . . . , xn]. Then
∩i∈IV (αi) = V (

∑
i∈I αi), where

∑
i∈I αi is the sum ideal of α′is. In fact αi ⊂∑

i∈I αi ∀i, hence V (
∑

i αi) ⊂ V (αi) ∀i and V (
∑

i αi) ⊂ ∩iV (αi). Conversely, if
P ∈ V (αi) ∀i, and F ∈

∑
i αi, then F =

∑
i
Fi; therefore F (P ) =

∑
Fi(P ) = 0.

�

2.6. Examples.
1. The Zariski topology of the affine line A1.
Let us recall that the polynomial ring K[x] in one variable is a PID (principal

ideal domain), so every ideal I ⊂ K[x] is of the form I = 〈F 〉. Hence every closed
subset of A1 is of the form X = V (F ), the set of zeroes of a unique polynomial
F (x). If F = 0, then V (F ) = A1, if F = c ∈ K∗, then V (F ) = ∅, if degF = d > 0,
then F can be decomposed in linear factors in polynomial ring over the algebraic
closure of K; it follows that V (F ) has at most d points.

We conclude that the closed sets in the Zariski topology of A1 are: A1, ∅ and
the finite sets.

2. If K = R or C, then the Zariski topology and the Euclidean topology on
An can be compared, and it results that the Zariski topology is coarser. Indeed
every open set in the Zariski topology is open also in the usual topology. Let
X = V (F1, . . . , Fr) be a closed set in the Zariski topology, and U := An \ X; if
P ∈ U , then ∃ Fi such that Fi(P ) 6= 0, so there exists an open neighbourhood of
P in the usual topology in which Fi does not vanish.
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Conversely, there exist closed sets in the usual topology which are not Zariski
closed, for example the balls. The first case, of an interval in the real affine line,
follows from part 1.


