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ABSTRACT
The history of accelerators is traced from three separate roots, through a
rapid development to the present day.  The well-known Livingston
chart is used to illustrate how spectacular this development has been
with, on average, an increase of one and a half orders of magnitude in
energy per decade, since the early thirties.  Several present-day
accelerators are reviewed along with plans and hopes for the future.

1 . INTRODUCTION

High-energy physics research has always been the driving force behind the development
of particle accelerators.  They started life in physics research laboratories in glass envelopes
sealed with varnish and putty with shining electrodes and frequent discharges, but they have
long since outgrown this environment to become large-scale facilities offering services to large
communities.  Although the particle physics community is still the main group, they have been
joined by others of whom the synchrotron light users are the largest and fastest growing. There
is also an increasing interest in radiation therapy in the medical world and industry has been a
long-time user of ion implantation and many other applications.  Consequently accelerators now
constitute a field of activity in their own right with professional physicists and engineers
dedicated to their study, construction and operation.

This paper will describe the early history of accelerators, review the important milestones
in their development up to the present day and take a preview of future plans and hopes.

2 . HISTORICAL ROOTS

The early history of accelerators can be traced from three separate roots.  Each root is
based on an idea for a different acceleration mechanism and all three originated in the twenties.

2 . 1 The main "History Line"

The first root to be described is generally taken as the principal "history line", since it was
the logical consequence of the vigorous physics research programme in progress at the turn of
the century.  Indeed, particle physics research has always been the driving force behind
accelerator development and it is therefore very natural to also consider high-energy physics as
the birth place.

The main events along this "history line" are listed in Table 1.  The line is started at the
end of the last century to show the natural progression through atomic physics to nuclear
physics and the inevitable need for higher energy and higher intensity "atomic projectiles" than
those provided by natural radioactive sources. In this context, the particle accelerator was a
planned development and it fulfilled its goal of performing the first man-controlled splitting of
the atom. It was Ernest Rutherford, in the early twenties, who realised this need, but the
electrostatic machines, then available, were far from reaching the necessary voltage and for a
few years there was no advance.  Suddenly, the situation changed in 1928, when Gurney and
Gamov independently predicted tunnelling [1] and it appeared that an energy of 500 keV might
just suffice to split the atom.  This seemed technologically feasible to Rutherford and he
immediately encouraged Cockcroft and Walton to start designing a 500 kV particle accelerator.



Four years later in 1932, they split the lithium atom with 400 keV protons.  This was the first
fully man-controlled splitting of the atom [2] which earned them the Nobel prize in 1951.

Table 1
Main"History Line'

1895 Lenard.  Electron scattering on gases
(Nobel Prize).   < 100 keV electrons.

1913 Franck and Hertz excited electron shells by
electron bombardment.

Wimshurst-type machines.

1906 Rutherford bombards mica sheet with natural
alphas and develops the theory of atomic
scattering.   Natural alpha particles of

1911 Rutherford publishes theory of atomic structure.
  several MeV

1919 Rutherford induces a nuclear reaction with natural
alphas.

1928

... Rutherford believes he needs a source of many MeV to continue research on
the nucleus.  This is far beyond the electrostatic machines then existing, but ...

Gamov predicts tunnelling and perhaps 500 keV would suffice ...

1928 Cockcroft & Walton start designing an 800 kV generator encouraged by    
Rutherford.

1932 Generator reaches 700 kV and Cockcroft & Walton split lithium atom with only
400 keV protons.  They received the Nobel Prize in 1951.

Figure 1(a) shows the original apparatus, which is now kept in the Science Museum,
London.  The top electrode contains the proton source and was held at 400 kV, the intermediate
drift tube at 200 kV and final drift tube and target at earth potential.  This structure can be seen
inside the evacuated glass tube in Fig. 1 above the curtained booth in which the experimenter
sat while watching the evidence of nuclear disintegrations on a scintillation screen.  The voltage
generator, Fig. 1(b), was at the limit of the in-house technology available to Cockcroft and
Walton and the design voltage of 800 kV was never reached due to a persistent spark discharge
which occurred at just over 700 kV.  However, the famous atom-splitting experiment was
carried out at 400 kV, well within the capabilities of the apparatus.  The Cockcroft Walton
generator, as it became known, was widely used for many years after as the input stage (up
to 800 kV) for larger accelerators, since it could deliver a high current.

At about the same time Van de Graaff, an American who was in Oxford as a Rhodes
scholar, invented an electrostatic generator for nuclear physics research and later in Princeton,
he built his first machine, which reached a potential of 1.5 MV [3].  It took some time to
develop the acceleration tube and this type of machine was not used for physics research until
well after the atom had been split in 1932.  The principle of this type of generator is shown in
Fig. 2.



(a)  Accelerating column                                 (b)  DC generator

Fig. 1  Cockcroft and Walton's apparatus for splitting the lithium nucleus

Fig. 2  Van de Graaff
electrostatic generator



Two new features appeared in later versions of the Van de Graaff generator.  Firstly,
the sparking threshold was raised by putting the electrode system and accelerating tube in a
high-pressure tank containing dry nitrogen, or Freon, at 9-10 atmospheres, which enables
operation typically up to 10 MV.  The second was a later development, which has the special
name of the Tandem accelerator (see Fig. 3).

Fig. 3  Two-stage Tandem accelerator

The new feature in the Tandem accelerator was to use the accelerating voltage twice over.
First an extra electron is attached to the neutral atoms to create negative ions.  In recent years, a
great deal of development has been done and it is now possible to obtain negative ion sources
for almost all elements.  The negative ion beam is injected at ground potential into the Tandem
and accelerated up to the high-voltage terminal where it passes through a thin foil which strips
at least two electrons from each negative ion converting them to positive ions.  They are then
accelerated a second time back to earth potential.  The Van de Graaff generator and the Tandem
provide beams of stable energy and small energy spread, but they are unable to provide as high
currents as the Cockcroft-Walton generator

The highest energy Tandem is at Oak Ridge National Laboratory and routinely operates
with 24.5 MV on the central terminal.  However, development is not at a standstill and there is
a project (the Vivitron) underway at Strasbourg to build a Tandem operating at 35 MV.

2 . 2 The second "History Line'

The direct-voltage accelerators were the first to be exploited for nuclear physics research,
but they were limited to the maximum voltage that could be generated in the system (except for
the astute double use of the applied voltage in the Tandem).  This limitation was too restrictive
for the requirements of high-energy physics and an alternative was needed.

In fact, an alternative had already been proposed in 1924 in Sweden by Ising [4].  He
planned to repeatedly apply the same voltage to the particle using alternating fields and his
invention was to become the underlying principle of all of today's ultra-high-energy
accelerators  This is known as resonant acceleration.  The main events along this "history
line", starting with Ising, are given in Table 2.

The difference between the acceleration mechanisms of Cockcroft and Walton and Ising
depend upon whether the fields are static (i.e. conservative) or time-varying (i.e. non-
conservative).  The electric field can be expressed in a very general form as the sum of two
terms, the first being derived from a scalar potential and the second from a vector potential,



E = − ∇φ − ∂
∂t

A
                                                       (1)

where
B = ∇ × A .                                                         (2)

Table 2
The second "History Line"

1924 Ising proposes time-varying fields across drift tubes.  This is "resonant
acceleration", which can achieve energies above that given by the highest voltage
in the system.

1928 Wideröe demonstrates Ising's principle with a 1 MHz, 25 kV oscillator to make
50 keV potassium ions.

1929 Lawrence, inspired by Wideröe and Ising, conceives the cyclotron.

1931 Livingston demonstrates the cyclotron by accelerating hydrogen ions to 80 keV.

1932 Lawrence's cyclotron produces 1.25 MeV protons and he also splits the atom just
a few weeks after Cockcroft and Walton (Lawrence received the Nobel Prize     
in 1939).

The first term in (1) describes the static electric field of the Cockcroft-Walton and Van de
Graaff machines.  When a particle travels from one point to another in an electrostatic field, it
gains energy according to the potential difference, but if it returns to the original point, for
example, by making a full turn in a circular accelerator, it must return to its original potential
and will lose exactly the energy it has gained.  Thus a gap with a DC voltage has no net
accelerating effect in a circular machine.

The second term in (1) describes the time-varying field.  This is the term that makes all
the present-day high-energy accelerators function.  The combination of (1) and (2) yields
Faraday's law,

∇ × E = − ∂
∂t

B ,

which relates the electric field to the rate of change of the magnetic field.  There are two basic
geometries used to exploit Faraday's Law for acceleration.  The first of which is the basis of
Ising's idea and the second "history line", and the second is the basis of the third "history line"
to be described later.

Ising suggested accelerating particles with a linear series of conducting drift tubes and
Wideröe built a 'proof-of-principle' linear accelerator in 1928 [5].  Alternate drift tubes are
connected to the same terminal of an RF generator.  The generator frequency is adjusted so that
a particle traversing a gap sees an electric field in the direction of its motion and while the
particle is inside the drift tube the field reverses so that it is again the direction of motion at the
next gap.  As the particle gains energy and speed the structure periods must be made longer to
maintain synchronism (see Fig. 4).

Clearly, as the velocity increases the drift tubes become inconveniently long, unless the
frequency can be increased, but at high frequencies the open drift-tube structure is lossy.  This
problem is overcome by enclosing the structure to form a cavity (in a circular machine) or series



of cavities (in a linear machine), working typically in the MHz range.  The underlying principle
remains unchanged, but there are several variants of the accelerating structure design.

Ising's original idea can be considered as the beginning of the 'true' accelerator.
Indeed, the next generation of linear colliders, which will be in the TeV range, will probably
still be applying his principle of resonant acceleration, except that the frequency will probably
be in the tens of GHz range.

Fig. 4  RF linac

Technologically the linear accelerator, or linac as it is known, was rather difficult to
build and, during the 1930's, it was pushed into the background by a simpler idea conceived by
Ernest Lawrence in 1929 [6], the fixed-frequency cyclotron (see Fig. 5).  Lawrence's idea was
inspired by a written account of Wideröe's work and M. Livingston demonstrated the principle
by accelerating hydrogen ions to 80 keV in 1931.  Lawrence's first model worked in 1932 [7].
It was less than a foot in diameter and could accelerate protons to 1.25 MeV.  He split the atom
only weeks after Cockcroft and Walton.  Lawrence received the Nobel Prize in 1939, and by
that year the University of California had a 5-foot diameter cyclotron (the 'Crocker' cyclotron)
capable of delivering 20 MeV protons, twice the energy of the most energetic alpha particles
emitted from radioactive sources.  The cyclotron, however, was limited in energy by relativistic
effects and despite the development of the synchrocyclotron, a new idea was still required to
reach yet higher energies in order to satisfy the curiosity of the particle physicists.  This new
idea was to be the synchrotron, which will be described later.

Fig. 5  Schematic cyclotron



2 . 3 The third and fainter 'History Line'

In the previous section, it was mentioned that there were two equipment configurations
for exploiting Faraday's Law for acceleration.  First, consider the application of Faraday's Law
to the linac, which is made more evident by enclosing the gaps in cavities.  For simplicity the
fields in a single RF cavity are shown schematically in Fig. 6(a).

(a)                                                                   (b)

Fig. 6  Acceleration configurations

The azimuthal magnetic field is concentrated towards the outer wall and links the beam.
Faraday's Law tells us the periodic rise and fall of this magnetic field induces an electric field
on the cavity axis, which can be synchronised with the passage of the beam pulse.

Suppose now that the topology is transformed, so that the beam encircles the magnetic
field as shown in Fig. 6(b).  Wideröe [8, 9] suggested this configuration and the acceleration
mechanism, now known as "betatron acceleration".  He called his idea a "strahlung
transformator" or "ray transformer", because the beam effectively formed the secondary
winding of a transformer (see Figs. 6 and 7)).  As the flux through the magnet core is
increased, it induces an azimuthal e.m.f. which drives the charged beam particles to higher and
higher energies.  The trick is to arrange for the increase in the magnetic field in the vicinity of
the beam to correspond to the increase in particle energy, so that the beam stays on the same
orbit*.  This device, the betatron, is insensitive to relativistic effects and was therefore ideal for
accelerating electrons.  The betatron has also the great advantages of being robust and simple.
The one active element is the power converter that drives the large inductive load of the main
magnet.  The focusing and synchronisation of the beam energy with the field level are both
determined by the geometry of the main magnet.  As noted in the third "history line" in Table 3,
Wideröe put this idea in his laboratory notebook, while he was a student, but it remained
unpublished only to re-surface many years later when Kerst [10] built the first machine of this
type.  When in 1941 Kerst and Serber published a paper on the particle oscillation in their
betatron [11], the term "betatron oscillation" became universally adopted for referring to such
oscillations in all devices.

___________________
*  Known as the Wideröe condition, or 2-to-1 rule.



Fig. 7  Strahlung transformator or betatron

Table 3
The third "History Line"

1923 Wideröe, a young Norwegian student, draws in his laboratory notebook the
design of the betatron with the well-known 2-to-1 rule.  Two years later he adds
the condition for radial stability but does not publish.

1927 Later in Aachen Wideröe makes a model betatron, but it does not work.
Discouraged he changes course and builds the linear accelerator mentioned in
Table 2.

1940 Kerst re-invents the betatron and builds the first working machine for 2.2 MeV
electrons.

1950 Kerst builds the world's largest betatron of 300 MeV.

The development of betatrons for high-energy physics was short, ending in 1950 when
Kerst built the world's largest betatron (300 MeV), but they continued to be built commercially
for hospitals and small laboratories where they were considered as reliable and cheap.  In fact
the betatron acceleration mechanism is still of prime importance.  In the present-day
synchrotron, there is a small contribution to the beam's acceleration which arises from the
increasing field in the main dipoles.  If an accurate description of the longitudinal motion is
required, then the betatron effect has to be included.



3 . THE MAIN DEVELOPMENT

By the 1940's three acceleration mechanisms had been demonstrated:-  DC
acceleration, resonant acceleration and the betatron mechanism.  In fact, there were
to be no new ideas for acceleration mechanisms until the mid-1960's, when collective
acceleration [12] was proposed in which heavy ions are accelerated in the potential well of an
electron ring and the 1980's when there were several Workshops devoted entirely to finding
new acceleration techniques.  However, the acceleration mechanism is not sufficient by itself
and other equally important developments are needed.

In order to accelerate particles to very high energies, it is also necessary to have focusing
mechanisms in the transverse and longitudinal (energy) planes.  This was not always
appreciated.  In the early cyclotrons, for example, the field was made as uniform as possible
only to find that the beam was unstable.  Livingston [13] who was Lawrence's research
student, told how they shimmed the magnet for each small step in energy to keep the beam
stable, thus ending up with a field shape for transverse stability that decreased with radius.
Theory has later shown that this decrease should be an inverse power law of the radius between
zero and unity.

The cyclotron is limited by relativistic effects, which cause the particles to slow down and
lose synchronism with the RF field.  At first glance it would appear that one would only have to
reduce the frequency in order to maintain synchronism, but this is a little too naïve since the
spread in revolution frequency with energy would quickly exploit the natural energy spread in
the beam and disperse the particles away from the peak of the RF voltage.  In this case a
longitudinal focusing mechanism is needed.  This problem was overcome by E. McMillan [14]
and independently by V. Veksler [15] who discovered the principle of phase stability in
1944 and invented the synchrotron.  Phase stability is general to all RF accelerators except
the fixed-frequency cyclotron.  The effect is that a bunch of particles, with an energy spread,
can be kept bunched throughout the acceleration cycle by simply injecting them at a suitable
phase of the RF cycle.  This focusing effect was strong enough that the frequency modulation
in the synchro-cyclotron did not have to be specially tailored and was simply sinusoidal.
Synchro-cyclotrons can accelerate protons to about 1 GeV, a great improvement on the simple
cyclotron, but the repetition rate reduces the particle yield.

In the synchrotron [14, 15] the guide field increases with particle energy, so as to keep
the orbit stationary as in the betatron, but acceleration is applied with an RF voltage via a gap or
cavity.  In 1946 F. Goward and D. Barnes [16] were the first to make a synchrotron work, and
in 1947 M. Oliphant, J. Gooden and G. Hyde [17] proposed the first proton synchrotron for
1 GeV in Birmingham, UK.  However, the Brookhaven National Laboratory, USA, built their
3 GeV Cosmotron by 1952, just one year ahead of the Birmingham group.

Up to this time the only mechanism known for focusing in the transverse plane was called
weak, or constant-gradient focusing.  In this case, the guide field decreases slightly with
increasing radius and its gradient is constant all round the circumference of the machine.  The
tolerance on the gradient is severe and sets a limit to the size of such an accelerator.  The
aperture needed to contain the beam also becomes very large and the magnet correspondingly
bulky and costly.  In the early fifties the limit was believed to be around 10 GeV.

In the same year as the Cosmotron was finished (1952) E. Courant, M. Livingston and
H. Snyder [18] proposed strong focusing, also known as alternating-gradient (AG)
focusing.  The idea had been suggested earlier by Christofilos [19] but it was not published.
This new principle revolutionized synchrotron design, allowing smaller magnets to be used and
higher energies to be envisaged.  It is directly analogous to a well-known result in geometrical
optics, that the combined focal length F of a pair of lenses of focal lengths f1 and f2 separated
by a distance d is given by
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If the lenses have equal and opposite focal lengths, f1 = -f2 and the overall focal length
F = f2/d, which is always positive.  In fact, F remains positive over quite a large range of
values when f1 and f2 have unequal values but are still of opposite sign.  Thus within certain
limits a series of alternating lenses will focus.  Intuitively one sees that, although the beam may
be defocused by one lens, it arrives at the following lens further from the axis and is therefore
focused more strongly.  Structures based on this principle are referred to as AG structures.

The synchrotron quickly overshadowed the synchrocyclotron and the betatron in the race
for higher energies.  The adoption of alternating gradient focusing for machines and transfer
lines was even quicker.  CERN for example immediately abandoned its already-approved
project for a 10 GeV/c weak focusing synchrotron in favour of a 25 GeV/c AG machine, which
it estimated could be built for the same price.

The next step was the storage ring collider.  In physics experiments, the useful
energy for new particle production is the energy that is liberated in the centre-of-mass system.
When an accelerator beam is used on a fixed target, only a fraction of the particle's energy
appears in the centre-of-mass system, whereas for two equal particles in a head-on collision, all
of the particles' energy is available.  This fundamental drawback of the fixed-target accelerator
becomes more punitive as the energy increases.  For example, it would have needed a fixed-
target accelerator of over 1TeV to match the centre-of-mass energy available in the CERN ISR
(2 x 26 GeV proton colliding rings).

The storage-ring collider now dominates the high-energy physics field.  Single-ring
colliders, using particles and antiparticles in the same magnetic channel, were the first type of
collider to be exploited at Frascati in the AdA (Annelli di Accumulazione) project (1961).  The
first double-ring proton collider was the CERN ISR (Intersecting Storage Rings), 1972-1983.
The highest-energy collisions obtained to date are 2 x 900 GeV in the Fermilab, single-ring,
proton-antiproton collider.

Colliders have been very successful as physics research instruments.  The J/ψ particle
was discovered at SPEAR by B. Richter and at the same time by Ting at BNL – they shared the
1976 Nobel Prize.  The CERN proton-antiproton storage ring was also the source of a Nobel
Prize for C. Rubbia and S. van der Meer in 1984, following the discovery of the W and Z
particles.  The proton-antiproton colliders were only made possible by the invention of
stochastic cooling by S. van der Meer for the accumulation of the antiprotons [20].

The use of superconductivity in proton machines has made the very highest energies
possible.  There has also been another change taking place, which has been called the Exo-
geographical transition (a phrase coined by Professor N. Cabibbo at a Workshop held at
Frascati in 1984).  This refers to the arrangements that have made it possible to bury the very
large machines such as LEP and HERA deep under property which does not belong to the
laboratory concerned.  Without such agreements, Europe could not have maintained its leading
position in the world accelerator league.

In order to fill in some of the bigger gaps in this brief history, it is now necessary to jump
back in time to mention some of the other accelerators, which may not have featured as a high-
energy machine, but  have found their place as injectors or as being suitable for some special
application.



The microtron, sometimes known as the electron cyclotron, was an ingenious idea due
to Veksler (1945).  The electrons follow circular orbits of increasing radius, but with a common
tangent.  An RF cavity positioned at the point of the common tangent supplies a constant energy
increment on each passage.  The relativistic mass increase slows the revolution frequency of the
electrons, but by a constant increment on each passage.  If this increment is a multiple of the RF
oscillator frequency, the electrons stay in phase, but on a different orbit.  Microtrons operate at
microwave frequencies and are limited to tens of MeV.  They are available commercially and are
sometimes used as an injector to a larger machine.

The radio-frequency quadrupole (RFQ) suggested in 1970 by I. Kapchinski and
V. Telyakov is useful at low energies and is increasingly replacing the Cockcroft-Walton as
injector.  The RFQ combines focusing and acceleration in the same RF field.

The electron storage rings have given birth to the synchrotron radiation sources, more
usually referred to as light sources.  These machines are now the fastest growing community
in the accelerator world and the first commercially available compact synchrotron light source
for lithography has just come onto the market.

The linear accelerator was eclipsed during the thirties by circular machines.  However, the
advances in ultra-high frequency technology during World War II (radar) opened up new
possibilities and renewed interest in linac structures.  Berkeley was first, with a proton linear
accelerator of 32 MeV built by Alvarez in 1946.  The Alvarez accelerator has become very
popular as an injector for large proton and heavy-ion synchrotrons all over the world with
energies in the range of 50–200 MeV, that is essentially non-relativistic particles.  The largest
proton linear accelerator to date is the 800 MeV 'pion factory' (LAMPF) at Los Alamos.

The first electron linear accelerators were studied at Stanford and at the Massachusetts
Institute for Technology (MIT) in 1946.  This type of accelerator has also had a spectacular
development, up to the largest now in operation, the 50 GeV linear accelerator at the Stanford
Linear Accelerator Centre (SLAC).  Like betatrons they have become very popular in fields
outside nuclear physics, particularly for medicine.

The Livingston chart (see Fig. 8) shows, in a very striking way, how the succession of
new ideas and new technologies has relentlessly pushed up accelerator beam energies over five
decades at the rate of over one and a half orders of magnitude per decade.  One repeatedly sees
a new idea, which rapidly increases the available beam energy, but only to be surpassed by yet
another new idea.  Meanwhile the first idea continues into saturation and possibly into quasi-
oblivion.

This brings the section on the main development almost up to date, except for the
Stanford Linear Collider (SLC), but this will be mentioned under future accelerators where it
fits more naturally.

4 . THE CURRENT SITUATION IN HIGH-ENERGY
PARTICLE PHYSICS ACCELERATORS

Table 4 contains a selection of the main operating high-energy physics machines, those
under construction and those under study.  The latter two groups encompass the extremes of
machines like RHIC [22], which are partially constructed and the linear colliders, which are
very futuristic.



Fig. 8  Livingston chart [21]

In the present situation circular colliders dominate the high-energy field.  The proton-
antiproton colliders are now mature machines and it is unlikely that the USA or Western Europe
will propose further facilities of this type.  The technologies of stochastic and electron cooling
that were developed for this class of facility are now being applied in smaller storage rings.



Once LEP [23] has been upgraded to around 100 GeV, it will almost certainly be the
highest energy electron ring to be built, since the penalty to be paid in RF power to compensate
the synchrotron radiation loss is already prohibitive at this energy.  The solution is to change to
linear electron colliders;  a solution that was already foreseen in 1965 by Tigner [24].  The
Stanford Linear Collider (SLC) [25] is a test bed for these future machines.



Table 4

Operating high-energy physics accelerators

Accelerator Particles Beam energy
[GeV]

c.m. energy
[GeV)]

Luminosity
[cm-2 s-1]

Remarks

KEK
Japan

p 12 5 - Fixed target

AGS
Brookhaven

p 33 8 - Fixed target
Polarised p

PS
CERN

p

e+, e-, p-, ions

28 (p)
3.5 (e)

7
-

-
-

Fixed target
Injector

CESR
Cornell

e+, e- 9 18 1032 Collider

Tevatron II
FNAL

p

p, p-
800 (p) 40

-
-
-

Fixed target
Injector

SPS
CERN

p, e

p, p-
450 (p), 20 (e)
2x315

30 (p),-
630

-
3 x 1030

F. target, injector
Collider

SLC
SLAC

e+, e- 100 (6 x 1030) Linear
collider

Tevatron I
FNAL

p, p- 900 1800 1031
s.c. collider

TRISTAN
in Japan

e+, e- 32 64 8 x 1031 Collider
s.c. cavities

LEP I
CERN

e+, e- 55 110 1.6 x 1031 Collider

HERA
DESY

e, p 30 (e-)
820 (p)

310 3 x 1031
Collider
s.c. p-ring

High-energy physics accelerators under construction

UNK I
USSR

p 400 28 - Fixed target
Conventional

SSC
USA

p, p 20 40 ~ 1033 s.c. collider

LEP II e+, e- 100 200 1032 Collider, s.c.
cavity upgrade

RHIC
Brookhaven

p to Au 0.25 to
0.1/amu

0.5 to
0.2/amu

3 x 1030

1.2 x 1027

s.c. collider
for  heavy  ions

High-energy physics accelerators under study

UNK II
USSR

p, p

p, p-
3 6 ~ 4 x 1032

~ 1037

s.c. collider
for 1996

LHC
CERN

p, p 8 16 ~ 1034 s.c. collider

CLIC
CERN

e+, e- 1 2 ~ 1033 Linear
collider

SC
Stanford

e+ , e- 0.5 (1) 1(2) ~ 1033 Linear  collider
proposal 1990

VLEPP
USSR

e+, e- 0.5 (1) 1 (2) ~ 1033 Linear collider
for 1996

JLC
Japan

e+, e- 0.5 1 ~ 1033 -



At the moment, the proton community is poised to build the SSC (Super Superconducting
Collider) in Texas [26] and the LHC (Large Hadron Collider) in CERN [27].  Both machines
are superconducting and of very large dimensions.  At present there is no hard limitation on the
size of hadron colliders, except of course cost.  However, synchrotron radiation is already a
bothersome heat load in these machines and will be a very real problem in machines of the size
of the Eloisatron [28] for example.  The LHC is a high technology project, which will use high-
field magnets (approaching 10 T) with probably 'niobium-titanium' technology at 2 K in the
arcs and niobium-tin technology at 4 K in the insertions.  The magnets will also be of the twin-
bore design first proposed by Blewett [29].

5. CONCLUSION

Led by the example of the SLC, accelerator builders are now tackling formidable
theoretical and technological problems in all stages of the accelerator design.  In the next
generation of proposed linear electron colliders the typical values required for the normalised
emittance are of the order of 10-7 rad.m.  Beam sizes at the interaction point will have to be
around 1 to 30 nm high with pulse lengths of 200-800 µm.  With a few 1010 particles per
bunch and a repetition rate of over 1000 Hz the beam power is then a few MW.  The luminosity
in such designs is around a few times 1033 cm-2 s-1, far higher than anything that has yet been
achieved.  Stability of the supporting structures and power converters driving the final focus
become critically important with such small beam sizes and the fabrication of elements such as
the final focus quadrupoles requires new techniques.

At present the linear collider designs are called quasi-conventional.  For example, the
CERN CLIC study [30] assumes the use of a warm copper accelerating structure operating at
29 GHz giving 80 MV/m.  If this sounds easy, then consider that the structure will be powered
from a superconducting drive linac.  Such high-gradient, high-frequency structures have never
before been used and neither has a superconducting linac been used in this way to drive a
second accelerator.  In fact, the term "quasi-conventional" is really a misnomer.

The future holds many challenges for the accelerator engineer both in the gigantic
superconducting hadron machines now proposed and in the new generation of electron linear
colliders.

*  *  *
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LUMINOSITY MEASUREMENTS AND CALCULATIONS

K. Potter
CERN, Geneva, Switzerland

Abstract
The luminosity of a single-ring electron-positron collider is defined and
an expression in terms of the beam intensity and geometry obtained.
The equivalent expression for the case of coasting beams with a finite
crossing angle is also derived. The use of the root mean square as a
measure of particle density distributions is discussed. Methods of
measuring the luminosity are described and indications of the important
parameters for the accuracy of the measurements given.

1. INTRODUCTION

After the beam energy the most important parameter at a colliding beam facility, as far as
the high energy physics user is concerned, is the counting rate. This is usually expressed by
the term luminosity, which I shall define in a moment, but which as one can guess indicates the
brilliance of the source. I shall first of all discuss the expressions which allow the collider
builder to know what the luminosity will be in terms of his machine parameters. It is of course
beyond the scope of this note to discuss the variation of these parameters with a view to
increasing the luminosity.

Once the machine is built and operating the high energy physicist needs to know the
machine luminosity in order to be able to normalise his measurements and he usually requires a
more accurate value than can be obtained directly from machine parameters. I shall therefore go
on to discuss methods of measuring luminosity from the experimenters' point of view.

2. DEFINITION OF LUMINOSITY

At a colliding beam facility the total interaction rate depends on the geometry of the
beams, their density and energy, but the last is usualIy fixed by other requirements.

Consider first the interaction of a beam with a target of length l and particle number
density n2, as sketched in Fig. 1. Then the number of interactions (R) per beam particle is
proportional to n2 x l  the total number of particles it can collide with and the constant of
proportionality is defined as the cross section q for the type of interaction concerned.

R = q n2 l (1)

Fig. 1  Schematic of a particle beam of n1 particles per second incident



on a stationary target with n2 particles per unit volume
where q has the dimension cm2. The transverse dimensions of the beam and target do not enter
as the target is assumed to be wider than the beam. If the beam consists of n1 particles per
second the rate of interactions

dR
d t    = q n1 n2 l . (2)

            
All the characteristics of the incident beam and target can be combined into a single term defined
as the luminosity L by writing

dR
d t    = q  L (3)

where L = n1 n2 l  and has the dimensions cm-2 s-1. Hence luminosity is simply the interaction
rate per unit crosssection

3. LUMINOSITY OF A SINGLE-RING COLLIDER

In a colliding beam machine the expression for L is more complicated because the target is
moving and we cannot always assume that the target is wider than the beam.

In a single-ring collider (e+ e-) the two beams circulate in opposite directions. Suppose we
have N particles per beam and the beams have equal r.m.s. radii of σx  (horizontal) and σz

(vertical). The cross-sectional area of the beam is then 2πσx.σz and the number of positrons
which one electron encounters in one turn of the machine, assuminq the beams follow identical
paths, is

  
q

2πσxσz
 

where q  is an effective cross section of the electron.

The total rate 
dRT
d t     if the revolution frequency is f  is

 
dRT
d t     = 

NfqN

2πσxσz
 (4)

We have not said anything yet about the azimuthal distribution of the particles around the
machine and for continuous or DC beams these interactions would be spread around the whole
machine circumference. Electrons must be bunched for other reasons and if we have K
bunches in each beam there are 2K crossing points around the machine hence the interaction
rate per crossing dR/dt  is given by

 
dR
d t    =  

N  2f q

4πkσxσz 
 (5)

                
   From our previous definition of luminosity in (3)

L =  
N  2f

4πkσxσz 
 (6)



or since it is more usual to measure beam currents I  where I = N . e . f

L =  
I  2

4πkfσxσz 
  (7)

σx and σz are the r.m.s. dimensions of the two beams at the crossing points and we have
assumed that they are constant over the effective crossing region which is of course a function
of the bunch length. We have also assumed identical positron and electron beams which is
normally the case. If one beam has a much larger cross section than the other, has been blown
up by the beam-beam interaction for example, then the σxσz term must be replaced by an
effective area Aeff which will be approximately the area of the larger beam. In the case of a
proton-antiproton collider there is no reason to expect equal beams and the same remarks
apply.

As an example of a more complicated formulation of these geometric factors, that given
[1] for the electron proton ring HERA is perhaps instructive

L =  
f   .   N p   .  N e  

k . 2π(σ2xp,eff + σ2xe)1/2 . (σ2zp + σ2ze)1/2
 (8)

where σxp,eff = (σ2xp + (σsp . φ)2 )1/2 , σsp is the proton bunch length with φ the half crossing

angle ( ±  5 mrad). σxp and σxe are the r.m.s. widths of the proton and electron beam

respectively and σzp and σze are the r.m.s. heights.

4. THE RMS AS A MEASURE OF BEAM HEIGHT

In all cases it has been assumed that the r.m.s. value of the beam density distribution is a
good measure of beam size. It is interesting to consider to what extent this is true for different
distributions or are we implying always a Gaussian distribution? To examine this further
consider the simple case of two coasting beams interacting at an angle in one plane and with
identical distributions ρ(y) in the other plane. In the plane of the crossing there is no vertical
dispersion and all particles of one beam intersect all particles of the other beam, hence the
luminosity depends only on the distribution ρ(y). For convenience we can consider ρ(y) as
normalised to unity so that:

⌡⌠
-∞  

∞  

 ρ(y) dy    = 1. (9)

The mean square width of this distribution is then

<y2> = ⌡⌠
-∞  

∞  

 y2ρ (y ) dy    (10)

For given circulating currents (fixed numbers of particles) the interaction rate in this simple case
is proportional to:

L = ⌡⌠
-∞  

∞  

 ρ2(y ) dy    (11)

which we notice means that L = <ρ> since the general definition of an average is



<f> = ⌡⌠
-∞  

∞  

 f(y ) ρ (y )  dy    (12)

In other words L  is the density of the target beam, as seen on average by the bombarding
beam.

For a given distribution, we have seen (Eq. (6)) that L is inversely proportional to the
width of the distribution parametrised by the r.m.s. width <y2>1/2 .

Therefore L <y2>1/2   must be a constant. Suppose ρ is a Gaussian distribution

ρ = 
1

σ 2π
   exp -y2 / 2σ2 (13)

then using (10)

<y2> =  
1

σ 2π
   ⌡⌠

-∞  

∞  

y2exp -y2 / 2σ2 dy   = σ2(14)

and

L =  
1

2πσ2
 ⌡⌠
-∞  

∞  

exp -y2/σ2 dy     =   
1

2σ π
 (15)

and

L <y2>1/2  = 
1

2   π
   =  0.28209

The interesting observation made by H. Hereward [2] is that the same constant is
approximately valid for many different distributions. For example consider a rectangular
distribution defined by

ρ = 
1

2yo
   for  -yo  ≤  y  ≤ yo (16)

Hence  

<y2> = 
1

2yo
 ⌡⌠
-yo

+yo

 y2dy  = 
1
3   yo2 (17)

and

L = 
1

4yo2 ⌡⌠
-yo

+yo

 dy   = 
1

2yo
 . (18)

Therefore

L <y2>1/2  =  
1
2 

1
3   =  

3
6    =  0.28868

Similarly for the distributions of Table 1.



The range of the results given in the last column of Table l is only ±  3.7%. In fact
Hereward [2] was able to show that L <y2>1/2 is never less than 0.2683 (a parabolic
distribution) for any distribution ρ ≥ 0. Unfortunately he also showed that there is no
equivalent limit to the maximum value and the distribution illustrated in Fig. 2 can have an
arbitrarily large L <y2>1/2.
Table 1

 L <y2>1/2  for some typical distributions

Distribution within -yo ≤ y ≤ yo L < y2> 1 / 2

Parabola  ρ = 
  3

 4yo
 








  1   -  
y 2  

yo2 
                                

3 5
25    = 0.2683

Cosine     ρ = 
 π

 4yo
  cos  

 πy
 2yo

              
π2

16 




  1 -

8

π2
  = 0.2685

Triangle  ρ = 
  1
 y o

 








  1   -   |
y  

yo  
|                         

2
3 

1

6
   = 0.2722

Truncated Gaussian ρ = 
1

σ 2π α






yo

σ

   exp -y2 / 2σ2
Limit 

yo

σ
  → 0,          

3
6    = 0.2887

where  α(x) is the "normal probability integral" Limit 
yo

σ
  → ∞,       

1

2 π
   = 0.2809

 [α(x) =  
1

2π
   ⌡⌠

-x  

x  

exp -t2/2 dt   ] Minimum 
yo

σ
 ( 1.63 ) ,     = 0.2694

It can be argued that particle beams are much more likely to be something like a truncated
Gaussian or one of the other distributions of Table 1 than that of Fig. 2. In particular since gas
scattering or other random kick processes increase the width of a narrow beam making it more
and more Gaussian.

5. LUMINOSITY WITH COASTlNG BEAMS AND FINITE CROSSING 
ANGLE

Colliding beam machines with two separate rings and a crossing angle can operate with
coasting, that is to say unbunched beams. The interaction region length is then defined by the
beam dimension in the plane of the crossing angle as illustrated in Fig. 3 for the ISR. We can
again show that the luminosity is inversely proportional to the beam height.



In order to derive the luminosity formula assume two ribbon beams of height h and width
w  crossing in the horizontal plane with angle α  as in Fig. 3. We first note that since the
number of particles encountered must be the same for all observers we can choose any
convenient system such as the rest frame of beam 2. From Eq. (1) we know that we have to
determine the effective particle density and the length of traversal of the test particle Q  of
beam 1.

Fig. 2   A particle distribution that can have L <y2>1/2  arbitrarily large.  A fraction of the
particles are spread out over a constant width and contribute a constant amount of <y2>, while
the remaining fraction is in a peak that contributes increasingly to L as it is made narrower,

L = ⌡⌠
-∞  

∞  

ρ2(y) dy  .

Fig. 3  Schematic of coasting
beams of width W  and height h

colliding with a crossing angle α  in the horizontal plane

The Lorentz transformation needed to bring beam 2 to rest when applied to particle Q of
beam 1 changes the angle of traversal α to α' given by



tan α ' = 
sin α

γ2








cos  α   +   
β 2

β1

 (19)

where β1 and β2 are the usual ratios of the velocities of beam 1 and beam 2 respectively to that

of light (β = v/c) and γ = (1- β2)−1/2.
The length of traversal l' is then W 2/sinα'.

Since for equal energy beams β1 = β2 = β and γ1 = γ2 = γ,  Eq. (19) becomes

                  

tan α ' = 
sinα

γ(cosα  + 1)
    = 

tanα/2
γ

 

and by simple trigonometry

sin α ' =   
tan α/2

γ
1 + 

tan2 α /2
γ2

 

For high energy beams β ~ 1 and γ is large so that the second term can be neglected,
giving

sin α '  =    
tan α/2

γ
 

and

l '=  
W 2   γ

tan α/2
 (20)

The unit volume of beam 2 is also reduced by the Lorentz contraction so that the particle
density (n2' ) seen by Q  is given by

n2' =  
n2

γ
 (21)

Using (20) and (21) in Eq. (1) gives directly the number of interactions per traversal as
   

q . 
n2w2

tan α/2
 (22)

The number of particles per second in beam 1 is

n1v1w1h

and the total interaction rate is therefore

dN
dt    = q . 

n1n2v1w1w2 h

tan α/2
 (23)

in terms of current



n =   
I

ewhc   again assuming v = c



dN
dt    =    

σ
ce2

 
I1I2

h tan α /2
 (24)

Since we have two rings the beams can have different heights and profiles and are not
necessarily well aligned, so that h  must be replaced by heff where

heff  = 

⌡⌠
-∞  

∞  

ρ 1  d z     ⌡⌠
-∞  

∞  

ρ 2  d z    

⌡⌠
-∞  

∞  

ρ 1  ρ 2  d z    

  (25)

Using Eqs. (3) and (24) the luminosity L becomes

L = 
I1I2

ce2heff  tan α /2
 (26)

and once again the problem of determining the luminosity is essentially that of determining the
beam geometry term heff.

6. MEASUREMENT OF THE LUMINOSITY

In principle Eq. (7) implies that at least in the case of a single-ring collider the luminosity
is known provided the transverse beam dimensions can be measured. However, it is clear that
if the beam profiles are measured elsewhere in the machine they must be transformed to the
interaction point using a knowledge of βy at the point of measurement and at the beam crossing
point.

In practice, while machine designers make use of such expressions, at an operating
collider the experimenters require a more precise knowledge of the luminosity for normalization
purposes and must find other means. At an electron machine the standard technique is to set up
a monitor consisting of two small-angle electron telescopes to observe elastic (Bhabha)
scattering as in Fig. 4. This process has a well-known, exactly calculable, cross section, σΒ so
that from a measurement of the counting rate the luminosity can be determined using Eq. (3).
The σ  must of course be calculated for the acceptance of the detector

σ = 
⌡

⌠

θmin

θmax

  
dσ B

dΩ
      dΩ     (27)

               
with
dσB

dΩ
  = 

α2

8E2 
(2 - sin2θ  ) (4 - sin2θ  )

sin4θ 
  (28)

from quantum electrodynamics, where θmin and θmax are the minimum and maximum

scattering angles accepted by the monitor, E is the beam energy and α  is the fine structure
constant (e2 /hc). If care is taken to choose a counter configuration which minimises the effects



of interaction region displacements and other geometrical effects the luminosity can be
determined to a few per cent [3]. But, since counting rates are low, less sophisticated monitors
with larger counters are often used to give rapid values of the luminosity to ~ 10% accuracy.
These monitors are then very useful diagnostic devices of the machine, giving information on
beam sizes via Eq. (7) for example.

BHABHA SCATTERING e+ e- → e+ e-

Fig. 4  Layout of a typical luminosity monitor to detect
Bhabha scattering at electron-positron storage rings

7. THE VAN DER MEER METHOD OF LUMINOSITY MEASUREMENT

For two-ring colliders Eq. (25) allows a calculation of heff from a knowledge of the
vertical beam profiles but for the evaluation of the numerator the vertical distance between the
centres of the beam distributions at the crossing must be known. In the ISR it was out of the
question to use the standard bunched beam pick-up system to give this, mainly because of the
dependence of the closed orbit on intensity as a result of space charge forces. The only
possibility was to steer the beams vertically while observing a suitable monitor counting rate in
order to maximise the luminosity and obtain the h = 0 point.

This idea of vertical beam steering enabled S. van der Meer [4] to point out a much
cleverer way of measuring the luminosity.

If one measures the counting rate in a luminosity monitor, of a similar layout to that of
Fig. 4, as a function of relative vertical separation (h ) of the two beams, a curve similar to that
of Fig. 5 will result with a maximum at zero separation.  Van der Meer showed that the area
under this curve divided by the value at h = 0 is heff.

At separation h  the counting rate is

A . ⌡⌠ ρ 1 (z )  . ρ 2 (z -  h )  dz   (29)

where A is an unknown constant which includes the interaction cross section and the
acceptance of the monitor but which can be assumed constant at fixed energy.

Then the area under the counting rate curve is



 ⌡
⌠

[A⌡⌠ ρ1 (z) . ρ2 (z  - h ) dz ]dh   = A ⌡
⌠

[ρ1 (z)⌡⌠ ρ2 (z - h  ) dh ]dz   (30)

and the rate at h  = 0 is

Fig. 5  The counting rate in a luminosity monitor as a function of
the vertical separation (z1 - z2) between the two coasting beams.

A . ⌡⌠ ρ 1 (z )  . ρ 2 (z )  dz   (31)

If the integrals are taken over the entire non-zero region then

⌡⌠ ρ2 (z  - h ) dh   = ⌡⌠ ρ2 (z ) dz   

and therefore Eq. (30) divided by (31) is

⌡
⌠

[ρ1 (z)⌡⌠ ρ2 (z) dz ]dz  

⌡⌠ ρ 1 (z) . ρ 2 (z)  dz  
  = 

⌡⌠ ρ1 (z)dz ⌡⌠ ρ2 (z)dz 

⌡⌠ ρ 1  (z ) . ρ 2 (z )  dz  
  = heff (32)

With heff determined the luminosity can be calculated using Eq. (26). The currents I1  and I2
can be very accurately measured using a DC current transformer [5] and the crossing angle of
the beams is known to high precision.

Since from the definition of luminosity the counting rate (RM) in a monitor is given by

RM  = σM  . L
           



the monitor cross section σM has in effect been measured by the above procedure and to the
extent that the monitor rate is unaffected by backgrounds, geometry of the crossing region and
its efficiency does not change, this monitor rate can be used as a direct measure of luminosity.

At the ISR this technique worked extremely well and with occasional calibrations of their
monitors the experimenters always knew the luminosity to within a few per cent. For particular
experiments such as the measurement of the total p-p and p-p̄  cross section special care was
taken and an error of less than 1% was achieved. In particular this required a calibration of the
beam displacement (h) used in the luminosity measurement.

8. VERTICAL BEAM DISPLACEMENTS AT THE ISR

The most convenient way of creating a local closed orbit bump is to place two dipole
magnets a quarter of a wavelength before and after the crossing point. In practice, however, the
phase advances cannot be exact because of lack of space or simply because the tune of the
machine is not fixed. At the ISR this problem was solved by using the horizontal field steering
magnets of the adjacent intersecting regions to make the necessary corrections. The orbit
distortion was then as illustrated by Fig. 6. The problem was to ensure that the one millimetre
nominal displacement at the intersection was correct to a few parts per thousand and was
reproducible to a similar level. This is a much better precision than is obtainable with the usual
programs such as AGS [6] or MAD [7] and in addition great care with power supply setting
and magnet hysteresis was required.

The solution was to calibrate the beam displacements using a scraper driven by a
precision screw [8]. At the ISR special scrapers [9] were used for obtaining vertical beam
profiles but as in this case only the precise centre of the distribution was required the technique
was simplified so that it amounted to giving the beam a sharp edge with say the upper scraper
and then finding that edge with the lower scraper. By repeating this procedure many times a
very precise determination of the beam centre was possible. The location of the beam centre to
±  3 µm was more than adequate to establish the linearity of the displacements, the success of a
hysteresis correction routine, and to provide an absolute calibration to within ±  4   0/0 0 .
Dependence of the bump amplitude on all sorts of parameters such as machine tune, beam
intensity, betatron coupling and even the horizontal closed orbit were all studied in order to
make sure that the displacement scale measured with the scrapers using single pulses was the
same as for the beams of a few amperes which were used to measure the total cross sections.

9. CONCLUDING REMARKS

The use of the van de Meer method to measure heff and calibrate luminosity monitors was
a great success at the ISR; where, as explained above, the luminosity depended only on the
beam dimensions in one plane. In the more usual case of bunched beams, where both
horizontal and vertical beam dimensions influence the luminosity it is in principle still possible
to use the van der Meer method by scanning in both planes. However, the problems alluded to
above become even more important and for finite crossing angles monitor acceptance as a
function of longitudinal position has to be considered very carefully as the collision region is
displaced as the beams are scanned in the plane of the crossing. In practice a combination of
several methods including comparing small angle scattering with the total cross section,
through the optical theorem, are used to establish the luminosity at colliders. For the next
generation of hadron colliders such as the LHC and SSC there will be additional problems
arising from the very small angles of elastic scattering in the 10 TeV region. Indeed most
secondaries also stay in the beam pipe, which will not only make the use of the optical theorem
very difficult but will also make the choice of a good luminosity monitor less than obvious. At
this time it seems doubtful if the true luminosity of these future colliders will ever be known
with an absolute accuracy better than a few percent.



Fig. 6  An AGS tracking of a 1-mm closed orbit bump as



used for luminosity measurements at an ISR intersection.
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TRANSVERSE BEAM DYNAMICS

E. Wilson
CERN, Geneva, Switzerland

Abstract
This contribution describes the transverse dynamics of particles in a
synchrotron.  It builds on other contributions to the General
Accelerator School for definitions of transport matrices and lattice
functions.  After a discussion of the conservation laws which govern
emittance, the effects of closed orbit distortion and other field errors
are treated.  A number of practical methods of measuring the
transverse behaviour of particles are outlined.

1. INTRODUCTION

During the design phase of an accelerator project a considerable amount of calculation
and discussion centres around the choice of the transverse focusing system.  The lattice,
formed by the pattern of bending and focusing magnets, has a strong influence on the aperture
of these magnets which are usually the most expensive single system in the accelerator.

Figure 1 shows the lattice design for the SPS at CERN.  The ring consists of a chain of
108 such cells.  The principles of designing such a lattice have been treated elsewhere in this
school by Rossbach and Schmüser [1] and the methods of modifying the regular pattern of
cells to make matched insertions where space is needed for accelerating structures, extraction
systems and for experiments where colliding beams interact, will be the subject of another talk
[2].

Fig. 1  One cell of the CERN 400 GeV Super Proton Synchrotron representing 1/108 of the
circumference.  The pattern of dipole and quadrupole magnets (F and D) is shown
above.  Beam particles make betatron oscillations within the shaded envelopes.



In this series of lectures I shall concentrate on those aspects of transverse dynamics
which frustrate the designer or plague the person whose job it is to make the machine perform
as well as theory predicts.  I shall start with Liouville's theorem because this is an inescapable
limitation to the beam size.  Next I shall explain the distortion of the central orbit of the
machine due to errors in the bending field.  I shall then move on to explain how errors in
quadrupole gradients may lead to instability of the betatron motion at certain Q values known
as stopbands.  Finally I shall explain why it is necessary to correct the variation of Q with
momentum with sextupoles in order to avoid these stopbands.

The more advanced topics of the influence of fields which couple the two transverse
phase planes together and fields whose non-linear nature can excite resonances which extract
particles are given in two separate talks in this school [3,4].  In those talks we shall move
away from the predictable linear behaviour to glimpse the fascinating jungle of effects which
stretch our minds at the boundaries of accelerator theory and which will be fully developed in
the Advanced Course of this school.

Since the effects I shall mention are annoying and best eliminated I shall try to indicate
how measurements may be made on a circulating beam and its transverse behaviour corrected.
Many of the effects I shall describe need only to be estimated rather than accurately predicted
but it is very important to understand their mechanism.  I shall therefore prefer to introduce
concepts with approximate but physically revealing theory.

I make no apologies for building the theory from elementary definitions. These have to
be restated to give those not fortunate enough to have eaten and slept in phase space a firm
basic understanding.  I hope that others who become impatient with the redefinition of basic
quantities will be eventually gratified by the later stages in the exposition of the theory and the
references I have given for further study.

2. LIOUVILLE'S THEOREM

Fig. 2  Liouville's theorem applies to this ellipse

Particle dynamics obey a conservation law of phase space called Liouville's theorem. A
beam of particles may be represented in a phase space  diagram as a cloud of points within a
closed contour, usually an ellipse (Fig. 2).



The area within the contour is proportional to the emittance of the beam.  At constant
energy we express this as the area ε  = ∫ y' dy  in units of π.mm.milliradians. We have shown
the contour at a place where the β  function is at a maximum or minimum and where the major
and minor axes of an upright ellipse are √(εβ )and √(ε/β.)

This emittance is conserved, whatever  magnetic focusing or bending operation we do
on the beam.  This is a consequence of the conservation of transverse momentum or, more
strictly, a consequence of Liouville's theorem which states that:

"In the vicinity of a particle, the particle density in phase space is  constant if the
particles move in an external magnetic field or in a  general field in which the forces do
not depend upon velocity."

Clearly this definition rules out the application of Liouville's theorem to space charge
problems or when particles emit synchrotron light.  However, with these exceptions, it allows
us to be confident that though the beam cross section may take on many shapes around the
accelerator, its phase space area will not change (Fig. 3).  Thus if the beam is at a narrow
waist (a) its divergence will be large. In an F quadrupole (d) where the betatron function is
maximum, its  divergence will be small and a small angular deflection can greatly dilute phase
space.

Fig. 3  The development of a constant emittance beam in phase space at a) a narrow waist, b) a
broad waist or maximum in the beta  function, c) place where the beam is diverging
and d) at a broad maximum at the centre of an F lens.

In regions where the β  function is not at a maximum or minimum the ellipse is tilted
representing a beam that is either diverging or converging. In Fig. 4 we see the ellipse
portrayed in terms of the Twiss parameters.  The equation of the ellipse (often called the
Courant and Snyder invariant) is:

  
γ s( )y2 + 2α s( )yy'+β s( )y'2 = ε  .

and the invariance of this quantity as we move to different points in the ring is a consequence
of Liouville's theorem.

All of this is true for a beam circulating at constant energy, but we may go further and
apply Liouville's theorem to a proton beam during acceleration.  To do so we must express
emittance in the canonical phase space (q, p). and we must first look carefully at the
coordinates:  displacement, y, and divergence, y', we have been using so far. The canonical
coordinates of relativistic mechanics are:

  

q = y

p = mẏ

1− v2 c2
= mcγβy



Fig. 4  The parameters of a phase-space ellipse containing an emittance ε at a point in the
lattice between quadrupoles

where we are obliged to redefine the meaning of β  and γ:

  

βy = ẏ / c  ,

γ = 1 − ẋ2 + ż2 + ṡ2( ) / c2[ ]−1/2
 ,

m =  rest mass ,

c =  velocity of light .

The divergence is therefore:

                                          
y' = dy

ds
= ẏ

ṡ
=

βy

β
 ,

where

                                           β = v / c  .

and the canonically conjugate p and q are therefore related to y and y':

                                                       

p = mcβγ ⋅ y'

q = y

In its general form Liouville's theorem states:

p  dq =  constant = mcβγ y' dy = mcβγ ⋅ πε = p0c ⋅ πε∫∫



where:

p0  is the momentum of the particle,

ε, the emittance, which is invariant at any given energy.

Accelerator physicists often quote an invariant emittance:

ε* = βγε π ⋅ mm.mrad[ ]  .

As acceleration proceeds the normalized emittance is conserved;  βγ  is just proportional
to the momentum or, above a few GeV, to the energy of the proton.  Thus, we expect the
emittance ε to shrink "adiabatically" during acceleration as 1 / p0  and the beam dimensions to
shrink as 1 / p0

1/2  (Fig. 5).

As a rule, proton accelerators need their full aperture at injection and it is then that their
design is most critical.  It is for this reason too, that multistage accelerators such as the Linac-
PSB-PS complex are used, since by inserting the PSB the energy of the Linac beam is
increased, thus allowing a beam of larger normalized emittance ε *  and containing more
protons, to be injected into the PS.

Fig. 5  Adiabatic shrinking

2.1 Chains of accelerators

In a chain of proton accelerators such as those at FNAL or CERN the invariant
emittance, fixed by space charge at the beginning of the linac may be conserved to several
hundred GeV.

Of course, in practice there may be mismatches between machines or non-linear fields
which dilate the emittance.  There are even techniques, stochastic and electron cooling, which
condense the emittance and appear to defeat Liouville's theorem.  In fact they merely
rearrange and centralise the particles within the emittance contour rather than affecting the
mean density.



Another, more mathematical, description of Liouville's theorem is to consider the
transformation of a small  element of phase space bounded by eight particles, including a
ninth and excluding a tenth particle.  Suppose the two diagrams of Fig. 6 are related by the
transformation, M.  Then, in this picture area is related by the Jacobian determinant:

J = M =

∂y

∂y0

∂y

∂y0
'

∂y'
∂y0

∂y'

∂y0
'

= 1 .

Since the determinant is 1, area is conserved and Liouville follows.  In other words
Liouville's theorem implies that the determinant of the transport matrix is unity.

Fig. 6  The development of 10 points in phase space undergoing a Liouvillian transformation

2.2 Exceptions to Liouville's theorem

By now, anyone who comes from a laboratory that has an electron synchrotron will be
beginning to experience a rising tide of protest.  In fact, the invariance of normalised
emittance and the shrinking of physical emittance with energy is quite the opposite of what
happens in an electron machine.

As we shall read in later contributions on synchrotron radiation [5], electrons, being
highly relativistic, emit quanta of radiation as they are accelerated.  The size of the average
quantum increases with E3 and the rate of emission as E.  This quantized emission causes
particles to jump around in momentum, changes which couple into transverse phase space.  At
the same time there is a steady tendency for particles near the edge of the emittance to lose
transverse energy and fall back towards the centre.  In an electron machine the emittance,
determined by the equilibrium between these two effects, grows with E2.  Liouville's theorem
only applies to particles guided by external fields and does not apply to electron machines
where particles emit some of their own energy.

2.3 Definitions of emittance

Within the boundary of transverse phase space, the emittance of the beam, particles are
usually distributed in a population which appears Gaussian when projected on a vertical or
horizontal plane.  The emittance boundary is traditionally chosen to include 95% of a
Gaussian beam or ≈ 2 σy in a proton machine.  In an electron machine a 2 σ boundary would
be too close to the beam.  An aperture stop placed at this distance would rather rapidly absorb



most of the beam as quantum emission stirs it up in phase space.  The physical boundary
allowed, depends on the lifetime required but is in the region 6 σ to 10 σ.  What is normally

quoted as an emittance for an electron beam corresponds to σ of the Gaussian projection.
There is consequently a factor 4 between emittance defined by electron and proton people.
Beware! Just to complicate matters proton people have of late taken to using the σ2/β
definition of emittance used by electron people.

2.4 Acceptance

In contrast, the acceptance, A , the size of the hole which is the vacuum chamber
transformed into phase space, is unambiguous.  Remembering from the lectures on focusing
that particles follow an elliptical trajectory with axes

  
∆y = ± εβ  ,    ∆y' = ± ε / β

and area πε we can write

  

εprotons=
2σ( )2

β

εelectrons=
σ2

β

A = r2

β

where r is the semi-axis of the chamber.

2.5 Measurement of emittance

It is my intention to give you some idea of the means used to measure the various optical
quantities as they are mentioned.  The methods of observing particle beams are much more
limited than theory might suggest and it is as well to bear this in mind and aim for simplicity
in arriving at a design rather than to rely upon a complex procedure.

The most reliable and straightforward way to measure proton beam size is to drive a
scraper into the beam or move the beam across the scraper and integrate the beam loss curve.
Electron machines observe beam size by refocusing the synchrotron light emitted, though the
beam dimensions can be so small that special image scanning techniques are needed to resolve
the image.  A clever, non-destructive device used for proton machines is the Ionisation Beam
Scanner [6].  Figure 7 shows the principle in which a zero electrical potential scans across the
beam allowing electrons to be collected from its surface as the beam ionises the residual gas.
A typical signal is given in Fig. 8.

This IBS has the advantage that it can give a "mountain range" display of how the beam
shrinks during acceleration (Fig. 9).  Its disadvantage is that the space charge fields of an
intense beam can distort the width of the peak which represents the beam.  For this reason it is
rarely used nowadays except, as in this talk, for pedagogical reasons.

Another diagnostic tool is a wire which is scanned across the beam very rapidly.
Secondary particles generated are counted with a scintillation telescope.  Here one must be
careful not to dilate the beam by scattering (or burn the wire).



Fig. 7  Diagram showing IBS principle of beam scanning



Fig. 8  Ideal ion beam scanner scope trace

Fig. 9 Mountain range display and horizontal profile;  1 cm/division horizontal profile at 
350 GeV

3. A SIMPLIFIED TREATMENT OF BETATRON MOTION

The earlier lectures on focusing treat betatron motion with all the rigour necessary to
design a machine.  However some readers who are new to the field might find the following
sections too confusing if we carry through all the terms from the rigorous theory.  We shall
therefore use two models of the motion which are approximate but graphic.  We shall confine
our examination of the motion to maxima or minima in the beta function where the ellipse is
upright as in Fig. 10.



In Fig. 10b we see the ellipse, plotted at a point where the amplitude function β is large
(as it is near F quadrupoles).  The ellipse will be very wide and not very high in divergence
angle and it is in such positions that a small angular kick has the greatest effect on the beam.
Imagine, for example, how little angular displacement is needed to move the ellipse by its own
height and increase the emittance by a factor 2.  Thus, in a machine with a lattice like Fig. 1
most of the damage done to the beam by bad fields which cause angular kicks, happens near
the F quadrupoles.

Fig. 10  Phase-space diagram at (a) a β minimum and (b) a β maximum
3.1 Circle approximation

So predominant is the effect of perturbations near 
  
β̂  positions that you can often do

quite good "back of the envelope" calculations by closing your eyes to what happens to the
protons in between F quadrupoles.  At F quadrupoles the ellipse always looks the same, i.e.
upright, with semi-axes in displacement and divergence

βε( ),  ε / β( )

This can be reduced to a circle radius 
  

βε  by using the new coordinates

  

y = y

p = βy'  .

If the machine has 108 periods and a Q of 27.6, the proton advances in phase by
2πQ/108 from one period to the next;  this is just the angle subtended at the centre of the circle
multiplied by Q.  After one turn of the machine, it has made 27 revolutions of the circle plus
an angle of 2π multiplied by the fractional part of Q, see Fig. 11.

This renormalization of the phase space can be done in a more rigorous way by choosing
new variables (η ,ψ) which transform the distortion of the phase and amplitude so that the
motion becomes that of a harmonic oscillator.  We must, of course, transform back again to
see physical displacements, but the mathematics becomes more transparent.  This
simplification is discussed in the next section.



Fig. 11  Circle diagram (locus at F quadrupoles)

3.2 The (η,ψ) description of AG focusing

A more rigorous renormalization of phase space which does not imply any
approximation but which simplifies the problem is the (η,ψ) transformation to convert Hill's
equation into that of a harmonic oscillator:

  

d2η
dψ 2 + Q2η = g ψ( )

where g(ψ) is the azimuthal pattern of some perturbation of the guide field related to

  

F s( ) = ∆B s( )
Bρ

 .

In the ideal case g(ψ) is everywhere zero.

I will not bother you with how this transformation is found, but just state it.  The new
coordinates are related to the old:

  

η = β −1/2y

ψ = ds

Qβ∫  ,    g ψ( ) = Q2β3/2F s( )  ,

where ψ advances by 2π every revolution.  It coincides with θ at each β  or   β  location and
does not depart very much from θ in between.

4. THE Q VALUES

A full understanding of transverse dynamics is rather difficult until one has an almost
tactile appreciation of the nature of the oscillations.  The simple models of the last section are
intended to help but even more insight may be had from contemplating the methods of
measuring the Q values.  A number of methods are possible and each reveals a different aspect
of the motion.



4.1 Measurement of Q by kicking

The method is to fire a kicker magnet with a pulse lasting less than one turn and observe
the way in which the centre of charge of the beam oscillates as it passes a pick-up on
sequential turns (see Fig. 12).

Fig. 12 Ideal Q-measurement signal following a kick which excites coherent betatron
motion. Q = integer ±1/6.

In order to understand Fig. 12 it is convenient to imagine a beam consisting of one short
longitudinal bunch.  The line density current passing a detector is then a Fourier series

  

ρ t( ) = an sin 2πnf0
n
∑ t  .

This beam position detector sees the betatron oscillations following the kick as:

  
y t( ) = y0 cos 2πf0Qt

but modulated by ρ(t).

An oscilloscope connected to the pick-up will give a display of the modulated signal, the
product of ρ and y

ρ t( )y t( ) = 1
2

any0
n
∑ sin 2π n + Q( ) f 0t + sin 2π n − Q( ) f 0t[ ]  .

The envelope of the oscilloscope signal will be the slowest of these terms in which (n-Q)
is the fractional part of Q.  The other terms in the series reconstruct the spikes in the signal
occurring once per turn.  Note that I have made use of the elementary relation:

  

sin a  cos b = 1
2

sin a + b( ) +  sin a − b( )[ ] .



This will be often used when we come to look at resonances.

4.2 R.F. knockout and Q measurement

A very simple form of resonance can be induced by applying a deflecting field with the
frequency of a betatron sideband as the frequencies (n ± Q)f0 are called.  We can easily invert
the above treatment to show that if you apply a signal of the form

  
sin[2π(n − Q) f0t]

then the particle passing the electrodes of the deflector sees the deflector every turn and
experiences a kick

sin 2πnf 0t[ ]sin 2π n − Q( )nf 0t[ ] .

Using again the elementary relation of Section 4.1 we see that the (a - b) component is
in resonance with the betatron motion

sin 2πQf 0t  .

Once in resonance, the particle is deflected on each turn by a kick which increases its
amplitude of transverse oscillations in phase with the excitation and blows up the beam. Note
that this like the previous method gives a value of the fractional part of Q with respect to the
nearest integer but gives no information about which integer this is.

4.3 Measurement by analysing the frequencies emitted by the beam

It is also possible nowadays to detect these betatron frequencies among the statistical
noise signal detected by a transverse pick-up which can be just a pair of plates and displayed
with an integrating spectrum analyser which is really a scanning radio receiver connected to
an oscilloscope.  Peaks appear as sidebands to the revolution frequency in the display of
response versus frequency (Fig. 13).  Their separation is 2∆Qf 0  where ∆Q is the fractional
part of Q.

Fig. 13  Transverse pickup seen on a spectrum analyser

One may wonder why the particles, evenly spread around the ellipse in phase space, can
generate such a signal.  The answer is that they are finite in number and the pick-up samples



but a small fraction of them.  In a sample there are always significant statistical fluctuations of
the centre of charge, or mean displacement, which the spectrum analyser picks up.

5. CLOSED-ORBIT DISTORTION

As an illustration of the power of (η,ψ) coordinates we look at closed-orbit distortions
which are produced by field errors.  Even the best synchrotron magnets cannot be made
absolutely identical.  Each magnet differs from the mean by some small error in integrated
strength:

  

δ Bl( ) = B dl − B dl∫( )∫ ideal
 .

These and other machine imperfections, such as survey errors which can be expressed as
equivalent to field errors, are randomly spread around the ring.

We can use the (η,ψ) coordinates to find out how this perturbs a proton which would
otherwise have had zero betatron amplitude.  Such a proton no longer goes straight down the
centre of the vacuum chamber but follows a perturbed closed orbit about which the normal
betatron motion of the other protons can be superimposed.

One of the most important considerations in designing a machine is to keep this closed
orbit distortion to a minimum because it eats up available machine aperture.  Also, once we
have succeeded in getting a few turns round the machine, we want to reduce this distortion
with correcting dipole magnets.  As a first step let us consider the effect on the orbit of such a
correcting dipole located at a position where 

  
β = βK  and observed at another position.

A short dipole (we shall assume it is a delta function in s) makes a constant angular kick
in divergence

  
δy'= δ Bl( ) / Bρ( )  ,

which  perturbs the orbit  trajectory which elsewhere obeys

  

d2η
dψ 2 + Q2η = 0

η = η0 cos Qψ + λ( )  .

We choose ψ = 0 origin to be diametrically opposite the kick.  Then by symmetry λ = 0
and the "orbit" is that shown in Fig. 14.



Fig. 14 Tracing the closed orbit for one turn in (η,ψ) space with a single kick at ψ = π .  (The
Q value is about 5.6.)

Since, by definition, the trajectory is closed, continuity demands that the kick δy'

matches the change in slope at ψ = π, the location of the dipole.

Differentiating the orbit equation

  

dη
dψ

= −η0Q  sin Qψ = −η0Q sin Qπ  ,    at ψ = π  .

To relate this to the real kick we use

  

dψ
ds

= 1
QβK

 ,    
dy

ds
= βK

dη
ds

 ,

therefore

  

δy'
2

= δ Bl( )
2Bρ

= dy

ds
= βK

dη
dψ

dψ
ds

= −η0

βK

 sin πQ

η0 =
βK

2 sin πQ
δy'  .

Returning to physical coordinates we can write the orbit's equation in the range
−π < ψ s( ) < π:

  

y = β s( )η0 cos Qψ s( ) =
β s( )βK

2 sin πQ

δ Bl( )
Bρ












 cos Qψ s( )  .

The expression in square brackets is the maximum amplitude of the perturbation at β(s).

The above expression is rigorous but as an example of the use of the circle
approximation consider the special case where the kink and observation are at the same value
of beta.  We see quite clearly from Fig. 15 how the equation for the amplitude of the distortion
appear.



  

Fig. 15 Tracing a closed orbit for one turn in the circle diagram with a single kick.  The path 
is ABCD.

In estimating the effect of a random distribution of dipole errors we must take the r.m.s.
average, weighted according to the 

  
βK values over all of the kicks 

  
δyi  from the N magnets in

the ring.  The expectation value of the amplitude is:

  

y s( ) =
β s( )

2 2 sin πQ
βiδyi

'2

i
∑

≈
β s( )β

2 2 sin πQ
  N  

∆Bl( )rms

Bρ
 .

The factor √2 comes from averaging over all the phases of distortion produced.

The principal imperfections in a synchrotron causing orbit distortion are shown in
Table 1 [7].  The first line in the table represents the random variations in the position of
quadrupole magnets with respect to their ideal location.  A small displacement of a quadrupole
gives an effective dipole perturbation, kl ∆y.  The tilt of bending magnets causes a small
resultant dipole in the horizontal direction which deflects vertically.  Obviously random errors
in magnet gap, length or in the coercivity of the steel yoke which determines remanent field
contribute to the third line.  Both remanent and stray fields in straight sections tend to be
constant and their effect scales as l/B as the machine pulses.  Their effect should therefore be
evaluated where it is worst, i.e. at injection.  In a modern superconducting machine the
persistent current fields play the role of remanent effects.

Table 1
Sources of Closed Orbit Distortion

Type of element Source of kick r.m.s. value
  
∆Bl Bρ( )

rms
plane

Gradient magnet Displacement <∆y> kili<∆y> x,z

Bending magnet
(bending angle = θi)

Tilt <∆> θi <∆> z



Bending magnet Field error <∆B/B> θi <∆Β/Β> x

Straight sections
(length = di)

Stray field <∆Βs>
  

di ∆Bs Bρ( )inj
x,z

In designing a machine it used to be conventional wisdom to make sure that the vacuum
chamber will accommodate twice this expectation value.  The probability of no particles
making the first turn is thus reduced to a mere 2%.  More modern designs rely on closed-orbit
steering to thread the first turn and thereafter assume that orbit correction to a millimeter or so
will be feasible.

5.1 The Fourier harmonics of the error distribution

One of the advantages of reducing the problem to that of a harmonic oscillator in (η,ψ)
coordinates is that perturbations can be treated as the driving term of the oscillator, broken
down into their Fourier components, and the whole problem solved like the forced oscillations
of a pendulum.  The driving term is put on the right hand side of Hill's equation:

  

d2η
dψ 2 + Q2η = Q2 fke

ikψ

n=1

∞

∑ = Q2β3/2F s( )  ,

where F(s) is the azimuthal pattern of the perturbation ∆B/(Bρ); and Q2β 3/2  comes from the

transformation from physical coordinates to (η,ψ).

The Fourier amplitudes are defined:

  

f ψ( ) = β3/2F s( ) = fk
k
∑ eikψ  ,

where

f k = 1
2π

f ψ( )e−ikψ

0

2π

∫ dψ = 1
2πQ

β1/2F s( )∫ e−ikψ ds  .

We can then solve Hill's equation as

  

η = Q2 fk
Q2 − k2

n=1

∞

∑ eikψ    (or its real part) .

But be careful.  Before doing the Fourier analysis, ∆B must be multiplied by β1/2 if the

physical variable s is chosen as an independent variable, or β3/2 if ψ, the transformed phase, is
used.

Looking carefully at the above expression, we see that this differs from the general
solutions

  
η = η0e±iQψ



which describe betatron motion about the equilibrium orbit, because the wave number is an
integer k.  In fact it is a closed orbit, a particular solution of Hill's differential equation, to
which we must add the general solutions which describe betatron oscillations about this orbit.

The function Q2/(Q2 - k2) is sometimes called the magnification factor for a particular
Fourier component of ∆B.  It rises steeply when the wave number k is close to Q, and the
effect of the two Fourier components in the random error pattern with k values adjacent to Q
accounts for about 60% of the total distortion due to all random errors.  Figure 16 shows a
closed orbit pattern from electrostatic pick-ups in the FNAL ring, whose Q is between 19 and
20.  The pattern shows strong components with these wave numbers.  If Q is deliberately
tuned to an integer k, the magnification factor is infinite and errors of that frequency make the
proton walk out of the machine.  This is in fact an integer resonance driven by dipole errors.

One instructive method of correcting orbit distortion is to apply a pattern of dipole
correctors which excite an equal and opposite Fourier component of error at an integer close
to Q.

Fig. 16  FNAL main ring electrostatic pick-ups show closed orbit around the ring (Q   ≅ 19.2)

5.2 Closed-orbit bumps

It is often important to deliberately distort a closed orbit bump at one part of the
circumference without affecting the central orbit elsewhere.  A typical example of this is to
make the beam ride close to an extraction septum or within the narrow jaws of an extraction
kicker magnet placed just outside the normal acceptance of the ring.

If one is lucky enough to find two positions for small dipole deflecting magnets spaced
by π in betatron phase and centred about the place where the bump is required, the solution is
very simple.  The distortion produced is:

y s( ) = δ β s( )βk  sin φ − φ0( )

where β(s) is the beta function at s, βk is the beta function at the deflector and



  

δ = ∆ Bl( )
Bρ

 .

This half-wave bump has a very simple configuration in normalised phase space
(Fig. 17)  We can immediately see that the central orbit (at the origin) is not disturbed
elsewhere).

Fig. 17  An exact half-wave bump using two dipoles

Note that the magnitude of the bump is not only proportional to the root of the local β(s)

but is proportional to βk .  Since β is largest at F quadrupoles this is clearly where one
should locate dipole bumpers.

Very often F-quadrupoles are not π apart in phase but 2π/3. this means the dipoles are

slightly less effective (sin π/3 = √3/2) but also we must introduce a third dipole to form a triad.
The third dipole is best located near the peak of the bump.

Figure 18 shows how the three bumps add up in normalised phase space.  The case
illustrated is the general one with dipoles of different strengths and spaced differently in
phase.

In order to find an exact solution to the problem of a triad bump we use the matrix
which transforms a point in phase space from one location to another (Eq. 1 of Ref. [2]).

y

y'







=
β / β0( ) cos ∆φ + α0 sin ∆φ( )                             ,   β0β  sin ∆φ

−1 / β0β( ) α − α0( ) cos ∆φ + 1 + αα0( ) sin ∆φ{ }  ,   β / β0( ) cos ∆φ − α sin ∆φ( )











y0

y0
'













Fig. 18  A general bump using three dipoles

It is the element which links y to y 0which describes the trajectory.  Following the kick

δ1

  
y2 = δ1 β2β1  sin φ2 − φ1( )  .

The same argument can be used to describe the trajectory working back from δ3

  
y2 = −δ3 β2β3  sin φ2 − φ3( )  .

The kick δ2 must be the change in the derivative

  

δ2 = δ1
β1

β2
 cos φ2 − φ1( ) + δ3

β3

β2
 cos φ3 − φ2( )  .

Here the β2  in the denominator comes from multiplying by dφ/ds = 1 / β2  at the
location of the cusp.

We can rewrite these relations

  

β1δ1  sin φ1,2 = β3δ3  sin φ2,3

β2δ2  = β1δ1  cos φ1,2 + β3δ3  cos φ2,3  .

These relations can be seen to be true for the triangle of sides, δ / β  and angles, φ
which can be solved by the well-known symmetric relation

δ1 β1

sin φ2,3
=

δ2 β2

sin φ3,1
=

δ3 β3

sin φ1,2
 .

5.3 The measurement and correction of closed orbits

Electrostatic plates with diagonal slots are commonly used to measure the transverse
position of a bunched beam.  We have seen that the predominant harmonic in the uncorrected
orbit is close to Q and to establish its amplitude and phase one really needs four pick-ups per



wavelength.  Given the present fashion for FODO lattices with about 90° per cell and the need
to measure in both planes, the final solution is usually one pickup at each quadrupole.  The
ones at F-quadrupoles, where beta is large horizontally, are the most accurate for the
horizontal plane while others at D-quadrupoles are best for the vertical correction.

Similar arguments lead us to have one horizontally defecting dipole at each F-
quadrupole where βx  is large, and one vertically deflecting dipole at each D-quadrupole,

where βz is large.

Clearly so many correcting dipoles are unnecessary if only the two principal harmonics
are to be corrected.  In Fig. 19, one can excite the l9th harmonic with a single dipole, though a
pair in opposition are necessary if their bending effect is to cancel and a further pair are
needed in quadrature for the phase making four per harmonic and per plane.  However, studies
show that this simple harmonic correction still leaves about 30% of the initial distortion.

Another method consists in applying a set of superposed beam bumps formed along the
lines calculated above;  each a triad which compensates the measured orbit position at its
centre.  Given the power of modern computers this kind of correction can be calculated and
applied all round the ring in a few seconds.

Fig. 19 Diagram showing the sign of correction dipoles necessary to excite or compensate 
even or odd Fourier components of distortion around the ring of a synchrotron

Some machines do not have dipole correctors which are sufficiently strong to correct an
orbit at their top energy and quadrupole magnets must be displaced upwards or sideways a
distance ∆y to apply an effective dipole:

  

∆ Bl( )
Bρ

= k∆y  .

Such displacements are tedious to apply to all quadrupoles in such large machines as the
SPS or LEP and indeed the accumulated effect of errors in moving so many quadrupoles by a
few tenths of a millimetre might even make the orbit worse.

An alternative [8] to moving all quadrupoles (or powering all dipoles) is to select those
which are most effective in correcting the orbit.  Stored in the computer is a large matrix G
with as many rows as pick-ups and as many columns as correctors.  Each term describes the
effect Yi  of a corrector ∆ j  at the ith pick-up

  Y = G∆ .



Once the orbit is measured the column matrix Y is entered and can be converted into a set of
corrections ∆:

∆∆ = − G̃G( )−1
G̃


Y

But since we first want to select the most effective correctors, we examine the terms of
Ỹ G∆ which is a measure of efficiency.  The best corrector is retained while a search is made
for another one to form a doublet.  At the cost of considerable computing time one can find
any number of best correctors.  The method also has the advantage that it can be used if one or
more of the pick-ups is out of action.

One last comment on orbit correction is that while originally invented to save on magnet
aperture, orbit corrections now seem an essential procedure to reduce the effects of non-
linearities in the dynamics of synchrotrons.  One example is that orbit distortion in the
sextupoles, which all machines have for correcting chromaticity, will generate a pattern of
quadrupole gradient errors and drive half-integer stopbands.

6. GRADIENT ERRORS

Fig. 20 Matrix representation of a small quadrupole, m0  subject to an error which is a 
component of the matrix for the whole ring, M

Quadrupoles as well as bending magnets may have errors.  Understanding the effect of
such gradient errors is a useful preparation for the study of non-linear errors.  We represent a
ring of magnets as a circle in Fig. 20 and the matrix for one turn starting at A as:

  

M0 s( ) =
cos ϕ0 + α0  sin ϕ0  , β0  sin ϕ0

−γ 0  sin ϕ0  , cos ϕ0 − α0  sin ϕ0







 .

Now consider a small gradient error which afflicts a quadrupole in the lattice between B
and A.  The unperturbed matrix for this quadrupole is m0  and when perturbed the quadrupole
matrix is

m0 =
1 0

−k0 s( )ds 1






 ,

and perturbed, a matrix

m =
1 0

− k0 s( ) + δk s( )[ ]ds 1






 .



The unperturbed transfer matrix for the whole machine:

  

M0 s( ) =
cosφ0 + α0  sin φ0 β0  sin φ0

−γ 0  sin φ0 cosφ0 − α0  sin φ0







includes m0.

To find the perturbed transfer matrix we make a turn, back-track through the small

unperturbed quadrupole m0
−1( ),  and then proceed through the perturbed quadrupole (m).

Translated into matrix algebra,

  
M s( ) = mm0

−1M0  .

Now

  

mm0
−1 =

1 0

−δk s1( )ds 1






 .

So

M =
cos φ0 + α0 sin φ0  , β0 sin φ0

−δk s( )ds cos φ0 + α0 sin φ0( ) − γ sin φ0  , −δk s( )dsβ0 sin φ0 +  cos φ0 − α0 sin φ0







 .

Now 1/2(Tr M)= cos φ.  So the change in cos φ is

∆ cos φ( ) = −∆φ sin φ0 = sin φ0

2
β0 s( )δk s( )ds

2π∆Q = ∆φ = β s( )δk s( )ds

2
 .

Since betatron phase is not involved in this equation we are tempted to integrate around
the ring to obtain

  

∆Q = 1
4π

β s( )∫ δk s( )  ds .

This result is often used in accelerator theory and is surprising in that we see that the
change is independent of the phase of the perturbation.  However, this equation is only
approximately true since as we add each elemental focusing error it modifies β(s) as well as Q
so that there is a higher-order term which should be included if one wants accurate numerical
results [see Ref. [9] Eqs. (4.32) to (4.37)].  Nevertheless, used with discretion it is sufficiently
accurate to explain the physical basis of the resonant phenomena we shall be discussing in
later sections which can usually only be estimated to within a factor of 2 anyway.

The reason for our concern about the change in tune or  phase advance which results
from errors is that we must steer Q well away from certain fractional values which can cause
the motion to resonate and result in loss of the beam.  To understand how some Q values are
dangerous let us return to the case of closed orbit distortion.  Earlier we found the orbit
distortion amplitude:



  
ŷ =

ββκ

2 sin πQ
⋅ δ Bl( )

Bρ
 .

Clearly this will become infinite if Q is an integer value.  What happens physically is
that the beam receives a kick at the same phase on every turn and just spirals outwards.  An
error in gradient can have the same effect if the Q value is close to one of the lines:

2Qh = p  ,    2Qv = p

Qh = Qv = p  ,    Qh + Qv = p





where p is an integer.

At this stage in the description of transverse dynamics we can only hint at the
explanation for this.  Particles spiral outwards in phase space if the perturbation has the same
effect on each turn.  The perturbation from a dipole is independent of the transverse
displacement and can only build up in this way if the particle returns to the same point in
phase space on each turn (Q = p).  A quadrupole error has field proportional to x and if a
particle makes half turns in phase space it will see alternately positive and negative kicks in
divergence but both will reinforce the growth.  One may extend this argument to understand
why sextupole errors which have a quadratic x dependence excite third-integer "resonances"
as they are called near the lines.

3Qh = p

2Qh + Qv = p

Qh + 2Qv = p

3Qv = p

2Qh − Qv = p

Qh − 2Qv = p
















7. THE WORKING DIAGRAM

This is simply a diagram with QH and QV as its axes.  The beam can be plotted on it as a
point but because there is a certain Q-spread among protons of different momenta it is better
to give the point a finite radius ∆Q (Fig. 21).

We plot on the diagram a mesh of lines which mark danger zones for the protons.  We
have hinted that if Q in either the vertical or the horizontal plane is a simple vulgar fraction,
then

  
nQ= p  ,

where n and p are integer and n < 5, a resonance takes over and walks the proton out of the
beam.  In general this is true when

  
lQH + mQV = p ,

where |l| + |m| is the order of the resonance and p is the azimuthal frequency which drives it.



Fig. 21  SPS working diamond

This equation just defines a set of lines in the Q diagram for each order of resonance and
for each value of the integer p.  Figure 21 shows these lines for the SPS.

Somehow, by careful adjustment of the quadrupoles in the lattice and by keeping the Q-
spread (chromaticity) small, we must coax the beam up to full energy without hitting the lines.
To make things more difficult, each line has a finite width, proportional to the strength of the
imperfection which drives it.  In some cases we must compensate the imperfections with
correction multipoles to reduce this width.

But before discussing resonances and their correction in another contribution to these
proceedings [4], a word about chromaticity.

8. CHROMATICITY

This steering of Q depends on careful regulation of quadrupole and dipole power
supplies.  In fact, much of the setting up time of a large accelerator is devoted to tune Q to be
constant as the fields and energy rise.  Once beam has been accelerated the problem becomes
one of reducing all effects which produce a spread in Q among the particles in the beam.  The
limit to this is usually reached when beam intensity is high enough to cause space-charge
focusing effects whose strength varies with the local beam density.  Before reaching this limit
one must correct the tune spread due to momentum:  the chromaticity.  This is exactly
equivalent to the chromatic aberration in a lens.  It is defined as a quantity ∆ Q'

∆Q = ′Q
∆p

p  
.

It can be measured by changing the mean momentum of the beam by offsetting the r.f.
frequency and measuring Q.  Figure 22 shows such a measurement.  Changing the r.f.
frequency or momentum at a given field implies a change in radial position.  As we have seen,
an off-momentum particle will take up a new orbit following the dispersion function.



The chromaticity arises because the focusing strength of a quadrupole has (Bρ) in the
denominator and is therefore inversely proportional to momentum. The focusing strength of
the lattice quadrupoles,

  

k = 1
Bρ( )

dBz

dx
 ,

varies inversely with   (Bρ) , i.e., with momentum, p.  A small spread in momentum in the
beam, ±∆p/p, causes a spread in focusing strength:

Fig. 22  Measurement of variation of Q with mean radius made by changing the r.f. frequency

  

∆k

k
= − ∆p

p
 .

Since the Q-value depends on k, we can also write a formula for the Q-spread:

  

∆Q = Q'
∆p

p
 ,

where the constant Q' is the chromaticity, analogous to chromatic aberration in an optical
system.

An equation we derived earlier in the section on gradient errors

  

∆Q = 1
4π

β s( )∫ δk s( )  ds .

enables us to calculate Q' rather quickly:

∆Q = 1
4π

β s( )∫ ∆k s( )ds = −1
4π

β s( )∫ k s( )ds





∆p

p
 .

The chromaticity Q' is just the quantity in square brackets.  To be clear, this is called the
natural chromaticity.  For the SPS and the PS, indeed most AG machines, its value is about -
1.3 Q for H and V planes.



Imagine the situation at injection where ∆p/p can be ±2 x 10-3.  In a large synchrotron

with a Q about 25 this can make the working point in the Q diagram into a line of length ∆Q
= 0.15 which is too long to avoid the resonances.  This must be corrected.

Just to make matters worse the chromaticity one has to correct may well be much greater
than that due to the natural chromatic properties of quadrupoles.  The remanent field at
injection into a large ring may well be half a percent of the guide field and has the parabolic
shape of a sextupole.  In a superconducting ring the sextupole fields at injection stem from
persistent currents and are very much larger still.  Storage rings are usually designed with low-
beta sections with zero dispersion for the interaction regions and the main low-beta
quadrupoles being very strong make enormous contributions to the chromaticity.  Since the
dispersion is zero at the source of the error the compensation can only be made elsewhere in
the lattice where the parameter D is large.

One way to correct this is to introduce some focusing which gets stronger for the high
momentum orbits near the outside of the vacuum chamber – a quadrupole whose gradient
increases with radial position is needed.  Such a magnet has 6 poles, i.e. a sextupole.  In a
place where there is dispersion it will introduce a focusing

  

∆k = B" D

Bρ( )
∆p

p
 .

We use an earlier expression for the effect of this ∆k on Q and obtain

  

∆Q = 1
4π

B" s( )β s( )D s( )ds

Bρ( )∫










dp

p
 .

To correct chromaticity we have merely to make the quantity in the square bracket balance the
chromaticity.

However, there are two chromaticities, one affecting Qx, the other Qz and we must
therefore arrange for the sextupoles to cancel both.  For this we use a trick which is common
in many different contexts.  Sextupoles near F-quadrupoles where βx  is large affect mainly

the horizontal Q, while those near D-quadrupoles where βz is large influences Qz.  The effects
of two families like this are not completely orthogonal but by inverting a simple 2 x 2 matrix
one can find two sextupole sets which do the job.

The correction of chromaticity is a subject on its own since there is a higher-order term,
a parabolic variation of Q with momentum which is not compensated in this way.  Sextupole
patterns which minimise this, yet do not themselves excite serious non-linear side effects, are
not easy to find.

There are two ways of measuring chromaticity apart from the radial steering method
shown in Fig. 22.  The first of these is to observe the width of the betatron sidebands in the
spectrum from a transverse pickup (Fig. 13).  Secondly, we can measure the time it takes for a
coherent betatron oscillation following a small kick to disappear as the ∆Q smears out the
phase relation between protons of different momenta (Fig. 23).  A ringing time of 200 turns
signifies a ∆Q   ≈  1/200 and is about the best we can hope for using this rather crude method.



Fig. 23 Position pick-up signal following a kick showing decay of coherent betatron 
oscillation due to Q spread   ≈  1/24

9. CONCLUSIONS

We have now covered sufficient of the theory of transverse beam dynamics to
understand the basic processes of designing focusing structures for a circular machine, the
mechanisms which are produced by errors and how they may be compensated, at least in the
case of those due to linear fields.  The reader will also have learned enough about the
behaviour of off-momentum particles to follow the explanation of longitudinal dynamics
which follows.  It remains only to list a bibliography of works which the author has found to
be useful in understanding this topic.

*  *  *
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CHROMATICITY

S. Guiducci
Frascati National Laboratories - INFN, Frascati, Italy

Abstract
A derivation of chromaticity formulae for circular accelerators is given,
including the contribution of quadrupoles and sextupoles and with
special attention to the general bending magnet.  These are also exact for
small radii of curvature.

1 . INTRODUCTION

In the design of storage rings there are many similarities with the geometry of optics.  In
analogy to chromatic aberrations in optics, in particle accelerators a parameter called
chromaticity is introduced.  In optics rays of different wavelength find a different refraction
index in a lens and therefore experience a different focal length.  Similarly in a storage ring
particles of different momentum see a different focusing strength in the quadrupoles and, as a
consequence, have a different betatron oscillation frequency.

We define the chromaticity as the variation of the betatron tune Q with the relative
momentum deviation  δ (δ = ∆p/p):

Q'= 
dQ

dδ
  . (1)

Sometimes the relative chromaticity ξ is used:

ξ = 
Q'
Q   . (2)

Let us point out the importance of the chromaticity in circular accelerators. The
chromaticity has a deleterious influence on the beam dynamics for two main reasons:

First, a momentum spread σp is always present in a particle beam, therefore the chro-
maticity produces a tune spread in the beam:

∆Q = Q' σp. (3)

In large rings, with high tune values, this tune spread is so large that it is impossible to
accommodate the beam in the space between the resonance lines in the tune diagram.  How
dangerous these resonances can be for beam stability has been described by E.J.N. Wilson [1].

Second, in the case of bunched beams the chromaticity produces a transverse instability
called "head-tail effect" (see Ref. [2] for a detailed treatment).  The wake field produced by the
leading part of a bunch (the head) excites an oscillation of the trailing part (the tail) of the same
bunch.  In half a synchrotron period the head and the tail of the bunch interchange their
positions and the oscillation can be anti-damped and may cause a beam loss.  A complete
mathematical treatment shows that the growth rate of this instability is much faster for negative
than for positive chromaticity values and vanishes for zero chromaticity.  It may be counteracted
by a transverse feedback system, but this makes machine operation much more critical.
Therefore most of the storage rings operate with zero or slightly positive chromaticity.



The "natural" chromaticity of a storage ring is that due only to the elements of the linear
lattice, i.e. quadrupoles and dipoles.  As will be shown later the "natural"  chromaticity of a
strong focusing storage ring is always negative and cannot be made zero. To correct the
chromaticity nonlinear elements, the sextupole magnets, have to be introduced into the lattice.

In strong focusing lattices the main contribution to the chromaticity is due to the
quadrupoles, in particular, in large rings with very large radius the contribution of the dipoles
can be neglected; for small rings, however, the dipole contribution is important and has to be
carefully calculated.

In Sections 2 and 3 it is shown how to calculate the chromaticity due to the quadrupoles
and sextupoles respectively.  Then, in Section 4, the effects on beam dynamics due to the
chromaticity correcting sextupoles are briefly discussed.  Finally, in Section 5, a detailed
derivation of the chromaticity  for a general bending magnet is given, following the approach
given by M. Bassetti in Ref. [3], which is very simple and intuitive, avoiding long math-
ematical derivations.

2 . QUADRUPOLE

Let us consider the motion in a quadrupole magnet of a charged particle which obeys the
betatron equation:

y" + kyy = 0 (y = x or z) (4)
with

kx = -k
kz =  k .

Now we consider the dependence of k on the particle momentum p:

k = 
e
p 

∂Bz
∂x    =  

e

p0(1+δ)
 
∂Bz
∂x    =  

k0

(1+δ)
  ~_  k0 (1- δ + δ2 -...) (5)

where δ  is the relative momentum deviation respect to the reference particle.  Taking the first
order term in δ it is:

k ~_  k0 (1-δ) = k0 - k0δ . (6)

The chromatic variation has always the opposite sign with respect to the focusing
strength, therefore a particle with a larger energy sees a weaker focusing strength.  Conversely
for light, the variation of the refraction index with the wavelength can be either positive or
negative and the chromatic effect can be corrected to first order by combining lenses of different
material.

Substituting (6) into the equation of motion for a quadrupole yields:

y" = -ky (1-δ) y (7)

which is equivalent to adding to the focusing quadrupole a defocusing one with a strength -kyδ
and viceversa for the defocusing quadrupole.

In a thin section of a quadrupole of infinitesimal length ds the particle receives an angular
kick

dy' = y" ds = ky δ y ds (8)



described by a thin lens (defocusing for the focusing quadrupole) matrix:







1 0

kyδds 1

 (9)

To compute the effect of this kick on the betatron tune, the one-turn matrix is obtained by
multiplying the unperturbed matrix (δ = 0) by this thin lens.

M = 








cosµy βysinµy

-sinµy/βy cosµy

  








1 0

kyδds 1
   =  









cosµy+βysinµykyδds βysinµy

-sinµy/βy+cosµykyδds cosµy

  (10)

Then we compute the trace of M to get the new value of µy (µy=2πQy):

1
2   Tr  M  =  cos(µy+dµy)  = cos µy  +  

1
2  βysinµy kyδ ds (11)

since:

d(cosµy) = cos (µy+dµy) - cosµy = -sinµy dµy (12)

we get:

dµy = - 
1
2  βy ky δ ds (13)

or

dQy = - 
1

4π
  βy ky δ ds . (14)

Integrating over all the ring circumference L, we obtain the total chromaticity for the two
planes, horizontal and vertical:

∂Qx

∂δ
   = - 

1

4π
 ⌡⌠
0

L

βx(s) kx(s) ds  (15)

∂Qz

∂δ
   = - 

1

4π
 ⌡⌠
0

L

βz(s) kz(s) ds  . (16)

From these formulae we can see why, in a ring with strong focusing lattice, the
chromaticity is always negative.  A quadrupole is a focusing lens in one plane, either horizontal
or vertical, and defocusing in the other one.  The strength  kx,z  is positive in the focusing plane
(negative in the defocusing plane) and the chromaticity has the opposite sign, therefore it is
negative when the quadrupole is focusing.  In a strong focusing lattice the βx,z functions  take
the  maximum values at the focusing quadrupoles, and the minimum at the defocusing ones, for
each plane.  Therefore the total chromaticity of a ring is dominated by the contribution of the
focusing quadrupoles, negative in both planes.



3 . SEXTUPOLE
   

Special magnets, the sextupoles, are inserted in the accelerator's lattice to correct the
natural chromaticity produced by the focusing elements.  In a sextupole a charged particle
passing off-center receives a kick proportional to the square of its displacement from the center,
i.e. a sextupole acts like a quadrupole with a focusing strength proportional to the displacement
of the closed orbit from the sextupole center.  This allows the chomaticity to be corrected
because for off-momentum particles the closed orbit is displaced with respect to the reference
one by a quantity Dδ, where D is the dispersion function and δ  the momentum deviation.

The field of a sextupole is given by :

Bx = g'xz
(17)

Bz = 
1
2  g' (x2 - z2)

with

g' =  
∂B2

z

∂x2
  .

In Fig. 1 an example of the pole shape of a sextupole magnet is given.

Fig. 1  Schematic representation of a sextupole magnet cross section

The equations of motion become:

x" +  
1
2   r (x2 - z2) = 0 where r =  

e
p0

  g' (18)



z" - rxz = 0 .
and the sextupole kick is :

dx' = - 
1
2   r (x2-z2) ds

(19)
dz' = r x z ds .

Substituting the total coordinates for  the off-momentum particle
xt = Dδ + x

(20)

zt = z

it becomes:

dx' = - 




D δ x + 

1
2 (Dδ)2 + 

1
2 (  x 2   -   z2  )  r ds

(21)
dz' =  [ ]D δ  z  + xz    r ds .

The first term of Eqs. (21)  is equivalent to the kick of a quadrupole with gradient -rDδ
and, analogously to Eq. (14), gives a tune shift

∆Q = 
1
4π

  β rD δ ds (22)

 and a contribution to the chromaticity:

∂Qx

∂δ
  =  

1
4π

 ⌡⌠
0

L

βx(s) r(s)D(s) ds 

(23)

∂Qz

∂δ
  = - 

1
4π

 ⌡⌠
0

L

βz(s) r(s)D(s) ds  .

4 . CHROMATICITY CORRECTION

The most efficient way to correct chromaticity is to perform a localized correction, i.e. to
insert a sextupole just in the same position of each quadrupole, where the chromatic effect is
produced.  In this ideal case the strength required to make the chromaticity zero is minimum and
is simply related to the quadrupole strength:

r  = - 
k
D 

lQ
lS

 (24)

where lq and ls are the lengths of the magnets.  In pratical cases one tries to put the chromaticity
correcting sextupole as close as possible to each quadrupole but often, for economical reasons,
less sextupoles with higher strengths are used.

In many cases, unfortunately,  localized correction is not possible.  For example collider
storage rings have low-β  insertions with very strong quadrupoles and zero dispersion
function.  Similarly, storage rings for synchrotron light production have many zero dispersion



straight sections for insertion devices, like wigglers and undulators, and strong focusing
quadrupoles to get low emittances.  In these cases a strong chromaticity produced in the
insertions has to be corrected in the arcs and the sextupole strengths become very high.

 If the arcs are built up by N periodic cells, two sextupoles are inserted in each cell, one in
a high βx place, to correct horizontal chromaticity, and the other in a high βz position to correct
the vertical one.  The sextupole intensities are obtained by solving the following linear system
of equations:

rH lSβx
H  DH + rVlS βx

V  DV = 
Q 'x
N  

(25)

-rH  lSβz
H  DH - rV lSβz

V  DV = 
Q 'z
N   .

where rH and rV are respectively the strengths of the horizontal and vertical chromaticity
correcting sextupoles and Q'x  , Q'z   are the values of the total chromaticity of the ring in the two
planes.  Since Q'x  and Q'z  are, usually, both negative it has to be: 

 rH  < 0      and     rV  > 0

and each sextupole corrects the chromaticity in one plane and increases it in the other.
     

In order to reduce the sextupole strengths, it is important to place them where the
dispersion is high and the β functions well separated. In fact if the horizontal sextupole is
placed where βx >> βz it is very effective in the horizontal plane and gives a negligible
contribution in the other plane (viceversa for the vertical sextupole).

Generally the vertical sextupole has a strength higher than the horizontal one because the
dispersion function D follows the behaviour of the horizontal β-function, i.e. it is higher at the
horizontal sextupole and lower at the vertical one. This is specially true for collider storage
rings, where, due to the low value of βz at the interaction region, the vertical chromaticity is
generally higher than the horizontal one.

The sextupoles necessary to correct the chromaticity introduce unwanted effects due to the
other two terms in Eqs. (21):

- the chromatic aberration term (Dδ)2

- the geometric aberration  term (x2 -  z2), xz .
                                                                                  

The  geometric aberration term introduces higher-order terms in the equations of motion.
In fact each sextupole inserted into the linear lattice, also in thin-lens approximation, doubles
the order of the polynomial which links the initial and final coordinates for one turn in the ring.
With N sextupoles in the ring the final coordinates depend on the 2N-th power of the initial one:

x(L) = a11 x(0) + a12 x'(0)+ a13 δ+...a1j x(0)2N .

When the nonlinear terms become important the stability of the particle trajectories in a
circular accelerator is no longer obtained from the one-turn matrix M (|tr M| = |2 cos µ| < 2), but
depends on the amplitude of the betatron and synchrotron oscillations so that the beam
dynamics becomes much more complicated.

In some very simplified cases an analytical calculation of the stability region is possible,
for example in the unidimensional case (x,x' or z,z' phase plane) in the vicinity of a single res-
onance.  In this case a closed curve, called the separatrix, can be found which divides the phase
plane in two regions, a stable one inside the separatrix and an unstable region outside.



In more general cases tracking is used, i.e. a computer code which, given the initial co-
ordinates for a particle in phase space, follows the evolution of a trajectory with the mathemati-
cal model chosen for the ring.  A trajectory is considered stable if it remains confined in a
certain phase space region for a given number of turns.  The initial coordinates of the particle's
tracking are changed to determine the largest region of phase space which contains all stable
trajectories. This region is called the dynamic aperture.

This procedure is limited by computer time and precision, in fact the range of initial co-
ordinates which can be explored in a six-dimensional phase space is very poor and the number
of turns is always much smaller with respect to the beam lifetime or damping time.

After the linear lattice design a dynamic aperture optimization has to be carried out by
choosing the distribution and the strengths of the sextupoles, the working point in the tune
diagram, and even modifying the linear lattice to reduce chromaticities and sextupole strengths.
A discussion of the methods for the determination and optimization of the dynamic aperture, a
very important problem in the design of new accelerators, is given by A. Ropert [4].

5 . GENERAL BENDING MAGNET

In rings with large radius of curvature and small dispersion function the contribution to
the chromaticity due to the bending magnets is negligible with respect to that of the
quadrupoles.  This is not the case for small rings.  In the following is presented a derivation of
the cromaticity formulae for the bending magnet valid also for small radii of curvature and
taking into account the variation of the magnetic field in the ends.

In a bending magnet the betatron motion is given by the following equations:

y" + ky(s)y = 0 (y = x or z) (27)

with
kx = -k+h2

kz = k

h = - 
e
p  Bz      ; k = 

e
p  

∂Bz
∂x   .

The solution of these equations is represented, in each plane, by the two-by-two betatron
matrix A.  This matrix can be written as the product of N matrices Ai:

A = ∏
i=1

 N

   A i 



lB

N  (28)

where lB is the length of the bending magnet. We choose N  to be large so that

∆s = 
lB
N   __>  0 .

This is equivalent  to subdividing the magnet into N thin pieces of length ∆s. To first



order in ∆s, Ai can be written as the product of a thin lens and a drift space:

Ai = 







1 0

-ky(s)∆s 1

  







1 ∆s

0 1

 (29)

Now we consider the changes that occur in the betatron motion (i.e. in the matrix Ai) for
a particle with a relative momentum deviation δ oscillating around the off-momentum closed
orbit. 

Fig. 2  Orbit lengthening

Two changes occur in the matrix Ai:

i) an orbit lengthening (see Fig. 2)

     
∆s(δ) = ∆s(1 + hDδ) (30)

ii) a change in the focusing strength of the thin lens due to:

-  momentum dependence of the focusing functions

 - variation of the length

- ky(s,δ) ∆s(δ) = - [ ky(s) +  k1y(s)δ + ky(s)hDδ] ∆s (31)

where k1y is the derivative:  k1y = ∂ky/∂δ .

As already seen, a change ∆k in the focusing function at the position s gives a tune shift :

∆Q = - (1/4π) β(s) ∆k (32)

and, similarly, a change ∆s in the length of a drift space gives:



∆Q = (1/4π ) γ (s)∆s (33)

where γ (s) is the Twiss function.
Integrating over all the circumference gives

∂Qy

∂δ
   = 

1

4π
   ⌡⌠

0

L

{ βy [ k1y + kyhD ] + γyhD }  ds . (34)

This formula is a generalization of that for a quadrupole, in fact for a quadrupole we have
h = 0 and k1y = dky/dδ = -ky and we obtain again the formulae of Eqs. (15) and (16).

In order to calculate k1y  for the general bending magnet we need to know the fields seen
by an off-momentum particle.  First we write the second-order magnetic field expansion in the
reference system of the design orbit for zero momentum deviation.  The formulation of the field
equations is that given by K. Steffen [5] with the only difference that h(s) has the opposite sign
and its dependence on s is explicitly given, i.e:

h(s) = [h + h's + 
1
2  h"s2 + 0(3)] . (35)

As it will be useful in the following to distinguish the second-order terms they have been
enclosed in square brackets:

Bz = 
p
e 









-h - h's + kx +




-

1
2 h"s2 + k'xs+ 

1
2 rx2+

1
2 (h" -  hk -  r)  z2  + 0(3)  

Bx = 
p
e { }kz + [ ]k'zs + rxz  + 0(3)  (36)

Bs = 
p
e { }-h'z + [ ](hh' + k')xz  + 0(3)   .

The previous equations are completely  general, they are only based on the assumption of
a field symmetry with respect  to the median plane (z = 0).  Therefore, if we change the mo-
mentum of the particle, the origin and the orientation of the axis in the z = 0 plane, the magnetic
field has always the same form, but different values of the coefficients.

Now we make a transformation to the reference system of the off-momentum particle, as
shown in Fig. 3:

p = p*/(1+δ)
z = z* (37)
x = d + x* cos θ + s* sin θ
s = - x* sin θ + s* cos θ

where d = Dδ and θ = D'δ.



Fig. 3  Transformation of the reference system
The field equations change in the following way:

Bz* = Bz[x
→

(x
→

*) ]

Bx* = Bx[x
→

(x
→

*) ] cosθ - Bs[x
→

(x
→

*) ] sinθ (38)

Bs* = Bx[x
→

(x
→

*) ] sinθ + Bs[x
→

(x
→

*) ] cosθ .

We are interested in the first-order field expansion, therefore we take only the first-order
terms in Eqs. (36) and make the substitution :

Bz* = 
p

e(1+δ)
 [ ]-h + kd + x*( )k cosθ +h' sinθ  -  s*( )h' cosθ  - k sinθ  

Bx* =  
p

e(1+δ)
 z[ ]k  cosθ + h'  sinθ  (39)

Bs* =  
p

e(1+δ)
 z[ ]k  sinθ  - h'  cosθ   .

As already said, the various terms in the field equations have to be the same as in
Eqs. (36), therefore equating the corresponding first-order terms we get the new coefficients:

h* = 
h-kd

1+δ
 

k* = 
k cosθ + h' sinθ

1 + δ
 (40)

h'* = 
h' cosθ - k sinθ

1 + δ
   .

Using

sinθ ~ D'δ ; cosθ ~ 1

and keeping only first-order terms in δ we get:

kx* =  h*2 - k* = (h2 - k) +  δ (-2h2 - 2hkD + k - h'D')
(41)

kz* =  k* = k +  δ (-k + h'D') .



We obtain the values of k1y(s) as:

k1x = 
∂kx*

∂δ
   = k - 2h2 - 2hkD - h'D'

(42)

k1z = 
∂kz*

∂δ
   = -k + h'D' .

Inserting these values into Eq. (34) we obtain the final formulae:

∂Qx

∂δ
  = 

1

4π
  ⌡⌠

0

L

{β (k -2h2 - 2hkD  - h'D') + βhD (h2-k) + γhD}ds 

(43)

∂Qz

∂δ
  = 

1

4π
  ⌡⌠

0

L

{β (- k + hkD + h'D') + γhD}ds  .

As we used only first-order terms in this derivation the contribution of the sextupole term
βrD, calculated in Section 3, does not appear  in Eqs. (43). In Appendix I a similar derivation
using the second-order field expansion is given.  The final formulae contain the same terms as
Eqs. (43) plus the sextupolar terms coming from the second-order terms in the field expansion
which are linear in x and, applying the translation x = x* + Dδ  of Eqs. (37), produce linear
terms.

5. END-FIELD EFFECTS

From Eqs. (43) it is possible to calculate the contribution of the fringing fields to the
chromaticity, once an expression for h'(s) is known.  In a paper by W. Hardt, J. Jä ger and D.
Mö hl [6] the same formulae are obtained with a different derivation, moreover a detailed
calculation of the fringing field effects is given.  For completeness we report the final formula
obtained there.  In Fig. 4 is reproduced the illustration of Ref. [6] which shows the
schematization used for the end fields, the corresponding parameter definitions are listed below.

s1 beginning of the central part

s2 end of the central part

"1" entrance of the fringing region

"2" exit of the fringing region

θ entrance or exit angle of the trajectory
1

τ  cos3θ
 radius of curvature of the end faces

h = 
1

ρ
  curvature of the reference orbit

k = - 
1

Bρ
 
∂Bz(0,0,s)

∂x  quadrupole component



r = - 
1

Bρ
 
∂2Bz(0,0,s)

∂x2
 sextupole component

D, D' dispersion function and its derivative

α, β, γ Twiss functions.

Fig. 4  Field boundaries for a bending magnet

The formulae to calculate the chromaticity of a  magnet  in terms of the lattice functions at
the reference orbit are:

∂Qx

∂δ
   = - 1

4π
  ⌡⌠

s1

s2

[ ( h2-k )β + rDβ  + h (2kDβ  + 2D'α  - Dγ)]ds 

+[ ]-tgθ (hβ + 2Dkβ) + htg2θ (βD' - 2αD + hDβtgθ) +τhβD  "1"

+[ ]-tgθ (hβ + 2Dkβ) - htg2θ (βD' - 2α D - hDβtgθ) + τhβD  "2"
(44)

∂Qz

∂δ
   = - 1

4π
  ⌡⌠

s1

s2

[ kβ - rDβ  - h (kDβ + Dγ)]ds 

+[ ]tgθ (hβ + 2Dkβ) - htg2θ (βD' - 2α D - hDβtgθ) - βhD'-τhβD  "1"

+[ ]tgθ (hβ + 2Dkβ) + htg2θ (βD' - 2α D + hDβtgθ) + βhD' - τhβD  "2"
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APPENDIX 1

CHROMATICITY FOR A BENDING MAGNET TAKING INTO ACCOUNT
SECOND-ORDER TERMS

A1.1 DERIVATION OF THE CHROMATICITY FORMULAE

The chromaticity formulae in Section 5 are obtained using the first-order expansion of the
magnetic field.  To obtain an expression for the chromaticity which contains also the sextupolar
terms, the same derivation is repeated here using also the second-order terms in the field
expansion given by Eqs. (36).  To get the new expressions for the magnetic field we apply the
reference system transformation described in Section 5 to the second-order field expansion of
Eqs. (36).

Following the derivation given in Section 5 and using :

sinθ ~ D'δ ; cosθ ~ 1

we get the expressions for the magnetic field in the new reference system:

Bz* = 
p

e(1+δ)
  [-h -h'(-x*D'δ + s*) + k(Dδ+x*+s*D'δ)+ k'(Dδ + x*+s*D'δ)(-

x*D'δ+s*)

                      + 
1
2  r (Dδ + x* + s*D'δ)2 + 

1
2 (h"-hk-r)  z2]

Bx* =  
p

e(1+δ)
  z{k+k'(-x*D'δ + s*) + r (Dδ + x* + s*D'δ) - [-h'-h"(-x*D'δ + s*)

                       + (hh' + k') (Dδ + x*+s*D'δ)] D'δ} (45)

Bs* =  
p

e(1+δ)
  z{[k + k'(-x*D'δ + s*) + r (Dδ + x* + s*D'δ)] D'δ -h' - h"(-x*D'δ + s*) 

                       + (hh'+k')(Dδ + x* + s*D'δ)} .

Neglecting the second-order terms, except for the chromatic ones, i.e. the terms xδ, zδ
and sδ, we obtain:

Bz* = 
p

e(1+δ)
  [-h + kDδ + x*(h'D'δ + k + rDδ) + s*(-h' + kD'δ + k'Dδ) ]

Bx* = 
p

e(1+δ)
  z[k +rDδ +h'D'δ] (46)



Bs* = 
p

e(1+δ)
  z[-h'+ kD'δ  + (hh'+k')Dδ] .

Comparing these equations with Eqs. (36) and equating the corresponding first-order
terms, we get the new coefficients:

h* = 
h-kDδ
1+δ

 

k* = 
k + h'D'δ + rDδ

1 + δ
 (47)

h'* = 
h' + kD'δ + (hh'+k')Dδ

1  + δ
   .

Now, following the same procedure as in Section 5, we use the coefficients h* and k*
given by Eqs. (47) to obtain the values of the focusing strength for the off-momentum particle:

kx* =  h*2 - k* = (h2 - k) +  δ (-2h2 - 2hkD + k - h'D' - rD)
(48)

kz* =  k* = k +  δ (-k + h'D' + rD).

Then, we get the variation of the focusing strength with momentum, k1y(s) :

k1x = 
∂kx*

∂δ
   = k - 2h2 - 2hkD - h'D' -rD

(49)

k1z = 
∂kz*

∂δ
   = -k + h'D' +rD .

The variation of the orbit length with momentum has been already taken into account in
Eq. (34), therefore inserting Eqs. (49) into (34) we obtain the final formulae for the
chromaticity, which are more complete than those of Eqs. (43) because they contain also the
sextupolar terms.

∂Qx

∂δ
  = 

1

4π
  ⌡⌠

0

L

{β (k - 2h2 - 2hkD  - h'D' -rD) + βhD (h2-k) + γhD}ds 

(50)

∂Qz

∂δ
  = 

1

4π
  ⌡⌠

0

L

{β (- k + hkD  + h'D' +rD) + γhD}ds  .

A1.1.1 An observation on Eqs. (47)

Let us notice that the  coefficient h'* given by Eqs. (47) is obtained as the coefficient of
the variable z in the equation (46) for Bs, and that it is different from the coefficient of s which
appears in the expression for Bz.  This ambiguity comes from the fact that, while for Eqs. (36)
the relation:



∂Bz
∂s    = 

∂Bs
∂z    (51)

is valid, this is not true for Eqs. (46), for which it is:

 
∂Bs*
∂z    ≠ 

∂Bz*
∂s*   . (52)

Equations (46) are anyway correct, but the new variable s* has to be modified. In
cylindrical coordinates (z,x,φ), the radial component of the Maxwell equation is written:

1

ρ
 
∂Bz

∂φ
   = 

∂Bφ
∂z    . (53)

When making the transformation given by Eqs. (37), which is essentially a translation
in the radial direction, in Eqs. (53) ρ has to be replaced by ρ + Dδ.  As a consequence, the
Maxwell equation is  written:

1

ρ+Dδ
  
∂Bz*

∂φ
   = 1

1+hDδ
  
∂Bz*
∂s*    =  f(∂Bs*,∂z) ;        h = 

1

ρ
   . (54)

This relation is in effect verified by Eqs. (46) to first order in δ.
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ABSTRACT
The model of a sinusoidally smooth machine with uniform weak
coupling fields is used to develop a simple theory for betatron coupling
on the second order resonance Qx - Qz = 0.  A couplinq coefficient is
defined.  Observations and measurement methods are discussed, which
despite their simple derivation are still valid.  The normal modes are
found in skew quadrupole and axial fields.  A more exact interpretation
of the coupling coefficient, which can be derived using the Hamiltonian
formalism is quoted and briefly discussed.  Knowledge of this detailed
expression is required for the desiqn of couplinq compensation
schemes.

1 . INTRODUCTION

The periodic energy exchange between two oscillators, or coupling, is a widespread
phenomenon in physics.  The couplinq action can take place via the amplitudes, velocities or
accelerations of the oscillators.  A classic example of amplitude coupling is a pair of pendulums
linked by a weightless spring.  This example also shows rather clearly the normal modes of the
system (see Fig. 1).  Any motion of the system can he expressed as a sum of these modes.

Fig. 1  Amplitude coupled pendulums

The first storage ring projects in the 1960's and early 1970's stimulated an interest in
betatron coupling.  Initially the concern was over the couplinq from random quadrupole tilts,
which introduce skew quadrupole field errors around the ring, and later over the axial fields of
solenoids used as physics detectors.  References 1 and 2 are early examples of the analysis of
skew quadrupole errors in electron storage rinqs.  There are two rather comprehensive
references in the subsequent literature, Ripkin [3]in which the Courant, Livingston and Synder
theory is extended to a 4-dimensional phase space, and Guiqnard [4] in which the theory of all
sum and difference resonances in 3-dimensional maqnetic fields is developed by a perturbative
treatment of the Hamiltonian for the single particle motion in a synchrotron.  The method and
essential results of this last reference were in fact anticipated in an addendum (July 1966)
written for an internal SLAC note SR-11 (June 1966) by Morton [5]  The present paper
develops a simple theory for betatron couplinq in skew quadrupole and axial fields based on
work done for the ISR in the 1970's [6-8].  The results from the more detailed theory [4] are
simply quoted when needed.



2 . COUPLING IN UNIFORM SKEW QUADRUPOLE AND AXIAL FIELDS

2 . 1 Basic equations

Coupling is a phenomenon which takes place over very many turns, so that it seems likely
that average parameters such as the tunes are of more importance than the local lattice functions.
On this premise, we will replace the equations of motion in the horizontal and vertical planes by
sinusoidal approximations.  We will also make the simplifying assumption that the coupling
fields are spread uniformly around the rinq.  This can be regarded as considering the zero order
harmonic of the distribution.

There are two categories of coupling fields:

- the transverse skew multipoles, which arise as errors from maqnet tilts, and
- axial fields, which are usually introduced by physics detectors in colliders.

The first category causes amplitude coupling and the second velocity coupling.  In
accelerators, there is no equivalent of acceleration coupling as for example in inductancecoupled
ac circuits, ql + LR1/L1|q1 + L1/L1C1Jq1 = -M12q2

Equations (1) give the sinusoidal approximation to the betatron motion of a sinqle particle
in the presence of skew quadrupole and axial fields, which are uniform in distance and time.

  

x" = κ x
2x = −bz'−kz

z"= κz
2z = bx'−kx (1)

where

  

κ x = Qx

R
   and   κz = Qz

R
(2)

R is the average machine radius and Qx and Qz the horizontal and vertical tunes
respectively.

  

k = 1
Bρ

∂Bx

∂x




 0

= −1
Bρ

∂Bz

∂z




 0

   and   b = 1
Bρ

Baxial (3)

Bρ is the magnetic rigidity,
' denotes d/ds differentiation alonq the beam path.

Let us try solutions to (1) which have the form of the uncoupled oscillations modified by
an envelope term i.e. x = X(s) eiκxs and z = Z(S) eiκzs.  By restricting ourselves to weak
coupling conditions, we can neglect the terms in X" and Z", since X and Z will be slowly
varying functions.  Hence,

  

2iκ xX' == e−iδs −bZ'− k + iκzb( )Z[ ] (4)

2iκzZ' == eiδs bX'− k − iκ xb( )X[ ] (5)
where,

  

δ = κ x = κz( ) = Qx − Qz( ) / R  . (6)
By substituting for Z' in (4) using (5) and vice versa, it can he seen that the X' and Z '

terms on the right hand side are second order.  By neglecting the b2 and bk terms, we get,



  

X' = i
e−iδs

2κ x
k + iκzb( )Z

Z' = i
eiδs

2κz
k − iκ xb( )X  . (7)

Since we are  interested  in the second order coupling resonance Qx ~ Qz and κx = κz.

Thus, in Eqs. (7) we put κ = κx = κz and maintain δ = (κx = κz) to qet,

  

X' = ie−iδs

2κ
k + iκb( )Z (8)

Z' = ieiδs

2κ
k − iκb( )X  . (9)

Equations (8) and (9) are now in the standard form for coupled mode analysis (i.e. X' =
cl2Z, Z' = -c12*X, where the minus sign indicates positive enerqy flow in both oscillations and
* indicates the complex conjugate).

In obtaining (8) and (9), we put κ = κx = κz.  This approximation is essential to keep the
coupling coefficients of equal magnitude to ensure the equations are conservative.  Efforts to
make the above analysis more realistic often result in violatinq this requirement.  The use of the
Hamiltonian formalism and conjuqate variables avoids this pitfall and gives a rigorous result for
a practical lattice (see Section 4).

Equations (8) and (9) can be solved to give the qeneral solutions:

  

x = eiκ xs Ae i/2( ) η−δ( )s − B
η − δ( )

k − iκb
e− i /2( ) η+δ( )s







 (10)

z = eiκ zs Be− i /2( ) η−δ( )s + A
η − δ( )κ
k + iκb

e i/2( ) η+δ( )s







 (11)

where
η = +√δ2 + k2/κ2 + b2 (12)
A and B are complex constants

At first sight, Eqs. (10) and (11) do not convey a great deal.  A qreater physical insight is
obtained by taking the squares of the modulii of the amplitude terms X and Z, which form the
envelopes of the oscillations.

  

XX* = X 2 = A2 +
B2 η − δ( )2

k2 / κ 2 + b2( ) −
2 AB* η − δ( )

k2 / κ 2 + b2
 cos ηs -φ( ) (13)

ZZ* = Z 2 = B2 +
A2 η − δ( )2

k2 / κ 2 + b2( ) −
2 AB* η − δ( )

k2 / κ 2 + b2
 cos ηs -φ( ) (14)

where

  

φ =  tan-1 bk /κ[ ] .
Thus there is a sinusoidal exchange of energy with the interchange wavelength,

  

λ = 2π
η

= 2π
+ δ 2 + k2 / κ 2 + b2

(15)



and the sum of the squares of the amplitudes is conserved,

  

Emax = X 2 + Z 2 = 2η
η + δ( ) A2 + B2( )  . (16)

It is worth considerinq the special case of a beam being kicked in one plane.  The ensuing
oscillations will be coherent and the amplitude interchanqe will be visible to a pick-up in either
plane.  Figure 2 illustrates this effect.

Fig. 2  Behaviour of the envelope functions of the coherent oscillations following a kick in one
plane

In the case of Fiq. 2, let s = 0 at the kick, then |X|2 is a maximum (Emax) and Z is zero
(real and imaginary parts).

Equation (11) gives:

  

B = −
A η − δ( )κ

k + iκb( )
and Eq. (13) gives the interchanged amplitude:

  

ET =
4 AB* η − δ( )

k2 / κ 2 + b2
 .

Making use of the definition of η in (12), a little manipulation gives the modulation,



  

S= Emin

Emax
= δ 2

η2  . (17)

At this stage  it  is convenient  to  define coupling coefficients,  which  effectively replace
Eqs. (3),

  

- for skew gradients,  Cq = R2

Q







1
Bρ







∂Bx

∂x




 0

(18)

- for axial fields,  Cb = R

Bρ






Baxial  . (19)

These combine to give

  

C = + Cq
2 + Cb

2  . (20)
Equations (15) and (17) can then be rewritten in terms of more easily observable quantities:

  

Interchange period,  T = 1

frev ∆2 + C2
(21)

and Modulation,  S= Emin

Emax
= ∆2

∆2 + C2 (22)

where

  

∆ = Qx − Qz( ) (separation of uncoupled tunes)

Q = Qx + Qz( ) / 2 (average of uncoupled tunes) (23)

frev =  revolution frequency .
Equations (21) and (22) give direct methods for measuring |C| by kickinq a beam and

observing the coherent oscillations.  It should be stressed that ∆ is the separation of the
uncoupled tune values, which cannot be measured directly in the presence of coupling, but by
eliminating ∆2 between (21) and (22) this problem is avoided.

  

C = 1
frevT

1− S (24)

and

  

∆ = S

frevT
 . (25)

This provides a very precise and elegant method for measuring |C|.

Despite the very simplified model used above, it turns out that (24) and (25) are still valid
in the complete theory [4], which will be discussed in Section 4.  The difference lies in how Cq
and Cb should be interpreted in the case of a strong focusin~ lattice.  For the moment, the first
approximation to a real machine for Cq and Cb would be to replace (18) and (19) by:

  

Cq = R

2πQ







1
Bρ







∂Bx

∂x




 0

∫ ds

C = 1
2π







1
Bρ







Baxial  ds  .



2 . 2 Normal modes of oscillation

The normal modes are of interest because they give some physical insight into what is
happening, which will enable us to find a method for measuring the two parts (Cq and Cb) of
the coupling coefficient.

A quick indication of the normal modes can be found by rewriting (10) and (11) to give:

  

x = Aei κ +η /2( )s −
B η − δ( )

k2 / κ 2 + b2
ei κ −η /2( )s+iφ (26)

z = Bei κ −η /2( )s +
A η − δ( )

k2 / κ 2 + b2
ei κ +η /2( )s−iφ (27)

using

  

κ x = κ + δ
2





  ;    κz = κ − δ

2




  ; (28)

and where:

  

φ =  tan-1 κb

k




 =  tan-1 Cb

Cq







 . (29)

The normal modes can now be found by putting either of the two arbitrary constants A
and B to zero.  This gives:

  

x

z
=

∆ ± ∆2 + C2

C









  eiφ  . (30)

Equation (30) shows the characteristic of a normal mode that x and z bear a constant
relationship i.e. the mode retains its "shape" at all times.  The interpretation of (30) is that the
normal modes lie on inclined planes and the complex phase shift indicates that they are
elliptically polarised (see Figs. 3 and 4).  This information helps us to solve the basic equations
(1) and (2) in a different way.  For a more detailed treatment of the normal modes see
reference 6.

We rewrite (1) and (2) using (28) to get,

  

x" + κ 2 + δκ( )x = −bz'−kz (31)

z"+ κ 2 − δκ( )z = bx'−kx (32)

where the terms δ2/4 have been neglected on the left hand side.



Fig. 3  Inclined (U,V) normal modes with skew quadrupole coupling.  U – "horizontal-like"
mode, V – "vertical-like" mode.

Fig. 4  Inclined elliptically polarised normal modes with skew quadrupole and axial field
coupling

Equation (30) suggests that it will be possible to partially decouple (31) and (32) by
making a transformation to a coordinate system (U,V), which is inclined at an angle α  to the
(x,z) system, so that,

  

x = U s( )  cos α - V s( )  sin α
z = U s( )  sin  α + V s( )  cos α  . (33)

Substituting (33) into (31) and (32) yields two equations from which first V" can be
eliminated and then U", to give,

  

U" tan α +
1

 tan α




 + U κ 2 − δκ( ) tan α +

κ 2 + δκ( )
 tan α

+ 2k












= −V' b tan α +
1

 tan α




 + V k tan α -

1
 tan α





  + 2δk





(34)



  

V" tan α +
1

 tan α




 + V κ 2 + δκ( ) tan α +

κ 2 − δκ( )
 tan α

− 2k












= U' b tan α +
1

 tan α




 + U k tan α -

1
 tan α





  + 2δk





(35)

By choosing α  such that the last terms in (34) and (35) are zero, the equations become

decoupled for k.  This value of α is given by:

  

 tan α = −δ ± δ 2 + k2 / κ 2

k /β
=

−∆ ± ∆2 + Cq
2

Cq
 . (36)

This angle of inclination can be identified in (30) by putting Cb = 0.  The two solutions can be

called αu and αv and it is quickly verified that (αu - αv) = π/2.

Equation (36) yields the skew quadrupole coefficient directly as,

  

Cq = ∆ tan 2α  . (37)

Thus at the privileged angle of α

  

U" + κ 2 + γκ( )U = −bV'

V" + κ 2 − γκ( )V = bU' (38)
where

  

γκ = δκ  cos 2α + k sin 2α  . (39)
In the rotated U-V system only the axial field coupling is apparent, except for the shift

±γ/2 to get the "uncoupled" frequencies of the U-V system (k ± γ/2).  Thus from (39), using
(2), (3), (6), (19) and (23)

  

∆UV = ∆  cos 2α + Cq  sin 2α( )  .

It is convenient to eliminate Cq by using (37)

  

∆UV = ∆ / cos 2α  . (40)
We can now apply the Eqs. (21) and (22) of Section 2 directly to the U-V system to get,

  

TUV = 1

frev ∆UV
2 + Cb

2
(41)

SUV = ∆UV
2

∆UV
2 + Cb

2  . (42)

By substituting (37) and (40) in (41), it can be shown that TUV = T of the original x-z system.
Thus the period of the amplitude exchange is unchanged and only S and ~ change between the
two systems.  If we now eliminate ∆UV, as before, we find,

  

Cb = 1
frevT

1− SUV  . (43)



If therefore, we could mount a kicker and pickup at variable anqle, then at the point that
|C| fell to a minimum, we would have found the a of (36), the coupling coefficient would be Cb
from (43) and as a check Cq would be qiven by (37) usinq ~ from the original measurement

with α = 0.

3 . OBSERVATIONS

3 . 1 Tune measurements

In (26) and (27) there are two frequencies, which are the frequencies of the normal modes

  

κ
v
u = 1

R
Q ± 1

2
∆2 + Cq

2 + Cb
2




 .

If Cq = Cb = 0, then κu = Qx/R and κv = Qz/R.  When Cq ≠ 0 and Cb ≠ 0 their effect depends

on their magnitude relative to ∆.  If ∆ is much larqer (i.e. the workinq point is far from the Qx -
Qz = 0 resonance) then Cq and Cb have little imoact on the value of the square root.  Their effect

then increases until at ∆ = 0, they are totally responsible for the split in the frequencies.
However, we know that not only do the normal mode frequencies change, but also their
inclination and shape.  When ∆ is large relative to Cq and Cb the modes appear to be the usual
horizontal and vertical oscillations with frequencies Qx/R and Qz/R.  As Cq and Cb increase the

modes rotate, until at ∆ = 0, α = 45° from (36).  In this situation the working point is exactly on
the resonance Qx - Qz = 0 and the machine is said to be ful ly coupled.

If one were to do this experimentally by increasinq Qx and decreasinq Qz in the region of
the Qx - Qz = 0 resonance, whi le trying to measure Qx and Qz using horizontal and vertical
kickers with the corresponding pickups, then the results would he similar to Fig. 5.

The pickups see the frequencies of the U- and V-modes.  While these modes are "nearly"
horizontal and "nearly" vertical the measurements are reliable.  As the modes rotate the
horizontal pickup will start to "see" the V-mode as well as the U-mode and vice versa.
Operational difficulties for the tune measurement will appear at around |C/∆| = 1.0.  When |C/∆|
> 1 tune measurements will become unreliable and the tune readinas will start to jump back and
forth from the U-mode to the V-mode values, spanning the stopband in Fig. 5.  At ∆ = 0, the
pickups respond equally well to both modes, since they are now at 45° inclination.  The
difference in the mode frequencies (QU - QV) equals |C|, which provides another way of

measuring |C|.  As |∆| increases on the far side of the resonance normality will be restored.



Fig. 5  Effect of coupling on tune measurements

3 . 2 Other measurement methods

We have already seen how to measure |C|, |Cq| and |Cb| using a rotatinq kicker and pickup.
The tune measurements in the previous section also gave a value for |C|.  More information,
such as the signs of Cq and Cb can be found in theory by carefully studying the waveforms
following a kick [8], but this has never been demonstrated practically.  A rather different
method, whch can be used on "quiet" heams, i.e. on physics beams in colliders, uses the
"coupling transfer function", which is obtained by correlatinq a horizontal transverse
perturbation imposed on a heam to the resultinq vertical coherent motion (see Ref. 9).

4 . RESULTS OF THE EXACT ANALYSIS [4]

The exact analysis for coupling in an alternatinq qradient lattice can be found in Ref. 4.
This analysis confirms the formulae for T, S, κu and κv, but more importantly, it shows how to
evaluate C for known errors in a lattice.  In the formalism of Ref. 4, C is complex and is given
by:

  

C θ0( ) = 1
2πR

βxβz
θ0

2π +θ0

∫ K θ( ) + M θ( )
2

R
αx

βx
− αz

βz







− i
M θ( )

2
R

1
βx

+ 1
βz

















exp i µx − µz( ) − µx θ0( ) − µz( ) θ0( ){ } − ∆ θ − θ0( )[ ]( )  dθ (44)

where θ0 is origin at which C is being observed (evaluated) and θ = s/R



  

K θ( ) = 1
2

R2

Bρ
∂Bx

∂x
− ∂Bz

∂z




 (45)

M θ( ) = R

Bρ
Baxial  . (46)

The real part of C(θ0) is directly equivalent to Cq and the imaginary part is directly
equivalent to Cb.  By virtue of the exponential term in (44), the contributions from skew
quadrupole-like fields and axial fields can contribute to both the real and imaginary parts of
C(θ0).  Thus contrary to what one might naturally expect from the simple theory, skew
quadrupoles can be used to compensate solenoids, if the phasinq of this exponential term is
correctly managed.  In a qualitative way, one can see that a plane inclined oscillation will turn
into an elliptically polarised one, when the horizontal and vertical phase advances differ.  This is
taken into account by the (µx- µz) term in (44), which will typically oscillate +0.5 radian in a
reaular FODO lattice.

If one were to measure Cq (ReC) and Cb (ImC) as described earlier at a sinale point, it
would not be possible to distinauish whether the machine was sinusoidally smooth or not.
However, by measurinq at several points this would become apparent, since althouqh |C| would
be constant the balance between ReC and ImC would oscillate.

Finally K(θ) has a rather more general form than k(s) from (3) to take into account such
situations as a solenoid with a slot in its end plates hy which the beam enters and leaves.  In this
case, either ∆Bx/∂x or ∂Bz/∂z could be zero.  When calculatinq C(θ0) for a solenoid in a

collider, the solenoid will most probably be inside a low-β insertion.  In this case, the

  

M θ( )
2

αx

β
− αz

β






term can be important, and since µx and µz are varying rapidly in the low-β region the choice of
the solenoid length and the type of end plate (open or slot) can lead to situations with self-
compensation.
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BEAM TRANSFER LINES

P.J. Bryant
CERN, Geneva, Switzerland

Abstract
After making some distinctions between transfer lines and circular
machines, certain problems, typical of the type met by a transfer line
designer, are discussed.  The topics chosen include: steering,
measurement of emittance and mismatch, setting tolerances for magnet
alignment and excitation, emittance dilution due to mismatches and
scattering in thin windows and lastly emittance-exchange insertions.

1 . DISTINCTIONS BETWEEN TRANSFER LINES AND PERIODIC 
CIRCULAR MACHINES

Transmission of the position-velocity vector of a particle through a section of a transfer
line, or circular machine, can be simply represented by a 2 x 2 matrix (Fig. 1).

Fig. 1  Transmission through a section of lattice
(y  represents either transverse coordinate)

  

y2

′y2







=
C S

′C ′S






y1

′y1







= M1→2

y1

′y1







 . (1)

The transfer matrix M1→2 can be found by multiplying together the transfer matrices for
the individual elements in the appropriate order.  The individual matrices have the form,

  

My =
cos (or cosh) φ s

φ
sin (or sinh) φ

− φ
s

sin (or − sinh) φ cos (or cosh) φ

















(2)

where

  

φ = s K    and   K = 1
Bρ

dBz

dx
+ 1

ρ2

in accordance with the earlier lectures by J. Rossbach and P. Schmüser in these proceedings.



However, we often use a parameterized form for the matrix for a section of line, which
was also given by J. Rossbach and P. Schmüser.

  

M1→2 =

β2

β1

cos ∆φ + α1sin ∆φ[ ] β1β2  sin ∆φ

−
1+α1α2( )sin ∆φ + α2 − α1( )cos ∆φ

β1β2

β1

β2

cos ∆φ − α2sin ∆φ[ ]



















(3)

In the first case of Eq. (1), the matrix is unambiguously determined, but in the second
case of Eq. (3), there are in fact an infinite number of sets of parameters (β1, β2, α1, α2 and

∆φ), which satisfy the numerical values of the matrix elements.   This is the root of an important
difference between circular machines and transfer lines, which sometimes leads to confusions.

1 . 1 Circular machines

A circular structure has an imposed periodicity, which imposes the same periodicity on
the parameters α and β and in fact determines them uniquely.  If one samples the co-ordinates
of an ion after each successive turn in a circular machine, the points will fill out an ellipse in
phase space (y,y').  Only one set of α  and β values fit that ellipse.  It is the periodicity of the
structure which makes it possible for that specific ellipse to be returned unchanged turn after
turn and for this reason it is called the matched ellipse [Fig.2(a)].  Now suppose one injects a
beam of particles, whose spatial distribution defines a different ellipse characterized by some
other parameters, say α* and β*.  The circular machine will not faithfully return this ellipse
after each turn.  Instead, the ellipse will tumble over and over filling out a much larger ellipse of
the matched ellipse form [Fig. 2(b)]

In a truly linear system, the original ellipse will tumble round indefinitely inside the
matched ellipse conserving its elliptical form and area, but in a practical system small non-
linearities will cause an amplitude-frequency dependence, which will distort the ellipse.  This is
also shown in Fig. 2.  Liouville's theorem requires the phase-space density to be conserved and
in a strict mathematical sense this is true, since as the figure becomes more wound-up the spiral
arms become narrower and the area is indeed constant. However it does not take long before the
beam is apparently uniformly distributed over the matched ellipse and for all practical purposes
the beam emittance has been increased.  This is called dilution of phase space by filamentation,
which is present to a greater or lesser extent at the injection into all circular machines.

Since filamentation will quickly transpose any beam ellipse into the matched ellipse in a
circular machine, there is no point in using any α and β values other than the matched ones.

Since α and β depend on the whole structure any change at any point in the structure will

in general (matched insertions excepted) change all the α and β values everywhere.

1 . 2 Transfer lines

In a transfer line, there is no such restriction.  The beam passes once and the shape of the
ellipse at the entry to the line determines its shape at the exit.  Exactly the same transfer line
injected first with one emittance ellipse and then a different ellipse has to be accredited with
different α and β functions to describe the two cases.  Thus α and β depend on the input beam
and their propagation depends on the structure.  Any change in the structure will only change
the α and β values downstream of that point.  There is an infinite number of sets of α  and β
values, which can be used to describe the motion of a single ion in a transfer line (see Fig. 3)



and the choice of a particular set depends on the input ellipse shape.  The input ellipse must be
chosen by the designer and should describe the configuration of all the particles in the beam.

Fig. 2  Matched ellipse, unmatched and filamenting beam ellipses

(Numerical values of coefficients in the matrix remain the same)

Fig. 3  Two ellipses from the infinite set that include the test ion

2 . ORBIT CORRECTION IN TRANSFER LINES

Orbit correction, or steering, is basically straightforward in transfer lines, whereas in
circular machines we could fill an entire course on the subject.  The usual philosophy is
illustrated in Fig. 4.



Fig. 4  Basic layout of diagnostic and correction elements for transfer line steering

(i) At the entry to the line, it is useful to have a very clear diagnosis of beam position and
angle and qualitative information on the shape, since this is usually the ejection from an
accelerator and often a boundary of responsibility between groups.  A pair of pickups and
knowledge of the transfer matrix between them is in principle all that is needed to find the
entry angle and position, but in practice, the precision and reliability of this measurement
and its credibility as a diagnostic tool are greatly improved by having only a drift space
between the pickups.  The qualitative knowledge of the beam shape is most easily
obtained with a luminescent screen and is of obvious diagnostic use.

(ii) In the central section of the line, each steering magnet is paired with a pickup
approximately a quarter of a betatron wavelength downstream, so that the trajectory can
be corrected stepwise along the line.  The direct application of this philosophy would lead
to four pickups per betatron wavelength, but in practice, it is usual to find fewer pickups
than this, especially if there are long straight sections.  The measurement of beam
emittance is usually made in the central part of the line in a dispersion-free section.  The
theory for the measurement of emittance and mismatches is treated in Section 4.

(iii) At the exit to the line, the last two dipole correctors are used as a doublet to steer the beam
to the angle and position, dictated by the closed orbit of the following accelerator or by a
target.  For maximum sensitivity, the dipoles should be approximately a quarter betatron
wavelength apart.

The horizontal and vertical planes should be independent for correction elements.  For
example, tilted dipoles are sometimes used in the lattice of a transfer line, but correction coils
for steering should be avoided on such magnets.  Skew quadrupoles are occasionally used to
interchange emittances between the horizontal and vertical planes.  Such insertions also
exchange the planes for steering.  While being novel, this is quite acceptable, as long as no
corrector is placed inside the skew quadrupole insertion, which would cause a coupling of its
effect to both planes rather than a simple exchange.

Some care is needed in the positioning elements for the best sensitivity.  The monitor
controlling a steering magnet should be on the adjacent peak of the downstream beam oscillation
(see Fig. 5), i.e. for the section of line from the steering dipole to the pickup, the matrix element
S in Eq. (1) must be relatively large or in other terms ∆φ = π/2 in Eq. (3).

The monitors and magnets should be sited near maxima in the β-function, since these are
the most sensitive points for controlling and observing.  This depends on the choice of input
beam ellipse.



Fig. 5  Positioning of correction elements

Monitors can also be profitably placed in bends at points where off-momentum particles
would have their maximum deviations.  Using three well-placed pickups a bend can be used for
momentum analysis.  The simple linear matrices make the analysis of such systems very easy.

In a long line, a global correction may well be possible, followed by an exact beam
steering at the end using two dipoles.

It should be possible to set the magnets in a transfer line and to be sure that the beam will
be transmitted with 100% efficiency on the first try and that only a fine steering will be needed
at the output to the line.  If this is not the case, check that:

• the line is always cycled in the same way when it is powered and that the cycle
saturates the magnets to set the hysteresis conditions.
• the current does not overshoot the requested value, especially when approaching the
minimum value in the cycle and the final value.  This is achieved by reducing the ramp
rate when approaching set values.
• when a steering correction is made, that it is made using the standard excitation cycle.
In this way, the value stored in the current file will reproduce the field exactly the next
time the line is powered.
• check the position, angle and cross-section of the incoming beam.

Figure 6 shows computer output of the beam trajectory in the TT6-TT1 antiproton transfer
line that was built in CERN.  The first two pickups measure the incoming angle and position in
both planes.  These pickups are separated by exactly 10.75 m of free space.  The next two
pickups are in a long bend and act as a momentum analyser, in conjunction with an angle and
position measurement made using the first two pickups.  The remaining pickups have
associated steering magnets.  At the end of the line two dipoles match the beam to the ISR's
closed orbit.

For the example shown in Fig. 6, it was found that a single corrector could virtually
correct the whole trajectory with the result shown in Fig. 6.  This type of correction is only
practical with non-destructive pickups, which reliably record the complete trajectory in one
shot, and an online computer for logging, display, analysis and application.   The correction
was stable and was applied throughout the life of the transfer line.  The cycling of the magnets
ensured that the beam reached the ISR on the first shot and only a fine-tuning of the injection
was required for each new run.  The TT6 line achieved 0.1mm accuracy with as little as 109

particles.  All readings were logged and stored for later analysis and the detection of trends.
The steering magnets were also equipped with Hall probes (temperature stabilized to +0.1 °C
for outside ambient temperatures 15 °C to 34 °C).  These probes made relative field changes
extremely accurate, eliminating any hysteresis errors.  This rather careful approach was justified
by the scarcity of antiprotons and since setting-up could not be done with the reverse injection
of protons.  



Fig. 6  Trajectories in the TT6-TT1 antiproton transfer line at CERN



3 . MATCHING TRANSFER LINES

Ideally long transfer lines consist of a regular cell structure over the majority of their
length with matching sections at either end to coordinate them with their injector and user
machines.  The regular part of the structure is then regarded as periodic and the simple FODO
cell theory, given in earlier lectures by J. Rossbach and P. Schmüser, applies.  Usually thin-
lens formulae are quite sufficient.  The matching sections are complicated and a complete course
could be given on this.  Basically one needs to match β, α, D, and D' in both planes.  In theory
eight variables, that is eight quadrupole strengths and sometimes positions, need to be adapted.
Some analytic solutions exist, but usually one uses a mixture of theory, intuition and computer
optimization programmes.

4 . EMITTANCE AND MISMATCH MEASUREMENT IN A DISPERSION-
FREE REGION

With semi-destructive monitors, such as secondary emission grids or digitized
luminescent screens, a density profile can be obtained of a beam.  This profile is a projection of
the population of the phase-space ellipse of the beam onto a transverse co-ordinate axis.  In
general, the profile is a near-Gaussian, but this is not really important for the following.  From
the profile, the standard deviation of the distribution, σ can be found and this can be used to

define a beam width, W .  W is then used to define the emittance ε, but unfortunately several
definitions are current.

  

ε = W2

β
π =

2σ( )2

β
π Mostly used in proton machines,  with or without π

σ2

β
π Mostly used in electron machines,  usually without π










(4)

Somewhat arbitrarily, ε = σ2/β will be used in this paper.

If β is known unambiguously as in a circular machine, then a single profile measurement

determines ε by Eq. (4), but as can be understood from Section 1.2, it is not easy to be sure in a

transfer line which β to use, or rather, whether the beam that has been measured is matched to

the β-values used for the line.  Indeed, the measurement of any mismatch is as important as the
emittance itself.  This problem can be resolved by using three monitors (see Fig. 7), i.e. the
three width measurements determine the three unknowns α, β and ε of the incoming beam.



Fig. 7  Layout for emittance measurement
By definition, Eq. (4),

  

ε = π σ0
2

β0

= π σ1
2

β1

= π σ2
2

β2

(5)

where β0, β1 and β2 are the β-values corresponding to the beam and are therefore uncertain.

Although we may not know β and α , we do know the transfer matrices and how β and α
propagate through the structure (see lectures by K. Steffen in these proceedings).

  

β
α
γ















1

=
C2 −2CS S2

−C ′C C ′S + S ′C −S ′S

′C 2 −2 ′C ′S ′S 2















β
α
γ















0

(6)

where γ = (1 + α2)/β.  Thus, from Eq. (6)

  

β1 = C1
2β0 − 2C1S1α0 + S1

2

β0

1+ α0
2( ) (7)

  

β2 = C2
2β0 − 2C2S2α0 + S2

2

β0

1+ α0
2( ) (8)

and from Eq. (5),

  

β0 = π σ0
2

ε
(9)

  

β1 = σ1

σ0







2

β0 (10)

  

β2 = σ2

σ0







2

β0 (11)

From Eqs. (7) and (8), we can find α0 and using Eqs. (10) and (11), we can express α0 as,

  

α0 = 1
2

β0Γ (12)

where

  

Γ =
σ2 / σ0( )2

/ S2
2 − σ1 / σ0( )2

/ S1
2 − C2 / S2( )2 + C1 / S1( )2

C1 / S1( ) − C2 / S2( )  . (13)

Since Γ is fully determined, direct substitution back into Eq. (7) or Eq. (8), using Eq. (10) or

Eq. (11) to re-express βl or β2. yields β0 which via Eq. (9) gives the emittance,

  

β0 = 1 / σ
2
1 / σ0( )2

/ S
2
1

2 − C
2
1 / S

2
1( )2

+ C
2
1 / S

2
1( )Γ − Γ2 / 4 (14A)

  

ε = πσ0
2( ) σ

2
1 / σ0( )2

/ S
2
1

2 − C
2
1 / S

2
1( )2

+ C
2
1 / S

2
1( )Γ − Γ2 / 4  . (14B)

The mismatch parameters ∆β and ∆α , the differences between what is expected and what
exists, can now be found directly from Eqs. (14B) and (12).
5 . SMALL MISALIGNMENTS AND FIELD RIPPLE ERRORS IN DIPOLES 

AND QUADRUPOLES



One problem, which always faces a transfer line designer, is to fix the tolerances for
magnet alignment and excitation currents.  Although the following is rather idealistic and does
not include such real-world problems as magnets having correlated ripple because they are on
the same transformer, it does give a basis for fixing and comparing tolerances [1].

5 . 1 Dipole field and alignment errors in transfer lines

The motion of a particle in a transfer line can be written as

  

y = A β  sin φ + B( ) (15)

This motion is an ellipse in phase space with

  

′y = A

β
cos φ + B( ) − Aα

β
 sin φ + B( )  . (16)

Rearranging we have

  

Y = y / β = A sin φ + B( )
′Y = yα / β + ′y β = A cos φ + B( )  ,

(17)

where (Y,Y') are known as normalized phase-space coordinates since with these variables
particles follow circular paths.  Note that y' denotes dy/ds, while Y' denotes dY/dφ and that α =

-1/2 dβ/ds.  The transformation to (Y,Y') is conveniently written in matrix form as

  

Y

′Y






=
1 / β 0

α / β β






y

′y






 . (18)

Consider now a beam for which the equi-density curves are circles in normalized phase
space.  If this beam receives an unwanted deflection, D, it will appear at the time of the
deflection as shown in Fig. 8(a).  However, this asymmetric beam distribution will not persist.
As the beam continues along the transfer line, the particles will re-distribute themselves
randomly in phase, while maintaining their distance from the origin, so as to restore rotational
symmetry.  This effect is known as filamentation (see also Section l.1).  Thus after a sufficient
time has elapsed the particles, which without the deflection D would have been at point P in
Fig. 8(b), will be uniformly distributed at a radius D about the point P.

For one of these particles the projection onto the Y-axis will be

  

Y2 = Y1 + D  cos θ ,

where the subscripts 1 and 2 denote the unperturbed and perturbed positions respectively.
Taking the square of this amplitude

  

Y2
2 = Y1

2 + 2Y1Dcos θ + D2 cos2θ



(a) Beam directly after deflection, D (b) Particle distribution after phase 
randomization (Filamentation)

Fig. 8  Effect of an unwanted deflection

and then averaging over the particles around the point P after filamentation has randomized the
kick gives*

  

Y2
2

p
= Y1

2

p
+ 2 Y1D  cos θ

p
+ D2 cos2θ

p
 .

Since Yl and D are uncorrelated (i.e. D does not depend on Y l), the second term can be written
as

  

2 Y1D  cos θ
p

= 2 Y1 p
D cosθ p  .

The second factor is zero, since D is a constant [Fig. 8(a)], which gives,

  

Y2
2

p
= Y1

2

p
+ 1

2
D2

p
= Y1

2

p
+ 1

2
D2  .

However, this result is true for any P at any radius A and hence it is true for the whole beam
and

  

Y2
2 = Y1

2 + 1
2

D2  . (19)

Thus the emittance blow-up will be

  

ε2 = ε1 + π
2

D2  ,
(20)

where, by definition (4), ε = π <Y2>, since Y  = y/√β and σ2=<y2>.  The subscripts 1 and 2
refer to the unperturbed and perturbed emittances respectively.  The expansion of the deflection,
D, gives

  

D2 = ∆Y( )2 + ∆ ′Y( )2 = ∆y( )2 1+ α2( )
β

+ ∆ ′y( )2β (21)

so that (20) becomes

  

ε2 = ε1 + π
2

∆y( )2 1+ α2( )
β

+ ∆ ′y( )2β











 , (22)

                                                
* <...> brackets indicate averaging over a distribuition.



where ∆y is a magnet alignment error and ∆y' = l∆B/Bρ an angle error from a field error ∆B of
length l.

5 . 2 Gradient errors in transfer lines

Consider once again a beam for which the equi-density curves are circles in normalized
phase space.  If this beam sees a gradient error, k, the equi-density curves directly after the
perturbation will be ellipses as shown in Fig. 9(a).  Since the object of this analysis is to
evaluate the effects of small errors, it is sufficient to regard this gradient error as a thin lens with
the transfer matrix

  

y2

′y2







=
1 0

k 1






y1

′y1







(23)

where k = -l∆G/Bρ an amplitude-dependent kick due to a gradient error ∆G of length l.

Fig. 9  Effect of a gradient error

Denoting the matrix in Eq. (18) as T, it is easy to show that

  

Y2

′Y2







= T
1 0

k 1





T −1

Y1

′Y1







=
1 0

kβ 1






Y1

′Y1







 .

It is now convenient to find a new co-ordinate system (YY,YY'), which is at an angle θ to the
(Y,Y') system, and in which the perturbed ellipse is a right ellipse [see Fig. 9(b)].

  

YY2

Y ′Y2







=
cosθ −sinθ
sinθ cosθ







1 0

kβ 1






Y1

′Y1







 . (24)

If the initial distribution Yl = A sin (φ + B), Y' l = A cos (φ + B), is introduced into the above
expression, the new distribution.will  be

  

YY2 = A 1+ k2β2 sin2 θ − 2kβsinθcosθ  sin φ + B+ Ψ( )
Y ′Y2 = A 1+ k2β2 cos2 θ + 2kβsinθcosθ  sin φ + B+ ′Ψ( )  ,

(25)

where



  

Ψ =  tan−1 −sinθ
cosθ − kβsinθ






   and   ′Ψ =  tan−1 cosθ

sinθ + kβcosθ






 .

The (YY2,YY'2) ellipse will be a right ellipse when (Ψ-Ψ') = π/2, which gives the condition

  

tan 2θ( ) = 2 / kβ  . (26)

Equations (25) can be simplified using (26) and the relationship (Ψ-Ψ') = π/2.  Equation (24)
can then be rewritten as

  

YY2

Y ′Y2







=
 tan θ 0

0 1 /  tan θ






YY1

Y ′Y1







(27)

where

  

YY1 = A sin φ + ′B( )
Y ′Y1 = A cos φ + ′B( )






  i.e.  Y1 and ′Y1  with a phase shift

  

′B = B + Ψ = B +  tan-1 1 / tan θ( )  .

Thus it has been possible to diagonalize Eq. (24) by introducing a phase shift Ψ into the initial
distribution.  Equation (27) is therefore not a true point-to-point transformation, as is Eq.  (24)
but since the initial distribution is rotationally symmetric the introduction of this phase shift has
no effect.

The distance from the origin of a perturbed particle is given by Eq. (27) as

  

YY2
2 + Y ′Y2

2 = A2  sin 2 φ + ′B( )tan2θ + A2  cos2 µ + ′B( ) 1
 tan2θ

Averaging over 2π in φ gives

  

YY2
2 + Y ′Y2

2 = 1
2

tan2θ + 1
 tan2θ





 A2  ,

but

  

A2 = YY1
2 + Y ′Y1

2 = Y1
2 + ′Y1

2  
and from (26)

  

tan2θ + 1
 tan2θ

= k2β2 + 2  .

Thus,

  

YY2
2 + Y ′Y2

2 = 1
2

k2β2 + 2( ) YY1
2 + Y ′Y1

2  . (28)

As in the previous case for dipole errors, the asymmetric beam distribution will not
persist.  The beam will regain its rotational symmetry by filamentation   Each particle, however,
will maintain its distance from the origin constant.  Once filamentation has occurred, the
distribution will not distinguish between the YY and YY' axes and Eq. (28) can be rewritten as

  

YY2
2 = 1

2
k2β2 + 2( ) YY1

2  (29)

and hence the emittance blow-up will be

  

ε2 = 1
2

k2β2 + 2( )ε1  . (30)

5 . 3 Combining errors



If there is a circular machine at the end of the transfer line, filamentation will take place
there and the above expressions will give the emittance blow-up due to a single error in the
preceding transfer line.  A series of errors can be treated by taking them in beam order and
assuming complete phase randomization between each error, although this is unlikely to be true
in practical cases.  By themselves, transfer lines are usually too short for the effects of
filamentation to show and certainly there is never complete randomization between elements in a
line.  In the real world adjacent magnets are often on the same transformer, which also gives
correlated errors.  Having pointed out these deficiencies, the above method still gives a basis
upon which to compare errors and fix tolerances.  The assumption that full randomization takes
place between elements will give a pessimistic result for the usual case of many independent
elements, which errs on the correct side for fixing tolerances.  For small numbers of elements
with correlated errors however, the analysis may underestimate the effect.

6 . EMITTANCE BLOW-UP DUE TO THIN WINDOWS IN TRANSFER 
LINES

Transfer lines are often built with a thin metal window separating their relatively poor
vacuum from that of the accelerator or storage ring that they serve.  The beam must pass
through this window with as little degradation as possible.  Luminescent screens are also
frequently put into beams with the same hope that they will have a negligibly small effect on the
beam emittance.  It is therefore interesting to know how to calculate the blow-up for such cases.

The root mean square projected angle θs due to multiple Coulomb scattering in a window
is given by [2,3]

  

θs
2 = 0.0141

βcp[MeV / c]
Zinc

L

Lrad

1+ 1
9

 log10

L

Lrad






 radian[ ] , (31)

where  Zinc is particle charge in units of electron charge, p is the particle momentum in MeV/c,

βc = v/c, L is thickness of scatterer and Lrad is radiation length of material of the scatterer.

Consider a particle with a projected angular deviation of y'1 at the window due to

the,initial beam emittance.  This particle receives a net projected kick in the window of θs and
emerges with an angle y'2 given by

  

′y2 = ′y1 + θs  .

By squaring and averaging over the whole beam this becomes

  

′y2
2 = ′y1

2 + θs
2 + 2 ′y1  θs

but, since y'1 is not correlated to θs, 
  

2 ′y1  θs = 2 ′y1 θs = 0  and the above simplifies to

  

′y2
2 = ′y1

2 + θs
2  . (32)

This describes the situation immediately after the scattering (see Fig. 10) when the beam
is no longer matched.  The position of the particles is unchanged since the scatterer is assumed
to be thin.



Fig. 10  Effect of a thin scatterer in normalized phase space

Using the same arguments as in Section 5.1, we see that this initial distribution filaments
and the average angular divergence becomes

  

′y2
2 = ′y1

2 + 1
2

θs
2  . (33)

For conversion to emittance, the following relationship can be used,

  

ε2 = π α
β

y2
2 + 2α y2 ′y2 + β ′y2

2







 (34)

which is found by re-writing (4) as 
  

ε = πσ2 / β = π Y2 = π ′Y 2

 and applying (17).  The first
term in (34) is unchanged by the scattering since the scatterer is assumed to be thin, so that
<y22>=<y12>.  The second term directly after the scattering yields,

  

y2 ′y2 = y1 ′y1 + θs( ) = y1 ′y1 + y1θs

but since y1 and θs are uncorrelated the second term can be writen as <y1><θs> and is zero.
Finally the third term can be evaluated by (33) after filamentation, so that,

  

ε2 = ε1 + π
2

β θs
2  . (35)

7 . EMITTANCE DILUTION FROM BETATRON MISMATCH

This is basically the gradient error problem of Section 5.2 seen from a slightly different
view point.  It often happens that the constraints on the linear optics are such that an analytically
perfect match cannot be found between the end of a transfer line and the accelerator its serves.
It may also be that measurements of the beam ellipse reveal a mismatch of unknown origin.
These situations pose the problem of what error in β and α can be tolerated?  The designer must
therefore be able to convert the mismatch into an emittance increase that can be judged against
criteria such as the acceptable loss of luminosity in a collider.



The transformation of the phase-space motion to normalised coordinates (Y,Y') was
given in (18).  If this transformation is prepared for an ellipse characterised by α1 and β1, but

is then applied to a mismatched ellipse characterised by α2 and β2 [using (15) and (16)] as
indicated below,

  

Y

′Y






=
1 / β1 0

α1 / β1 β1







y

′y






 =
1 / β1 0

α1 / β1 β1







A β2  sin φ + B( )

A

β2

cos φ + B( ) − Aα2

β2

 sin φ + B( )














(36)

then an ellipse is obtained in the normalised phase space (see Fig. 11) with the equation† ,

  

Y2 β1

β2

+ α1 − α2

β1

β2







2
β2

β1













+ ′Y 2 β2

β1

− 2Y ′Y α1 − α2

β1

β2







β2

β1

= A2 (37)

that can be compared to the circle given by the matched beam

  

Y2 + ′Y 2 = A2 (38)

Fig. 11  Betatron mismatch in normalised phase space

Equation (37) is exactly similar in form to a general phase space ellipse in normal space and if
we apply the equivalents,

  

γ ≡ β1

β2

+ α1 − α2

β1

β2







2
β2

β1

 ,  β ≡ β2

β1

  and   α ≡ − α1 − α2

β1

β2







β2

β1

(39)

all the standard formulae [4] can be used.  One can easily check for example that γ=(1+α2)/β
still holds.  Thus, we can avoid a lot of tedious algebra and quote directly the major and minor
axes, a and b  of the mismatched ellipse,

  

 a = A

2
H +1 + H −1( )  and   b = A

2
H +1 − H −1( ) (40)

                                                
† Multiply out (36) and then eliminate the sine and cosine terms by squaring and adding the two equations for Y
and Y'.



where

  

H = 1
2

β1

β2

+ α1 − α2

β1

β2







2
β2

β1

+ β2

β1












 . (41)

As in Section 5.2, the circle of the matched beam can be converted to the ellipse of the
mismatched beam by the application of a diagonal matrix of the form

  

λ 0

0 1 / λ






after a suitable rotation.  The rotation has no significant influence since the original distribution
is rotationally symmetric.  From (40) we see that

  

λ = 1
2

H +1 + H −1( )  and   
1
λ

= 1
2

H +1 − H −1( )  . (42)

It is quickly verified that the two equations in (42) are consistent.  Thus the square of the
distance of a particle from the origin is

  

Y2 + ′Y 2 = λ2A2 sin2(φ + B) + λ−2A2 cos2(φ + B)  . (43)

Averaging over all phases simplifies (43) to

  

Y2 + ′Y 2 = 1
2

λ2 + λ−2( )A2  . (44)

Since the factor (λ2+λ−2) is independent of radius and orientation, (44) applies to the whole
beam independent of its distribution.  Thus, we can express the effective increase in emittance
as,

  

εdiluted = 1
2

λ2 + 1
λ2





 ε0  . (45)

First we note that even for quite large values of λ , the effect on the emittance is less than one

might intuitively expect.  For example, if λ=1.4 the circle in normalised phase space is

deformed in the ratio 2:1 and yet the emittance is only increased by 23%.  Evaluting (λ2+λ−2)/2
by use of (42), we find that

  

εdiluted = H  ε0 = 1
2

β1

β2

+ α1 − α2

β1

β2







2
β2

β1

+ β2

β1












 ε0 (46)

where the subscript 1 denotes the expected values for the beam ellipse and subscript 2 denotes
the mismatched values.

8 . EMITTANCE EXCHANGE INSERTION

Beams usually have different emittances in the two transverse planes and it can happen
that there is a preference for having the smaller value in a particular plane.  For example, in a



collider with a horizontal crossing angle the luminosity is independent of the horizontal
emittance and it is therefore an advantage to arrange for the smaller of the two emittances to be
in the vertical plane.  The exchange of the emittances can be made in the transfer line before
injection to the collider.  A complete exchange of the transverse phase planes requires a
transformation of the form,

  

x

x'

z

z'



















2

=

0 0 m13 m14

0 0 m23 m24

m31 m32 0 0

m41 m42 0 0



















x

x'

z

z'



















1

 . (47)

This can be achieved by using skew quadrupole lenses. First we shall derive a thin-lens
formulation for a skew quadrupole and then search for the conditions to satisfy the above
transformation.

For a rotated co-ordinate system (see Fig. 12), the rotation matrix, R, is given by

  

xx = x  cos θ + y  sin θ
yy = −x  sin  θ + y  sin θ   

so that
    

R =
cos θ sin θ
-sin θ cos θ







 . (48)

Fig. 12  Rotated co-ordinate system

The skew quadrupole lens is just a normal lens rotated by 45° . Thus the transfer matrix, Ms, in
the thin-lens approximation would be related to the transfer matrix, Mq, of the normal lens by,

  

MS = R−1MquadR

  

MS =

cos θ 0 -sin θ 0

0 cosθ 0 -sin θ

sin θ 0 cosθ 0

0 sin θ 0 cosθ



















1 0 0 0

δs 1 0 0

0 0 1 0

0 0 -δs 1

















cos θ 0 sin θ 0

0 cosθ 0 sin θ

-sin θ 0 cosθ 0

0 -sin θ 0 cosθ



















  

MS =

1 0 0 0

δs cos2θ 1 δssin2θ 0

0 0 1 0

δssin2θ 0 −δs cos2θ 1



















(49)

For a pure skew quadrupole θ = π/4, sin2θ = 1 and cos2θ = 0



  

Ms =

1 0 0 0

0 1 δs 0

0 0 1 0

δs 0 0 1



















 . (50)

Consider now three skew quadrupoles δ1, δ2, and δ3 in a normal lattice (see Fig. 13).

Fig. 13  Three skew quadrupoles embedded in a normal lattice

The normal lattice matrix is C = BA , and the lattice with skews is, M = (δ3)B(δ2)A(δ1). To
save you the bother of matrix multiplication we quote the result,

  

M =

c11 + b12a34δ1δ2( ) c12 c12δ1 + b12a33δ2( ) b12a34δ2

c21 + b22a34δ1δ2

+δ3 c34δ1 + b34a11δ2( )








 c22 + b34a12δ2δ3( )

c22δ1 + b22a33δ2

+δ3 c33 + b34a12δ1δ2( )










b22a34δ2

+δ3c34







c34δ1 + b34a11δ2( ) b34a12δ2 c33 + b34a12δ1δ2( ) c34

δ3 c11 + b12a34δ1δ2( )
+c44δ1 + b44a11δ2









 c12δ3 + b44a12δ2( ) δ3 c12δ1 + b12a33δ2( )

+c43 + b44a12δ1δ2











b12a34δ2δ3

+c44

















































(51)

In order to force (51) into the form of (47), we need the top left-hand side and bottom right-
hand side sub-matrices to be zero.  Thus,

  

0 = c11 + b12a34δ1δ2 0 = c33 + b34a12δ1δ2

0 = c21 + b22a34δ1δ2 + δ3 c34δ1 + b34a11δ2( ) 0 = δ3 c12δ1 + b12a33δ2( ) + c43 + b44a12δ1δ2

0 = c12 0 = c34

0 = c22 + b34a12δ2δ3 0 = b12a34δ2δ3 + c44  .

The most basic requirements are, cl2 = c34 = 0.  Thus, the basic lattice should give,

  

∆φx = nπ   and   ∆φz = mπ  (n,m integer). (52)



For example, an [FDFD] structure with 90° phase advance per cell, or an [FDFDFD] with 60°
phase advance per cell would be suitable.  Assuming that this phase condition is satisfied, then
we can write for the lens strengths δ1, δ2 and δ3

  

δ1δ2 = − c11

a34b12

= − c33

a12b34

(53)

  

δ2δ3 = − c22

a12b34

= − c44

a34b12

(54)

Equations (53) and (54) indicate that symmetry is needed between the horizontal and vertical
planes, which can be satisfied by the FODO cells mentioned above.  Despite the apparent
complexity of the coefficients it is possible to find solutions.  For example let us choose an
[FDFD] structure with 90 ° per cell and the skew quadrupoles set at symmetric positions as
shown in Fig. 14.

Fig. 14  Example of insertion for phase-plane exchange

By symmetry A = B and the input α  and β values will equal the output values and also the
values at the central skew quadrupole.  So,

  

A
z
x = B

z
x( ) =

cos ∆φ
z
x + α

z
xsin ∆φ

z
x( ) β

z
xsin  ∆φ

z
x

− 1+ α
z
x
2( )β z

x
−1  sin  ∆φ

z
x cos ∆φ

z
x − α

z
xsin ∆φ

z
x( )













Matrix C will have a similar form with the phase shifts 2∆φx and 2∆φz.  For this case we have

chosen ∆φx = ∆φz = π/2, so that



  

A = B =

αx βx 0 0

− 1+ αx
2( )βx

−1  −αx 0 0

0 0 αz βz

0 0 − 1+ αz
2( )βz

−1 −αz



















(55)

C =

-1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1



















(56)

The skew quadrupole gradients would then be,

  

δ1 = δ2 = δ3 = 1

βxβz

(57)

Referring back to the thin-lens formulation.of a FOD0 cell in the lectures by J. Rossbach and
P. Schmüser in these proceedings, we see that

  

sin 
∆φ
2





 = L

2
δF = − L

2
δD

and for ∆φ = π/2

  

δF = −δD = 2
L

(58)

where L is the half-cell length.  Other examples can be found in Ref. [5].

*  *  *
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NON-LINEARITIES AND RESONANCES

E. Wilson
CERN, Geneva, Switzerland

1 . INTRODUCTION

The first step in designing an accelerator or storage ring is to choose an optimum pattern
of focusing and bending magnets, the lattice.  At this stage, non-linearities in the guide field are
ignored. It is assumed that the bending magnets are identical and have a pure dipole field.
Gradient magnets or quadrupoles have radial field shapes which have a constant slope,
unperturbed by higher-order multipole terms.

Before going too far in fixing parameters, the practical difficulties in designing the
magnets must be considered and the tolerances which can be reasonably written into the
engineering specification determined.  Estimates must be made of the non-linear departures
from pure dipole or gradient field shape, and of the statistical fluctuation of these errors around
the ring at each field level.

We must take into consideration that the remanent field of a magnet may have quite a
different shape from that defined by the pole geometry; that steel properties may vary during the
production of laminations;  that eddy currents in vacuum chamber and coils may perturb the
linear field shape.  Mechanical tolerances must ensure that asymmetries do not creep in.  At high
field the linearity may deteriorate owing to saturation and variations in packing factor can
become important.  Superconducting magnets will have strong error fields due to persistent
currents in their coils.

When these effects have been reviewed, tolerances and assembly errors may have to be
revised and measures taken to mix or match batches of laminations with different steel
properties or coils made from different batches of superconductor.  It may be necessary to place
magnets in a particular order in the ring in the light of production measurements of field
uniformity or to shim some magnets at the edge of the statistical distribution.  Even when all
these precautions have been taken, non-linear errors may remain whose effect it is simpler to
compensate with auxiliary multipole magnets.

Apart from the obvious need to minimize closed orbit distortion, these measures must be
taken to reduce the influence of non-linear resonances on the beam.  A glance at the working
diagram (Fig. 1) shows why this is so.  The QH, QV plot is traversed by a mesh of non-linear
resonance lines or stopbands of first, second, third, and fourth order.  The order, n, determines
the spacing in the Q diagram; third-order stopbands, for instance, converge on a point which
occurs at every 1/3 integer Q-value (including the integer itself).  The order, n, is related to the
order of the multipole which drives the resonance.  For example, fourth-order resonances are
driven by multipoles with 2n poles, i.e. octupoles.  Multipoles can drive resonances of lower-
order; octupoles drive fourth- and second-order; sextupoles third- and first-order, etc., but here
we simply consider the highest order driven.

The non-linear resonances are those of third-order and above, driven by non-linear
multipoles.  Their strength is amplitude-dependent so that they become more important as we
seek to use more and more of the machine aperture.  Theory used to discount resonances of
fifth- and higher-order as harmless (self-stabilized), but experience in the ISR, FNAL and SPS
suggests this is not to be relied upon when we want beams to be stored for more than a second
or so.

Each resonance line is driven by a particular pattern of multipole field error which can be
present in the guide field.  The lines have a finite width depending directly on the strength of the



Fig. 1 Working diagram or QH, QV plot showing the non-linear resonances in the operating 
region of the CERN SPS

error.  In the case of those driven by non-linear fields, the width increases as we seek to
exploit a larger fraction of the magnet aperture.  We must ensure that the errors are small
enough to leave some clear space between the stopbands to tune the machine, otherwise
particles will fall within the stopbands and be rapidly ejected before they have even been
accelerated.  In general, the line width is influenced by the random fluctuations in multipole
error around the ring rather than the mean multipole strength.

Systematic or average non-linear field errors also make life difficult.  They cause Q to be
different for the different particles in the beam depending on their betatron amplitude or
momentum defect.  Such a Q-spread implies that the beam will need a large resonance-free
window in the Q diagram.  In the case of the large machines, SPS, LEP, HERA, etc., the
window would be larger than the half integer square itself if we did not balance out the average
multipole component in the ring by powering correction magnets.

Paradoxically, when a "pure" machine has been designed and built, there is often a need
to impose a controlled amount of non-linearity to correct the momentum dependence of Q or to
introduce a Q-spread among the protons to prevent a high intensity instability.  Sextupole and
octupole magnets may have to be installed to this end and techniques studied which will enable
the control room staff to find the correct settings for these trim magnets once the machine
works.

Yet another set of multipole magnets is often required in a pulsed synchrotron to
deliberately excite non-linear betatron resonances and extract the beam in a long slow spill.

With modern computer control, the correction of closed orbit distortion due to linear field
errors has become a routine matter and, particularly in large accelerators, most of the emphasis
has shifted to calculation and elimination of the non-linear effects which prove to be of
considerable importance in the running-in of FNAL and the SPS.  In this talk I hope to outline
sufficient of the physics and mathematics of non-linearities to introduce the reader to this
important aspect of accelerator theory.



2 . MULTIPOLE FIELDS

Before we come to discuss the non-linear terms in the dynamics, we shall need to
describe the field errors which drive them.  The magnetic vector potential of a magnet with 2n
poles in Cartesian coordinates is:

  

A = An fn
n
∑ x,z( )  , (1)

where fn is a homogeneous function in x and z of order n.

Table 1
Cartesian solutions of magnetic vector potential

Multipole n Regular fn Skew fn
Quadrupole 2 x2 - z2 2xz
Sextupole 3 x3 - 3xz2 3x2z-z3

Octupole 4 x4 - 6x2z2 + z4 4x3z - 4xz3

Decapole 5 x5 - 10x3z2 + 5xz4 5x4z - 10x2z3 + z5

Table 1 gives fn(x,z) for low-order multipoles, both regular and skew.  Figure 2 shows
the distinction.  We can obtain the function for other multipoles from the binomial expansion of

  
fn x,z( ) = x + iz( )n  . (2)

The real terms correspond to regular multipoles, the imaginary ones to skew multipoles.

Fig. 2  Pole configurations for a regular sextupole and a skew sextupole

For numerical calculations it is useful again to relate An and field, remembering that for
regular magnets:

Bz z = 0( ) = ∂As

∂x
= nAnx n−1( )

n=1

∞

∑ = 1
n −1( )!n=1

∞

∑ d n−1( )Bz

dx n−1( )






0

xn−1                 (3)

so that



An = 1
n!

d n−1( )Bz

dx n−1( )






0

 .                                                 (4)

As a practical example of how one may identify the multipole components of a magnet
by inspecting its symmetry, we digress a little to discuss the sextupole errors in the main
dipoles of a large synchrotron.

Let us look at a simple dipole (Fig. 3).  It is symmetric about the vertical axis and its field
distribution will contain mainly even exponents of x, corresponding to odd n values: dipole,
sextupole, decapole, etc.  We can see, too, that cutting off the poles at a finite width can
produce a virtual sextupole.  Moreover, the remanent field pattern is frozen in at high field
where the flux lines leading to the pole edges are shorter than those leading to the centre.  The
remanent magnetomotive force

  

Hc∫ dl

is weaker at the pole edges, and the field tends to sag into a parabolic or sextupole
configuration.  This too produces a sextupole.

These three sources of sextupole error are the principle non-linearities in a large machine
like the SPS.  Note that these sextupole fields have no skew component.  However, before
launching into nonlinearities let us examine a simple linear resonance.

Fig. 3 The field in a simple dipole.  The δN and δS poles superimposed on the magnet poles 
give the effect of cutting off the poles to a finite width.

3 . SECOND-ORDER RESONANCE

A small elementary quadrupole of strength δ(Kl) is located close to an F quadrupole

where βH = 
  
β̂ .  Suppose a proton describes a circular trajectory of radius a = 

  
εβ  and

encounters the quadrupole at phase:

  
Qϕ s( ) = Qθ  ,

where θ is the azimuth which corresponds exactly to ϕ at the quadrupoles of a FODO lattice.



The first step is to write down the unperturbed displacement at the small quadrupole:

x = a cos Qθ  . (5)

It receives a divergence kick (Fig. 4):

  ∆x' = ∆ Bl( ) / Bρ = ∆ Kl( )x / Bρ  .                                   (6)

The small change in 
  
β̂∆x' ,

  
∆p = β̂∆x'  , (7)

perturbs the amplitude, a, by

  
∆a = ∆p  sin Qθ  .

Even more significantly there is a small phase advance (Fig. 4):

  

2π∆Q = ∆p

a
cosQθ  . (8)

By successive substitution of Eqs. (7), (6). and (5), we get

  
2π∆Q = β̂ ∆ lK( )

Bρ( )  cos2Qθ  . (9)

Over one turn the Q changes from the unperturbed Q by

  
∆Q = β̂∆ lK( )

4π Bρ( ) cos 2Qθ + 1( )  . (10)

On the average this shifts Q by

  
∆Q = β̂∆ lK( )

4π Bρ( )  . (11)

Similarly the change in amplitude, a, is on average:

∆a

a
≈ 2π∆Q  .

The first term, however, tells us that, as the phase Qθ on which the proton meets the

quadrupole changes on each turn by 2π x (fractional part of Q), the Q-value for each turn
oscillates and may lie anywhere in a band

  
δQ = β̂∆ lK( )

4π Bρ( )  

about the mean value.



Fig. 4 Circle diagram shows effect of kick δpat phase Qθ advancing phase by

2π∆Q = (∆p cos Qθ)/a

Suppose this band includes a half-integer Q-value.  Eventually, on a particular turn, each
proton will have exactly this half-integer Q-value (Q = p/2).

Because the first term in Eq. (10) is cos 2Qθ, the amplitude increases by 2π∆Q on the

next and all subsequent turns.  The proton has been perturbed by the ∆(Kl) error to a Q-value
where it "locks on" to a half-integer stopband.  Once there, the proton repeats its motion every
two turns, and the small amplitude increase from the perturbation ∆a builds up coherently and
extracts the beam from the machine.

We can visualize this in another way by saying that the half-integer line in the Q diagram,

2Q = p   (p = integer) ,

has a finite width ±Q with respect to the unperturbed Q of the proton.  Any proton whose
unperturbed Q lies in this stopband width locks into resonance and is lost (Fig. 5).

In practice each quadrupole in the lattice of a real machine has a small field error.  The
∆(lK)'s are chosen from a random distribution with an r.m.s. value ∆(lK)rms.  If the N

focusing quadrupoles at β̂  have their principal effect, we can see that the r.m.s. expectation

value for δQ is, from Eq. (11),

  
δQ

rms
= N

2

β̂∆ Kl( )rms

4πBρ
 .

The factor √2 comes from integrating over the random phase distribution.  The statistical
treatment is similar to that used for estimating closed orbit distortion.

Now let us use some Fourier analysis to see which particular azimuthal harmonic of the
δ(Kl) pattern drives the stopband.  Working in normalized strength k = ∆K/(Bρ) we analyse the

function δ(βk) into its Fourier harmonics with

 δβk s( ) = ∑β̂kpcos pθ + λ( ) (12)
and



  

Fig. 5  Alternative diagrams showing perturbed Q and a stopband

β̂kp = 1
πR

dsδ βk s( )[ ]
0

2π

∫  cos pθ + λ( )  .

In general all harmonics i.e. all values of p, have equal expectation values in the random
pattern of errors.  We substitute the pth term in Eq. (12) into Eq. (6) and work through the steps
to obtain a new form for Eq. (10), namely:

2π∆Q =
β̂kp

2∫ cos pθ + λ( ) cos 2Qθ + 1{ }ds  .

The integration can be simplified by writing ds = Rdθ:

∆Q =
β̂kpR

4π
cos 2Qθ  

0

2π

∫ cos pθ + λ( )dθ  .

The integral is only finite over many betatron oscillations when the resonant condition is
fulfilled:

  
2Q = p  .

We have revealed the link between the azimuthal frequency p in the pattern of quadrupole
errors and the 2Q = p condition which describes the stopband.  For example, close to Q = 27.6
in the SPS lies the half-integer stopband 2Q = 55.  The azimuthal Fourier component which



drives this is p = 55.  Similarly, a pattern of correction quadrupoles, powered in a pattern of
currents which follows the function

  
i = i0  sin 55θ + λ( )  ,

can be used to compensate the stopband by matching i0 and λ empirically to the amplitude of the
driving term in the error pattern.

This has been used at the SPS, and in other machines powering sets of harmonic
correction quadrupoles, each with its own power supply.  We look for a sudden beam loss due
to a strong stopband at some point in the cycle where Q' and ∆p/p are large and gradient errors
important.  This loss will appear as a downward step in the beam current transformer signal.
We then deliberately make Q sit on the stopband at that point to enhance the step and alter the
phase and amplitude of the azimuthal current patterns of the harmonic correctors to minimize the
loss.  We may have to do this at various points in the cycle with different phase and amplitude.

Two sets of such quadrupoles are used:  one set near F lattice quadrupoles affecting
mainly 2QH = 55;  the other set near D quadrupoles affecting 2QV = 55.

4 . THE THIRD-INTEGER RESONANCE

The third-integer stopbands are driven by sextupole field errors and are therefore non-
linear.  First imagine a single short sextupole of length l, near a horizontal maximum beta
location.  Its field is

  

∆B = d2Bz

dx2 x2 = B"

2
x2  , (13)

and it kicks a particle with betatron phase Qθ by

  
∆p = βlB"

2Bρ
x2 = βlB"a2

2Bρ
cos2Qθ                                          (14)

inducing increments in phase and amplitude,

  

∆a

a
=

∆p

a
sin Qθ = βlB"a

2Bρ
cos2Qθ  sin Qθ                                   (15)

  
∆φ =

∆p

a
cos  Qθ = βlB"a

2Bρ
cos3Qθ                                         (16)

  
= βlB"a

8Bρ
cos 3Qθ + 3 cos Qθ( )  .                                      (17)

Suppose Q is close to a third integer, then the kicks on three successive turns appear as in
Fig. 6.  The second term in Eq. (17) averages to zero over three turns and we are left with a
phase shift:

  
2π∆Q = ∆φ = βlB"a  cos 3Qθ

8Bρ
 .                                   (18)



Fig. 6  Phase-space trajectory on a 3rd-order resonance

We can again guess how resonances arise.  Close to Q = p/3, where p is an integer,
cos 3Qθ varies slowly, wandering within a band about the unperturbed Q0 as in Fig. 5:

  
Q0 − βlB"a

16πBρ
< Q < Q0 + βlB"a

16πBρ
 .                                          (19)

As in the case of the half-integer resonance this is the stopband width but in reality is a
perturbation in the motion of the particle itself.

We can write the expression for amplitude perturbation

  

∆a

a
= βlB"a

8Bρ
sin 3Qθ  .                                                 (20)

Suppose the third integer Q-value is somewhere in the band.  Then, after a sufficient number of
turns, the perturbed Q of the machine will be modulated to coincide with 3p.  On each
subsequent revolution this increment in amplitude builds up until the particle is lost.  Growth is
rapid and the modulation of Q  away from the resonant line is comparatively slow.

Looking back at the expressions, we find that the resonant condition, 3Q = integer, arises
because of the cos3 Qθ term in Eq. (16), which in turn stems from the x2 dependence of the
sextupole field.  This reveals the link between the order of the multipole and that of the
resonance.

We see that the a2 in Eq. (14) leads to a linear dependence of width upon amplitude.  This
term was a1 in the case of the half integer resonance which led to a width which was
independent of amplitude and will become a3 in the case of a fourth-order resonance giving a
parabolic dependence of width upon amplitude.

It is also worth noting that the second term in Eq. (17), which we can ignore when away
from an integer Q-value, suggests that sextupoles can drive integer stopbands as well as third



integers.  Inspection of the expansion of cosnθ will suggest the resonances which other
multipoles are capable of driving.

Returning to the third-order stopbands, we note that both stopband width and growth rate
are amplitude-dependent.  If Q0 is a distance ∆Q from the third integer resonance, particles with
amplitudes less than

  
a <

16π Bρ( )∆Q

βlB"
                                                        (21)

will never reach a one third integer Q and are in a central region of stability.  Replacing the
inequality by an equality, we obtain the amplitude of the metastable fixed points in phase space
where there is resonant condition but infinitely slow growth (Fig. 7).

Fig. 7  Third-order separatrix

The symmetry of the circle diagram suggests there are three fixed points at θ = 0, 2π/3,

and 4π/3.  For a resonance of order, n, there will be n such points.

The fixed points are joined by a separatrix, which is the bound of stable motion.  A more
rigorous theory, which takes into account the perturbation in amplitude, would tell us that the
separatrix is triangular in shape with three arms to which particles cling on their way out of the
machine.

We have seen how a single sextupole can drive the resonance.  Suppose now we have an
azimuthal distribution which can be expressed as a Fourier series:

B" θ( ) = Bp
"∑  cos pθ  . (22)

Then

                ∆φ =
βBp

"

8Bρ∫
p

∑  cos 3Qθ cos pθdθ  .                                           (23)

This integral is large and finite if

  
p = 3Q . (24)



As in the earlier case of the second-order resonances this reveals why it is a particular
harmonic in the azimuthal distribution which drives the stopband.  It is not just the Fourier
spectrum of B"(θ) but of βB"(θ) which is important in this context.  Periodicities in the lattice
and in the multipole pattern can thus mix to drive resonances.

This is particularly important since some multipole fields, like the remanent field pattern
of dipole magnets, are inevitably distributed in a systematic pattern around the ring.  This
pattern  is rich in the harmonics of S, the superperiodicity.  Even when this is not the case and
errors are evenly distributed, any modulation of beta which follows the pattern of insertions can
give rise to systematic driving terms.  It is an excellent working rule to keep any systematic
resonance, i.e.

  
lQH + mQV = S  superperiod number( ) × integer= p (25)

out of the half integer square in which Q is situated.  This is often not easy in practice.

As in the second-order case, the third-order stopbands can be compensated with sets of
multipoles powered individually to generate a particular Fourier component in their azimuthal
distributions.  The above equation defines four numerical relations between QH and QV which
are resonant.  The keen student can verify this with an extension to the mathematics of the
previous section.  He will find that two of the lines are sensitive to errors of a sextupole
configuration with poles at the top and bottom, the other two to sextupoles with poles
symmetrical about the median plane (Fig. 2).  By permuting these two kinds of sextupoles with
the two types of location, we can attack the four lines more or less orthogonally.

5 . GENERAL NUMEROLOGY OF RESONANCES

We have seen how the Q-value at which the resonance occurs is directly related to a
frequency in the azimuthal pattern of variation of multipole strength.  We can now generalise
this.

Suppose the azimuthal pattern of a multipole of order n can be Fourier analysed:

  

B n−1( ) θ( ) = Bp
n−1( ) cospθ

p
∑  , (26)

where θ is an azimuthal variable, range 0 to 2π. We shall show that if the resonance is in one
plane only, a particular component, p = nQ, of this Fourier series, drives it.  For example, the
83rd azimuthal harmonic of sextupole (n = 3) drives the third-order resonance at Q = 27.66.
The more general expression is

  

lQH + mQV = p (27)

l + m = n  an integer( )  . (28)
Each n-value defines a set of lines in Fig. 1, four for third-order resonances, five for

fourth-order, etc.  Each line corresponds to a different homogeneous term in the multipole
Cartesian expansion (Table 1).  Some are excited by regular multipoles, others by skew
multipoles.

6 . SLOW EXTRACTION USING THE THIRD-ORDER RESONANCE

So far we have thought of resonances as a disease to be avoided, yet there is at least one
useful function that they can perform.

We have seen that a third-order stopband extracts particles above a certain amplitude, the
amplitude of the unstable fixed points which define a separatrix between stability and instability



(Fig. 7).  The dimensions of the separatrix, characterized by a are determined by ∆Q, the
difference between the unperturbed Q and the stopband.  As one approaches the third integer
by, say, increasing the focusing strength of the lattice quadrupoles, ∆Q shrinks, the unstable
amplitude, a, becomes smaller and particles are squeezed out along the three arms of the
separatrix.  If we make ∆Q shrink to zero over a period of a few hundred milliseconds, we can
produce a rather slow spill extraction.

At first sight we might expect only one third of the particles to migrate to positive x-values
since there are three separatrices, but it should be remembered that a particle jumps from one
arm to the next each turn, finally jumping the extraction septum on the turn when its
displacement is largest.  The septum is a thin walled deflecting magnet at the edge of the
aperture.

The growth increases rapidly as particles progress along the unstable separatrix, and if the
stable area is small compared with the distance between beam and septum, the probability of a
particle striking the septum rather than jumping over it is small.  It clearly helps to have a thin
septum.  The SPS it is a comb of wires forming a plate of an electrostatic deflector.

Magnet or quadrupole ripple can cause an uneven spill, making the Q approach the third
integer in a series of jerks thus modulating the rate at which particles emerge.  A spread in
momentum amongst the particles can help, however, since if the chromaticity is finite, we will
have swept through a larger range of Q-values before all separatrices for all momenta have
shrunk to zero.  The larger Q change reduces the sensitivity to magnet ripple.

7 . LANDAU DAMPING WITH OCTUPOLES

Another beneficial effect of multipoles is the use of octupoles to damp coherent transverse
instabilities due to the beam's own electromagnetic field.

For a transverse instability to be dangerous, the growth time must win over other
mechanisms which tend to destroy the coherent pattern and damp out the motion.  One such
damping mechanism is the Q-spread in the beam.  Coherent oscillations decay, or become
dephased, in a number of betatron oscillations comparable to 1/∆Q, where ∆Q is the Q-spread
in the beam.  This corresponds to a damping time, expressed in terms of the revolution
frequency, ω0/2π:

τd = 2π
ω0∆Q

 , (29)

which is just the inverse of the spread in frequencies of the oscillators involved, i.e. the
protons.  The threshold for the growth of the instability is exceeded when τg (which increases

with intensity) exceeds τd

τg = 2π
ω0∆Q

 . (30)

This is a very general argument which affects all instability problems involving
oscillators and is an example of Landau damping.  Thinking of it another way, we can say that
the instability never gets a chance to grow if the oscillators cannot be persuaded to act
collectively for a time τg.  If they have a frequency spread ∆ f, the time for which they can act

concertedly is just l/∆f.



Unfortunately, in our quest for a small ∆Q to avoid lines in the Q diagram by correcting
chromaticity, improvements in single particle dynamics can lower the threshold intensity for the
instability.  A pure machine is infinitely unstable.  In practice, at the SPS this happens at about
5 x 1012 particles per pulse if ∆Q is less than 0.02 and τg  about 1 msec.  Suddenly the beam
begins to snake under the influence of the resistive wall instability.  A large fraction of the beam
is lost before stability is restored.

The first remedy is to increase ∆Q.  Landau damping octupoles are installed for this
purpose in the SPS.  Octupoles produce an amplitude Q-dependence which is thought to be
more effective than the momentum-dependent Q-spread produced by sextupoles.  Each particle
changes in momentum during a synchrotron oscillation, and in a time comparable to τg all
particles have the same mean momentum.  Sextupoles do not spread the mean Q of the particles.
Octupoles, producing an amplitude Q-dependence, do.

The circle diagram can be used to calculate the effect of an octupole which gives a kick:

  
∆p = β ∆ Bl( )

Bρ
= βlB"'

3! Bρ( ) a3 cos3Qθ  . (31)

The change in phase is

  
2π∆p = ∆φ = βlB"' a2  cos4Qθ

6 Bρ( )  , (32)

which averages to

  
∆Q = βlB' "βa2

32πBρ
 . (33)

Of course if the octupoles are placed around the ring they can excite fourth-order
resonances.  A good rule is to have as many of them as possible and to distribute them at equal
intervals of betatron phase.  If there are S octupoles thus distributed their Fourier harmonics are
S, 2S, etc. and they can only excite structure resonances near Q values:

  
4Q = S×  an integer .

Although these systematic resonances are very strong it should not be difficult to choose
S so that Q is not in the same integer square as one of the values of nS/4.

*  *  *
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DYNAMICS AND ACCELERATION IN LINEAR STRUCTURES

J. Le Duff

Laboratoire de l'Accélérateur Linéaire
Bat. 200, Centre d'Orsay, 91405 Orsay, France

1 . BASIC METHODS OF LINEAR ACCELERATION

1 . 1 Early days

In principle a linear accelerator is one in which the particles are accelerated on a linear
path.  Then the most simple scheme is the one which uses an electrostatic field as shown in
Fig. 1.  A high voltage is shared between a set of electrodes creating an electric accelerating
field between them.  The disadvantage of such a scheme, as far as high energies are concerned,
is that all the partial accelerating voltages add up at some point and that the generation of such
high electrostatic voltages will be rapidly limited (a few ten MV).  This type of accelerator is
however currently used for low energy ion acceleration, and is better known as the Van De
Graaf accelerator.

Fig. 1  Electrostatic accelerator scheme

In the late 1920's propositions were made, essentially by R. Wideroe, to avoid the
limitation of electrostatic devices due to voltage superposition. The proposed scheme, later on
(early 1930's) improved by E. Lawrence and D. Sloan at the Berkeley University, is shown on
Fig. 2.

Fig. 2  Wideroe-type accelerator



An oscillator (7 MHz at that time) feeds alternately a series of drift tubes in such a way
that particles see no field when travelling inside these tubes while they are accelerated in
between.  The last statement is true if the drift tube length L satisfies the synchronism condition:

  
L = vT

2

where v is the particle velocity (βc) and T the period of the a.c. field.  This scheme does not
allow continuous acceleration of beams of particles.

1 . 2 Improved methods for non-relativistic particles

Consider a proton of 1 MeV kinetic energy entering the previous structure.  At a
frequency of 7 MHz such a particle, with β = v/c = 4.6 10-2, will travel a distance of roughly
1 meter in half a cycle.  Clearly the length of the drift tubes will soon become prohibitive at
higher energies unless the input RF frequency is increased.

Higher-frequency power generators only became available after the second world war, as
a consequence of radar developments.

However at higher frequencies the system, which is almost capacitive, will radiate a large
amount of energy;  as a matter of fact if one considers the end faces of the drift tubes as the
plates of a capacitor, the displacement current flowing through it is given by

  I = ω  CV
where C is the capacitance between the drift tubes, V the accelerating voltage and ω the angular
frequency in use.  It is therefore convenient to enclose the gap existing between drift tubes in a
cavity which holds the electromagnetic energy in the form of a magnetic field (inductive load)
and to make the resonant frequency of the cavity equal to that of the accelerating field (Fig. 3).
In that case the accelerator would consist of a series of such cavities fed individually with
power sources.

Fig. 3  Single-gap accelerating structure

Such single-gap cavities could also be placed adjacent to each other as shown on Fig. 4.
In the 2π mode case, since the resulting wall current is zero, the common walls between
cavities become useless.  Then a variant of that scheme consists of placing the drift tubes in a
single resonant tank such that the field has the same phase in all gaps.  Such a resonant
accelerating structure was invented by L. Alvarez in 1945 and was followed by the construction
of a 32 MeV proton drift tube linac (Fig. 5) powered by 200 MHz war surplus radar
equipment.



Fig. 4  Adjacent single-gap cavities:  a) π mode, b) 2π mode

Fig. 5  Alvarez-type structure

In the 2π mode of operation the synchronism condition is:

L = vT = βλ0

where λo is the free space wavelength at the operating frequency.  Notice that in Fig. 5 the drift
tubes are maintained by metallic rods to the tank walls.

The Alvarez structure is still used for protons, as well as heavy ions, operating mostly at
200 MHz.  Most of our present day proton linear accelerators are used as injectors for circular
machines such as synchrotrons and their energy lies from 50 MeV to 200 MeV.  At 200 MeV
protons are still weakly relativistic with β = 0.566.

     Note   :  Since the progress in methods of acceleration came from the use of resonant structures
which can provide high accelerating field with less power consumption, the new definition of a
linear accelerator or "Linac" implied machines in which particles are accelerated on a linear path
by radio frequency fields.  Then electrostatic devices no more appear in this definition, but it is
worthwhile mentioning that they are used as front-end proton linacs.

1 . 3 The case of ultra-relativistic particles

While β is getting close to unity for protons of 10 GeV kinetic energy, β is almost unity
for electrons of 10 MeV.  Hence above these energies the particles will have a constant velocity
v = c and the length of the drift tubes will remain constant as well.  The higher velocity needs
higher frequencies.  However triode and tetrode tubes could not handle high RF power at high
frequency.  The invention of the klystron in 1937 and its successful development during the
war led to high power sources at 3000 MHz.  At this frequency the free-space wavelength is
10 cm, small enough that the perspective of accelerating electrons to high energies soon
became an aim.



At the same time emerged the idea that ultrarelativistic particles could be accelerated by
travelling guided waves.  It is a matter of fact that in a resonant structure the standing wave
pattern can be expanded into two travelling waves, one which travels in synchronism with the
particle and the backward wave which has no mean effect on the particle energy.

However TM modes (with an electric field in the direction of propagation) in rectangular
or cylindrical guides have phase velocities bigger than c.  Then it was necessary to bring the
phase velocity at the level of the particle velocity (vp ~ c) and to do so the simplest method
consists of loading the structure with disks as shown on Fig. 6, where the size of the holes
determines the degree of coupling and so determines the relative phase shift from one cavity to
the next.  When the dimensions (2a, 2b) have been tailored correctly the phase changes from
cavity to cavity along the accelerator to give an overall phase velocity corresponding to the
particle velocity.

Fig. 6  Disk-loaded structure

This type of structure will continuously accelerate particles as compare to the drift tube
structure which gives a discontinuous acceleration corresponding to the successive gaps.

Figure 7 is a more complete drawing of such a travelling-wave structure showing both,
the input coupler which matches the source to the structure and the output coupler which
matches the structure to an external load (resistive load for instance) to avoid the backward
wave.

Fig. 7  Travelling-wave accelerating structure

These structures generally operate in the π/2 mode or the 2π/3 mode.  For the former the

height of each cell is equal to λ/4 while it is equal to λ/3 for the latter.  This is important, as will
be seen later, for the electromagnetic energy to propagate.  The interesting thing with travelling-
wave structures, in which the energy propagates relatively fast, is that the RF power source can



be pulsed during a short period corresponding to the filling time of the structure.  In this pulsed
mode of operation much higher peak power pulses can feed the structure, increasing the
accelerating field.  As a consequence only pulsed beams can be accelerated leading to small duty
cycles.

Standing-wave structures can also be used for ultrarelativistic particles.  In that case the π
mode of operation is efficient, where the field has opposite phase in two adjacent cells.  This
type of structure as shown on Fig. 8, often called "nose cone structure", is very similar to the
drift tube one in which the length of the tubes has been made very small.  A variant of this
scheme is used in the high energy proton linac (E = 800 MeV) at Los Alamos, where the
coupling between cavities has been improved by adding side coupled resonant cavities as
sketched on Fig. 9.

Fig. 8  Nose-cone structure

Fig. 9  Side-coupled structure

1 . 4 Induction linac

Resonant structures as described previously cannot handle very high beam currents.  The
reason is that the beam induces a voltage proportional to the circulating current and with a phase
opposite to that of the RF accelerating voltage.  This effect known as "beam loading" disturbs
the beam characteristics and can even destroy the beam by some instability mechanism.

A cure for such an effect in the case of very high currents consists of producing an
accelerating field with a very low Q resonator.  This is obtained with an induction accelerator
module (Fig. 10) in which a pulsed magnetic field produces an electric field component,
according to Maxwell equations, just similar to the betatron principle.

The accelerator will consist of an array of such modules triggered at a rate compatible
with the particle velocity, and fed by high power short pulse generators.



Fig. 10  Linear induction accelerator module

1 . 5 Radio frequency quadrupole (RFQ)

At quite low β values (for example low energy protons) it is hard to maintain high
currents due to the space charge forces of the beam which have a defocusing effect.

In 1970 I.M. Kapchinski and V.A. Teplyakov from the Soviet Union proposed a device
in which the RF fields which are used for acceleration can serve as well for transverse
focusing.  The schematic drawing of an RFQ is shown on Fig. 11.  The vanes which have a
quadrupole symmetry in the transverse plane have a sinusoidal shape variation in the
longitudinal direction.  In recent years these devices have been built successfully in many
laboratories making it possible to lower the gun accelerating voltage for protons and heavy ions
to less than 100 kV as compared to voltages above 500 kV which could only be produced
earlier by large Cockcroft-Walton electrostatic generators.

Fig. 11 Schematic drawing of an RFQ resonator

1 . 6 Other methods and future prospects

Among the other methods of acceleration one can at least distinguish between two classes:
collective accelerators and laser accelerators.  In both cases the idea is to reach much higher
gradients in order to produce higher energies keeping the overall length of the accelerator at a
reasonable level.

Collective accelerators are already in use for ion acceleration but up to now they never
reached the desirable high gradients.  The oldest idea of collective acceleration is the Electron
Ring Accelerator (ERA) where an intense electron beam of compact size is produced in a
compressor (Fig. 12).  The electron ring is then accelerated either by an electric field or by a



pulse magnetic field (induction acceleration) and loaded with ions.  Through the space charge
effect the electrons (hollow beam) will take the ions along.

Fig. 12  Principle of the Electron Ring Accelerator (ERA)

Laser accelerators hold out the promise of reaching high energies with a technology
which is new to accelerator physicists.  Plasma media can be used to lower the velocity of the
laser wave.

It is also worthwhile to mention that extensions of conventional techniques are also
studied extensively for very high energy electron linacs.

2 . FUNDAMENTAL PARAMETERS OF ACCELERATING STRUCTURES

2 . 1 Transit time factor

Consider a series of accelerating gaps as in the Alvarez structure (Fig. 13a) and assume
the corresponding field in the gap to be independant of the longitudinal coordinate z (Fig. 13 b).
If V is the maximum voltage in the gap, the accelerating field is:

  

Ez = V

g
cosωt

If the particle passes through the center of the gap at t = 0 with a velocity v, its coordinate
is:

  z = vt
and its total energy gain is:

  

∆E = eV

g
−g/2

+g/2

∫ cosω z
v

dz

= eV
sin θ / 2

θ / 2
= eVT



Fig. 13  Approximate field pattern in a drift tube accelerator

where

  
θ = ωg

v

is called the transit angle and T is the transit-time factor:

  

T = sin θ / 2
θ / 2

For a standing-wave structure operating in the 2π mode and where the gap length is equal
to the drift tube length:

  
g = β  λo / 2

one gets:

  T = 0.637 .

To improve upon this situation, for a given V it is advantageous to reduce the gap length g
which leads to larger drift tubes as in the Alvarez design.  However a too large reduction in g
will lead to sparking, for a given input power per meter, due to an excessive local field
gradient.  Usual values of T lie around 0.8.  In the more general case where the instantaneous
field is not homogeneous through the gap, the transit-time factor is given by:

T =
Ez z( )e jω tdz∫

Ez z( )dz∫
The transit time factor generally shows the amount of energy which is not gained due to

the fact that the particle travels with a finite velocity in an electric field which has a sinusoidal
time variation.  However this factor may become meaningless, for instance if the mode is such



that the denominator is equal to zero while the numerator remains finite as would be the case for
a TM011 mode in a pill-box cavity (see Fig. 14).  So one has to be careful when using this
concept.

Fig. 14  TM011 mode in a pill-box cavity

    Exercise      :     Energy gain when the field Ez in the gap varies with z

One has:

∆E = e  ℜe Ez
o

g

∫ z( )e jω tdz

with

  
ωt = ω z

v
− ψ p

where ψp is the phase of the particle, relative to the RF, when entering the gap.  Hence

  

∆E = eℜe e− jψ p Ez z( )e
jω z

vdz
o

g

∫










= eℜe e− jψ pejψ i Ez z( )e
jω z

vdz
o

g

∫












By introducing φ = ψp - ψi one finally gets:

∆W = e Ez z( )e
jω z

v dz
o

g

∫ cos φ

which has a maximum value for φ = 0.

Now φ appears as the phase of the particle referred to the particular phase which would
yield the maximum energy.



2 . 2 Shunt impedance

The shunt impedance Rs for an RF cavity operating in the standing wave mode is a figure
of merit which relates the accelerating voltage V to the power Pd dissipated in the cavity walls:

  

Pd = V2

Rs
 .

The shunt impedance is very often defined as a quantity per unit length.  So, a more
general definition which takes also care of travelling-wave structures is:

  

dP

dz
= − Ez

2

r
   with r = Rs

L

where L is the cavity length, r the shunt impedance per unit length, Ez the amplitude of the

accelerating field, and 
dP

dz
 the fraction of the input power lost per unit length in the walls

(another fraction will go into the beam).  The sign in the right hand side means that the power
flowing along a travelling-wave structure decreases due to the losses.

In the case of standing-wave cavities an uncorrected shunt impedance Z is sometimes
defined (computer codes for designing cavities) where V is the integral of the field envelope
along the gap.  Then, to take care of the transit time factor the true shunt impedance becomes

  
Rs = Z  T2  .

Shunt impedances up to 35 MΩ/m are reached in proton linacs operating at 200 MHz and

relatively low energy, while shunt impedances up to 100 MΩ/m can be obtained at 3 GHz in
electron linacs.  For the latter a peak power of 50 MW (for instance supplied by a high power
pulsed klystron) would give an accelerating gradient of 70 MV/m in a 1 meter-long structure.

However, most of the present electron linacs work in the range of 10 to 20 MV/m with
less efficient structures and lower peak power from more conventional pulsed klystrons.

If a standing-wave structure, with shunt impedance Rs, is used in the travelling-wave
mode then the shunt impedance is doubled.  This comes from the fact that a standing wave can
be considered as the superposition of two travelling waves of opposite direction, each wave
leading to power losses in the walls.

It is desirable to have a shunt impedance per unit length r as high as possible.  Let's have
a look to the dependance of r upon the operating frequency:

- the RF power loss per unit length is proportional to the product of the square of the wall
current iw and the wall resistance rw per unit length:

  

dP

dz
∝ iw

2rw

- the axial electric field Ez  is proportional to the wall current divided by the radius b of the
cavity:

  
Ez ∝ iw / b



- the wall resistance rw per unit length is equal to the resistivity ρ of the wall material divided by
the area of the surface through which the current is flowing:

  
rw = ρ / 2π  b  δ

where δ is the skin depth given by:

  
δ = 2ρ / ωµ( )1/2

and µ is the permeability of the walls.  Combining all these expressions and knowing that
b ∝1 / ω  yields the result:

  r ∝ ω

which shows, from the viewpoint of RF power economy, that it is better to operate at higher
frequencies.  But there is however a limit in going to very high frequencies due to the fact that
the aperture for the beam must be kept large enough.

2 . 3 Quality factor and stored energy

The quality factor Q is defined by:

Q = ωWs

Pd

where Ws is the stored energy.  Clearly Q remains the same if the structure is used either in the
standing-wave mode or the travelling-wave mode.  It is also common to use the stored energy
per unit length of the structure ws = dWs/dz.

Then

Q = − ω ws

dP / dz

Another quantity of interest is the ratio r/Q:

r

Q
= Ez

2

ω ws

quantity which only depends on the cavity geometry at a given frequency, and which can be
measured directly by a perturbation method.  The other quantities depend on other factors like
the wall material, the quality of brazing etc. ...  Q varies like ω −1/2 , hence r/Q varies like ω.

    Exercise     Fields, quality factor Q and ratio r/Q for a pill-box cavity

Note that pill-box cavities are very representative of single-cell accelerating structures in
most cases.

The field components for TMnpq modes in cylindrical cavities are given by:



Ez = k2
2 cos k1z  Jn k2r( ) cos nθ

Er = −k1k2  sin k1z  Jn
' k2r( )  cos nθ

Eθ = nk1

r
sin k1z  Jn k2r( )  sin nθ

Hz = 0

Hr = − j

Zo

nk

r
Jn k2r( )  sin nθ

Hθ = − j

Zo
kk2Jn

' k2r( )  cos nθ

Zo = µo / εo( )1/2

satisfying the boundary conditions:

  

Er = Eθ = 0   for   z = 0   and   z = l

Ez = Eθ = 0   for   r = a

with

  

k1 = qπ
l

   Jn k2a( ) = 0    k2 =
vnp

a

k2 = 4π2

λ2 = qπ
l







2

+
vnp

a






2

where vnp is the pth root of Jn(x) = 0 and λ the free-space wavelength.

The most simple mode in a cylindrical cavity is the mode TM010.  This is the fundamental
mode which however requires l/a < 2.  This mode has only two components (Fig. 15):

Fig. 15  TM010 mode in a pill-box cavity



Ez = Jo kr( )

Hθ = − j

Zo
J1 kr( )

Jo
' = −J1( )

The resonant frequency is given by vnp = 2.4 and λ = 2πa/2.4 = 2.62 a.

For λ = 10 cm one gets a = 3.8 cm.

In a resonant RLC circuit, Q is expressed as follows:

Q = 2π f

1
2

LI2

1
2

RI2
= Lωo

R
   with   ωo = 1

LC
 .

So, one can write for the definition of Q

  

Q = 2π Stored energy
Energy lost during one period

which can now be extended to a resonant cavity.

The stored energy in the cavity volume is given by:

  

Ws = µ
2

H
V
∫

2
dV = ε

2
E

V
∫

2
dV  .

For the power losses in the walls, one notices that the magnetic field induces in the wall a
current   

r
i = r

n ×
r
H  or i = H.  Then the losses are given by:

Pd = 1
2

Rw
S
∫ H2dS

where Rw is the surface resistance for a layer of unit area and width δ (skin depth):

  

Rw = 1
σδ

   with   δ = 1
πµσf

and where σ is the material conductivity and f the RF frequency.  So:

dPd = πµδ
2

H2 f dS  .

The energy lost during one period is:

dWd = 1
f

dPd = πµδ
2

H2  dS

and for the total wall surface:



Wd = πµδ
2

H2  dS
S
∫  .

Hence:

  

Q = 2
δ

H 2dV
V
∫

H 2dS
S
∫

= 2
δ

KV

S

where K is the form factor of the given geometry.

Considering again the TM010 mode in a pill-box cavity one gets:

  

Hθ
2

V
∫  dV = l J1

2

o

a

∫ k2r( )2πrdr

Hθ
2

S
∫  dS = 2 J1

2

o

a

∫ k2r( )2πrdr + 2πalJ1
2 k2a( )

so

  

1
Q

= δ
l

J1
2

o

a

∫ k2r( )rdr + al

2
J1

2 k2a( )

J1
2

o

a

∫ k2r( )rdr

 .

From the relation:

  

 J1
2

o

a

∫ k2r( )rdr = a2

2
J1

2 k2a( )

one gets

  
Q = l

δ
a

a + l
∝ ω −1/2

and for example:

  δ = 10−6m    a = 3.8×10−2m    l = 5×10−2m

gives Q = 21590.

In addition one can also get the quantity r/Q (r being the uncorrected shunt impedance)

  

r

Q
= V 2

ωWsl
= 2.58 µf ∝ ω

hence



  r ∝ ω1/2  .

2 . 4 Filling time

From the definition of Q one has for a resonant cavity:

  

Pd = ω
Q

Ws  .

If the cavity has been initially filled, the rate at which the stored energy decreases is
related to the power dissipated in the walls:

  

dWs

dt
= − ω

Q
Ws  .

Hence the time it takes for the electric field to decay to 1/e of its initial value is:

  
t f = 2Q

ω

which is the filling time of the cavity.  In the case of a travelling-wave structure the definition of
the filling time is different

  

t f = L

ve

where L is the length of the structure and ve the velocity at which the energy propagates.  In a
travelling-wave structure the stored energy exists but never adds up because it is dissipated in a
terminating load and does not reflect

2 . 5 Phase velocity and group velocity

These two concepts are of high importance in the case of particle acceleration by means of
travelling guided waves.  As mentioned before such methods are mostly used for particles
whose velocity is either close or equal to the light velocity c.

Let's first assume a cylindrical waveguide, and search for the simplest TM (or E) mode
which can propagate.  Such a mode, with an axial electric field component Ez, is the TM01
mode which also has two transverse components Er and Hθ :

Ez = EoJo kcr( )e− jβz

Er = j
β
kc

EoJ1 kcr( )e− jβz

Hθ = 1
Zo

j
k

kc
EoJ1 kcr( )e− jβz

Zo = µo

εo
= 377 ohms

where β is the propagation factor of the wave travelling in the +z direction, satisfying the
relation:



β 2 = k2 − kc
2

with:

k = 2π
λ

= ω
c

Jo kca( ) = 0    kca = 2.4

kc = 2π
λc

= ωc

c

and where a is the inner radius of the cylindrical waveguide, ω the excitation frequency, ωc  the
cut off frequency.

The wavelength λg of the propagating wave is such that:

  

β = 2π
λg

= ω
vp

where vp is the velocity of the wave or phase velocity.  In order for the wave to propagate λg
must be real and positive which means:

λ < λc
or

  
vp > c

In order to lower the phase velocity the waveguide is loaded by disks, equally spaced if
the particle is ultra-relativistic (v ~ c).  The disks act like capacitive loads and reduce the speed
of propagation as in loaded transmission lines.

It is usual to draw the Brillouin diagram for the type of propagating wave under
consideration.  This diagram relates the frequency to the propagation factor (Fig. 16).

Fig. 16  Brillouin diagram
The straight line vp = c separates the two domains corresponding respectively to slow and

fast waves.  For the latter, as obtained in a normal guide, the relation



ω 2

vp
2 = ω 2

c2 − ωc
2

c2

gives a hyperbola for a given ωc.

For a slow wave it will exit an operating point P in the diagram and the corresponding
phase velocity is given by tgα = vp/c.  If ω  varies, P moves on a certain curve;  the slope of
this curve at point P is:

  

tgθ = d ω / c( )
d ω / vp( ) = 1

c

dω
dβ

= 1
c

vg

where vg = (dβ/dω)−1 is called the group velocity and happens to be equal to the velocity of the
energy flow in the waveguide:

  
vg = ve

    Exercise   :  Calculation of the energy flow velocity

The average power which flows through a transverse cross-section of a waveguide is
given by the integral of the Poynting vector:

  
P = 1

2
Re ET × HT( )

S
∫ dS

where only the transverse components of the field have to be considered.  For a TM mode the
relation between ET and HT is:

ET

HT
= Zo

λ
λg

P = 1
2

1
ZoS

∫ k

β
ET

2
dS

The energy stored in the magnetic field (purely transverse component) per unit length is:

wsm = µ
4

S
∫ HT

2
dS = µ

4
1

Zo
2

k2

β 2 ET
S
∫

2
dS

The energy stored in the electric field per unit length is equal to that of the magnetic field.
Hence the total stored energy per unit length is:

  
ws = wse + wsm = 2wsm

The velocity of the energy flow is then given by:



ve = P

ws
=

1
2Zo

k

β
µ
2

1

Zo
2

k2

β 2

= 1
µ

Zo
β
k

= 1
µ

µo

εo

β
k

ve = β
k

c

Since:

vg = dβ
dω







−1

= c
dk

dβ
=

d ω 2 / c2 − kc
2( )1/2

dω

















−1

one gets:

vg = βc2

ω
= βc

k
= ve

2 . 6 Space harmonics in loaded waveguides

In an infinite periodic structure (Fig. 17) the wave equation must satisfy the periodic
boundary condition imposed by the disks.  This is obtained by choosing a solution of the form:

E r,θ, z( ) = e−γ zE1 r,θ, z( )
H r,θ, z( ) = e−γ zH1 r,θ, z( )

where E1 and H1 are periodic  functions:  E1(r, θ, z + d) = E1(r, θ, z).  Considering two
similar terminal planes in two consecutive cells, that means the fields will repeat except for the
multiplication factor e−γ d  which can be related to the propagation time from one cell to the
next.

Fig. 17  Periodic loaded structure



The possibility of expressing the field in the above form is often referred to as Floquet's
theorem (the original Floquet's theorem dealt with differential equations with periodic
coefficients, the case of periodic boundary conditions is an extension of that work).

Any periodic function such as E1(r,θ,z) can be expanded into an infinite Fourier series;
thus

E1 r,θ, z( ) = E1n
n=−∞

+∞

∑ r,θ( )  e− j2nπ z /d

Considering a lossless structure, the propagation requires γ  to be imaginary:

  
γ = jβo

Hence the field becomes:

E r,θ, z( ) = E1n r,θ( )  
n=−∞

+∞

∑ e− jβnz

with

  
βn = βo + 2nπ / d

βo is the propagation factor of the fundamental space harmonic.

In addition the field has to satisfy the usual transverse boundary conditions of cylindrical
waveguides.  Thus, if one concentrates only on the lowest TM type mode the field components
in a periodic disk-loaded structure are:

Ez = EonJo
n
∑ kc,nr( )e− jβnz

Er = j
βn

kc,n
EonJ1

n
∑ kc,nr( )e− jβnz

Hθ = j

Zo

k

kc,n
EonJ1

n
∑ kc,nr( )e− jβnz

with the more general relation

βn
2 = k2 − kc,n

2

Notice that all the space harmonics exist at a given frequency ω.  Once βo is known all

βn's are known.  Moreover each space harmonic has a different phase velocity given by:

  

vpn = ω

βo + 2πn

d

The group velocity of the nth harmonic is:



vgn = dω
dβn

= dβn

dω






−1

= dβ
dω







−1

= vg

It is the same for all harmonics.

The Brillouin diagram for a loaded structure (or slow wave structure) is represented on
Fig. 18.  At a given frequency there is an infinite number of points P corresponding to the
propagation factors βn .  If the frequency changes, the points move on curves which have all
the same slope, corresponding to the group velocity.  Hence one gets pieces of curve which can
all be deduced by a simple translation of 2π/d .  Since these curves must join, obviously they
must have zero slopes somewhere leading to the shape of Fig. 18.  It happens that the first part
of the curve has a zero slope, hence zero group velocity, at βd = 0 and π which give the lower

ωο/c and upper ωπ/c frequencies of a pass band which remains true for the higher space
harmonics.  The condition of propagation hence corresponds to:

  0 ≤ cos βd ≤ 1

Fig. 18  Brillouin diagram for a slow wave structure

At βd = π the phases in two successive cells are opposite (π mode) and one gets a
standing wave pattern in the combination of all the space harmonics.

The calculation of the real fields in loaded structures which would take careful account of
all boundary conditions is tedious.  Generally a reasonably accurate description of the
dispersion curve, relating β to k, is obtained by an equivalent transmission line analysis or a
coupled resonators chain analysis.

In order to accelerate electrons which already have the velocity of light c the operating
point in the Brillouin diagram must correspond to the intersection of the k, β curve with the 45°
line (Fig. 19).

In a travelling wave structure the π mode is avoided according to the previous remarks.

Either π/2 or 2π/3 modes are used.  For the former a phase shift of 2π is obtained over four
cells while for the latter it needs three cells.



Fig. 19  Operating point for vp = c

For an acceleration to take place one chooses the fundamental space harmonic such that:

  

βo = ω
c

βod = π
2

   or   
2π
3

The fundamental is the only one to give a net accelerating field since the higher space
harmonics have no effect on the average.  Hence, most of the particle dynamics in a travelling
wave structure can be treated only using the fundamental space harmonic which can be
calculated, for any structure having cylindrical symmetry, with the help of powerful computer
codes like LALA or SUPERFISH.  The radial dimension of the structure is determined to fit the
operating frequency ω.

3 . ENERGY GAIN IN LINEAR ACCELERATING STRUCTURES

3 . 1 Standing-wave structures

The energy gain in a standing-wave structure is straightforward when the shunt
impedance corrected by the transit time factor is known.  However, when the power source is
matched to the resonant structure through a coupling loop, such that no power is reflected
toward the source, then the loaded Q value becomes:

  

QL = Q

1+ β

where the coupling coefficient β is unity when the power given to the beam is negligible.  The
corresponding filling time now becomes:

  

t f = 2QL

ω
= 2Q

ω 1+ β( )



For long power pulses there is no peculiar effect, but for short power pulses whose length is of
the order of the filling time (acceleration of short beam pulses) there will be a transient effect
during the filling of the cavity where reflected power cannot be avoided.  Hence the minimum
power required to attain a certain accelerating voltage will depend on the coupling coefficient
and not only on the shunt impedance.

3 . 2 Travelling-wave structures

For travelling-wave structures the energy gain will depend on the RF characteristics of the
cells in a more complicated way.  It is usual to distinguish between constant-impedance
structures and constant-gradient structures.

3.2.1  Constant-impedance structure

In a constant-impedance structure, for instance of the disk-loaded type, all the cells are
identical.  Hence the group velocity vg, which depends on the geometrical parameters of the
cells, remains constant all along the structure.  If L is the total length of the structure the filling
time is:

  

t f = L

vg

For a disk-loaded structure such as the one drawn on Fig. 7, operating in the 2π/3 mode
at 3 GHz, the group velocity, which is a strong function of the iris diameter 2a is
approximately given by:

  
vg / c = 2a( )3.23

891

where 2a is expressed in cm.  For instance, vg = 0.01 c for 2a = 1.97 cm.

As the waves propagate in such a structure, part of the input power is dissipated into the
walls and the remaining power will lead to a smaller accelerating field.  Hence the accelerating
gradient decreases continuously along the structure.  It was shown in the previous section that:

Q = − ω  ws

dP / dz

r

Q
= E2

ω  ws

ws = P / vg

So one can write:

  

dP

dz
= − ωP

vgQ

leading to the exponential behaviour:

  

P = Poe
− ω / vgQ( )z

E = Eoe
− ω / 2vgQ( )z



At the input of the structure the accelerating field Eo is related to the input power Po:

  

Eo
2 = Po

ω
vg

r

Q

Integrating the field along the structure leads to the energy gain:

  

Vtotal = E z( )
o

L

∫ dz= 2Eovg

Q

ω
1− e

− ω / 2vgQ( )L[ ]
It is common to use the attenuation factor τ of the structure as follows:

  e−2τ = P z= L( ) / P z= o( )

Then

  

τ = 1
2

ωL

Qvg
= 1

2
ω
Q

t f

and the expression for the energy gain becomes:

Vtotal = PorL( )1/2
2τ( )1/2 1 − e−τ( ) / τ[ ]

    Exercise      :     Consider a disk-loaded structure, 1-meter long, operating at 3 GHz in the 2π/3 mode
and assume an iris diameter of 1.97 cm which gives vg/c = 0.01.  For such a structure made of
copper the shunt impedance per meter is roughly:

r MΩ /m[ ]= 86 − 3.6 2a( )2
cm[ ] = 72MΩ / m

while Q is practically independant of (2a) and equal to 15000.

For this example the performances of the structure are:

t f = 0.33 µs

τ = 0.21 neper

V MeV[ ] = 5 Po MW[ ]

3.2.2  Constant-gradient structure

In order to compensate for the variation of the accelerating field along the structure, due to
power dissipation, it is possible to lower the group velocity from cell to cell, by changing the
geometry for the same operating frequency.  In fact this is obtained by reducing the iris aperture
and by reducing the diameter of the cell at the same time.  Such a scheme will make a better use
of the available power.

In a perfect constant-gradient structure E = cte, so one must have:

  

dP

dz
= cte



assuming the shunt impedance is not too much affected by the change in the iris aperture.

Then one can write:

  
P = Po − Po − PL( ) z

L

where L is the length of the structure, Po the input power and PL the output power.

By analogy with the constant impedance case it is usual to define the attenuation factor τ
such that:

  
PL / Po = e−2τ

Then one has:

  

P = Po 1− 1− e−2τ( ) z

L






dP

dz
= −Po 1− e−2τ( ) / L = − ωP

vgQ

leading to a linear variation for the group velocity:

  

vg z( ) = ωL

Q

1− 1− e−2τ( ) z

L






1− e−2τ( )
The values of the group velocity at both extremities are:

  

vg o( ) = ωL

Q

1

1− e−2τ

vg L( ) = ωL

Q

e−2τ

1− e−2τ

The attenuation factor is well defined when the output group velocity is known.

  

e2τ = 1+ ωL

Qvg L( )

In practice the iris diameter at the end of the structure is made as small as possible
compatible with the dimensions of the accelerated beam.  Setting the output group velocity and
the length of the structure give the input group velocity.

The filling time in the present case is:

  

t f = dz

vg z( )o

L

∫ = Q

ω
Ln 1+ ωL

Qvg L( )












t f = 2τ Q

ω



Integrating the accelerating field gives the energy gain:

  
Vtotal = PorL 1− e−2τ( )[ ]1/2

with

  

E = Por

L
1− e−2τ( )
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    Exercise   :  Let's take the previous set of parameters and keep the shunt impedance constant.
One gets:

vg L( ) / c = 0.01

τ = 0.175 neper

t f = 0.28 µs

vg o( ) / c = 0.014

V MeV[ ] = 4.6 Po MW[ ]

The constant-gradient case appears to be slightly less efficient.  However in the constant-
impedance case the maximum field which takes place at the input is higher for equal energy
gains.  Since there is some worry about field breakdown on the walls, the constant-gradient
structure finally appears more interesting although it is more difficult to build.  An alternative is
to build quasi-constant-gradient structures made of constant impedance landings, with transition
cells between the landings.  In that case the number of different cells is reduced.

For travelling-wave linacs the length of the power pulse must be at least equal to the
filling time in order to accelerate very short bunches.  The particles travel fast through the
structure as compared to the group velocity so they must enter when the structure is completely
filled.  For longer beam pulses the power pulse must follow in length.

Pulsed klystrons are available at the level of 50 MW with a pulse length ≤ 5 µs.  For
short bunches (≤ 10 ns) compression schemes are used which give shorter power pulses
(≤ 1 µs), compatible with the structure filling time, with a higher peak power which can be as
much as 4 times the direct klystron peak power.  This is either used to double the energy of
existing linacs (for instance SLAC at Stanford) or to reduce the total number of power sources
for a given nominal energy (for instance the LEP Injector Linac).

4 . PARTICLE DYNAMICS IN LINEAR ACCELERATORS

Up to now a synchronism condition has been defined as a necessary condition for the
particles to be accelerated in a linear structure.  However this simple approach to the problem is
not sufficient as it only describes the behaviour of selected particles which enter the accelerator
at the right time with the right velocity.

In fact a bunch of particles, as it is produced by the gun, has a spread in velocities as well
as a finite transverse dimension (beam emittance).  Depending on their initial conditions the
particles will undergo different stories during the acceleration.  It is usual to differentiate the
transverse motion of the particles from their longitudinal motion.



4 . 1 Longitudinal motion:  phase stability

If particles enter continuously in an accelerating structure obviously a fraction of these
particles will see the axial field Ez at the wrong time (or wrong phase) due to the sinusoidal time
variation.  This already gives a feeling of the bunching phenomenon that will occur in the two
types of accelerators (discrete acceleration through gaps or continuous acceleration with
travelling waves).

Fig. 20  Particle phases relative to the RF field

Two particles which arrive at different times of the accelerating half period (see Fig. 20)
can be either subject to equal energy gains (M1, N1) or different energy gains (P, P').
Considering for instance an Alvarez structure in which the synchronism condition is obtained
for a given energy gain eVs, then particles M1, N1, M2 etc. will always see the same phase of
the accelerating field.

A particle P which arrives in a gap in advance as compared to M1 will get less energy and
its velocity will be smaller so that it will take more time to travel through the drift tube.  In the
next gap it will appear closer to particle M1.  The effect is true for particle P' which will get
more energy and reduce its delay time as compared to M1.  Points M1, M2 etc. are stable points
for the acceleration since particles slightly away from them will experience forces that will
reduce their deviation.  On the contrary it can be seen that points N1, N2 etc. are unstable points
in the sense that particles slightly away from these points will shift even more in the next gaps.

In order to study the longitudinal motion one uses variables which give relative position,
and energy, as compared to the synchronous particle:

∆t = t − ts

ϕ = φ − φs = ω t − ts( ) = ω∆t

w = W − Ws

where φs is the RF phase of the synchronous particle and Ws the energy of the same particle.
The accelerating field can be simply described by:

Ez = Eocos ω t -
ω z

vp







= Eocosφ



When the phase velocity varies, ωz/vp must be replaced by 
  

ω dz

vp
∫ in the forthcoming

expressions so that they will remain valid.  The azimuthal position z is generally taken as the
independant variable instead of t.

4.1.1  Non-relativistic case – Adiabatic damping

The rate of energy gain for the synchronous particle is given by:

  

dWs

dz
= d

dz

1
2

mvs
2



 = d

dt
mvs( ) = eEocos φs

where Eo would take into account the transit time in the case of standing-wave drift-tube linacs.

For other particles the energy gain can be expressed in reduced variables:

  

dw

dz
= eEo cosφs + ϕ( ) − cos φs[ ]

In addition one has:

  

dϕ
dz

= ω dt

dz
− dts

dz




 = ω 1

v
− 1

vs







which turns out to be:

  

dϕ
dz

= − ω
mvs

3 w

having assumed that:

w = W − Ws = 1
2

m v2 − vs
2( ) ≅ mvs v − vs( )

Considering small deviations from the synchronous particle one gets the following set of
first-order linear equations:

dϕ
dz

= − ω
mvs

3 w

dw

dz
= −eEo sin φsϕ

which respresent a phase harmonic oscillation:

  

d2ϕ
dz2 + Ωs

2ϕ = 0

with angular frequency relative to the independant variable z:

  

Ωs
2 = − eEoω  sin φs

mvs
3



showing that sin φs has to be negative for stable solutions.  Notice that this is true since vs is a
constant parameter.  But the approach is still valid if vs varies slowly.  The wavelength of the
small amplitude phase oscillation is given by:

  
λs = 2π / Ωs

and increases rapidly along the accelerator.

Considering larger amplitudes one should write:

  

d2ϕ
dz2 = − ω

mvs
3 eEo cos φs + ϕ( ) − cos φs[ ] = F

The restoring force F can be derived from an effective potential energy function U

U = − F  dϕ∫
which is drawn on Fig. 21.  An analysis of the non-linear motion in the phase space w , ϕ
shows that the oscillation is bounded at some energy wmax.  The corresponding curve is called
the separatrix.

The motion can be derived from a Hamiltonian H satisfying the canonical equations:

Fig. 21  Phase stability graphs

  

dw

dz
= − ∂H

∂ϕ
        

dϕ
dz

= ∂H

∂w
  



One gets:

  

H = − ω
2mvs

3 w2 − eEo sin ϕ + φs( ) − ϕ  cos φs( )

which, for small amplitudes, reduces to:

H ≅ − ω
2mvs

3 w2 − 1
2

eEo sin φsϕ
2

A particle with some initial conditions will perform an ellipse in the phase space.  Its
maximum energy wmax is obtained when ϕ = 0 and correspondingly its maximum phase

excursion ϕmax is obained when w = 0.  One has the relation:

  

wmax

ϕmax

= eEo sin φsmvs
3

ω
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Liouville's theorem stipulates that for a conservative motion the area of the phase space
ellipse is an invariant

wmax ϕmax = cte

This is normally true for a constant vs, but can still be applied when considering adiabatic
variation of this parameter (adiabatic theorem).

It follows from the previous relations that:

  

wmax = cte
eEo

ω
 sin φsmvs

3
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ϕmax = cte
eEo

ω
 sin φsmvs

3





−1/ 4

It appears that ϕmax  will decrease during the acceleration and the bunch length will
become shorter.  On the contrary wmax will increase, but the relative energy spread w/Ws , in
which the user is interested, will decrease.

4.1.2  Relativistic case – Electron capture

In the case of relativistic particles:

  

dt

dz
= 1

v
= 1

c
γ γ 2 −1( )−1/2

with

  
γ = 1− β 2( )−1/2

    β = v

c
Then it happens that the previous formulae remain valid just replacing vs by γs vs and

taking m as the rest mass.



The same phenomena occur for relativistic particles but the phase oscillation becomes
very slow at high energies, so that in practice a particle can travel all along a linac in less than
one oscillation period and some of the previous statements cannot have the same meaning any
more.  For instance if a short bunch of particles is captured in an electron linac and if all the
particles have the light velocity they will keep that velocity and always arrive at the same RF
phase in the gaps.  In that case the phase spread of the bunch will remain constant.  Moreover if
this phase spread is very small, for instance around the peak of the RF, all the particles will get
the same energy and the absolute energy spread will also remain constant while the relative
energy spread will go down like γ--1.

It is now interesting to consider the case of electron linacs, where the structure has a
phase velocity equal to c, and to look at what happens when particles enter the structure having
still a velocity smaller than c, as for instance produced by electron guns.

So let's consider an accelerator with a phase velocity equal to c and an axial electric field
Ez which has a sinusoidal time variation with constant amplitude Eo along the trajectory.  Then

if Ez is the field seen by a particle one defines the phase angle φ between the wave and the
particle by means of the relation:

  
Ez = Eo  sin φ

If v is the particle velocity, then

  dl = c − v( )dt

is the difference in path between the wave and the particle in the time dt.  This path difference
can also be expressed in term of the phase difference dφ:

  
dl =

λg

2π
dφ

where λg is the wavelength of the propagation in the waveguide.  From the above equations
one gets:

  

dφ
dt

= 2πc

λg
1− β( )

The equation of motion for the particle, in the relativistic case, is simply:

  

d

dt
mv( ) = moc

d

dt

β
1− β 2( )1/2













= eEo  sin φ

and using a new variable α such that:

  β = cos α
it becomes

  

dα
dt

= − eEo

moc
 sin φ  sin 2α

with



  

dφ
dt

= dφ
dα

dα
dt

Hence:

−sin φ dφ =
2π
λg

moc2

eEo

1 −  cosα( )
sin2α

dα

Integrating from time t1 where v = c, to time to where β = βo, α  = αo and φ = φo, one
gets:

  

cos φ1 − cos φo = 2π
λg

moc
2

eEo

tg
α1

2
− tg

αo

2






Knowing that:

  

tg
α
2

= 1−  cosα
1+  cosα
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= 1− β
1+ β







1/2

one gets:

  

cosφo −  cosφ1 = 2π
λg

moc
2

eEo

1− βo

1+ βo







1/2

Since the left hand side cannot be greater than 2 one must have:

Eo ≥ π  moc2

λge

1 − βo

1 + βo







1/2

This "capture condition" must be satisfied in order to capture the electrons injected at a
velocity less than the phase velocity.  For example, for λg = 10 cm and an injection energy of
150 keV the condition gives Eo ≥ 7.6 MV/m which is technically possible.

In practice however, to improve the capture efficiency it is common to use a small
bunching section, with a variable phase velocity, in which the energy is brought to a few MeV.

4 . 2 Transverse motion:  defocusing

Looking at the electric field pattern in the gap between two drift tubes it is seen that there
are radial components (Fig. 22), which are focusing at the gap entrance and defocusing at the
end.  In an electrostatic accelerator where the field is constant this gives a global focusing effect
since the particle having more energy at the end of the gap makes the defocusing effect smaller.
In an RF accelerator the behaviour is different.  From the phase stability requirement (φs < 0) it
appears that the field increases with time during the passage of the particle.  Hence the
defocusing force becomes larger than the focusing one resulting in a transverse instability as the
particle may strike the drift tubes.



Fig. 22  Field pattern in the gap of a drift tube accelerator

It is possible to show the effect mathematically using approximate transverse field
expressions only valid for small transverse deviations from the axis:

Ez = Eo cos ωt - ω dz

vp
∫








Er = − rωEo

2vp
sin ωt - ω dz

vp
∫








Bθ = − rωEo

2c2 sin ωt - ω dz

vp
∫








The transverse force acting on the particle is given by the Newton-Lorentz equation:

d

dt
mṙ( ) = eEr − evBθ

= − erωEo

2vp
1 −

vvp

c2






 sin ωt − ω dz

vp
∫








Considering the synchronous particle for which v = vp and

ωt − ω dz

vp
∫







= φs

one gets:

d

dt
mṙ( ) = − erωEo

2vp
1 − β 2( )  sin φs 

For ultra-relativistic particles (v ≅  c) the transverse defocusing effect becomes negligible.
In other words the transverse magnetic force compensates exactly the electric one.  This is a
well known behaviour in relativistic particle dynamics.



There are many other reasons for radial deflection of the particles than the normal
transverse field components in a waveguide.  For instance, in the input and output couplers of a
travelling-wave structure there is an axial field asymmetry which induces transverse
components and gives a transverse kick to the beam, even at v = c.

So finally in practice it is necessary to use external magnetic fields, such as those given
by solenoids or quadrupoles, to ensure a stable transverse motion within the aperture of the
linac.

4 . 3 Dynamics in a radio frequency quadrupole (RFQ)

Conventional proton (or heavy ion) linear structures, like the Alvarez structure, which use
magnetic focusing, are only efficient in the range:

  
0.04< β = v

c
< 0.5

For β > 0.5 it is better to use high-β linac structures.  For β < 0.04  successful activity in

designing low-β structures is very recent (in the past, the solution consisted of applying a very
high voltage on the gun to extract particles at energies that could match a drift-tube structure).
The biggest success has been the invention of the radio frequency quadrupole (RFQ) which
combines three functions: electric focusing, bunching and acceleration.

The RFQ is a four-vanes resonator with quadrupolar symmetry which provides a
transverse electric gradient for transverse focusing (at low velocity, magnetic focusing is not
efficient because of the v term which appears in the force equation).  Modulated pole shapes
(Fig. 23)  lead to a longitudinal variation of the transverse field gradient giving a longitudinal
electric component for acceleration and bunching.  In a drift tube structure the transit time factor
is worse at low β;  in the RF quadrupole many cells are made (since β is small) in an overall
practical length which permit a continuous acceleration and perfect adiabatic conditions to
produce a very good bunching efficiency (~ 100%).

Fig. 23  Modulated pole shapes in an RFQ

The spatially continuous fields also cure the space charge effects that could freely develop
in the drift tubes of conventional structures.

The lowest-order potential function, in cylindrical coordinates, which satisfies the
quadrupole symmetry of an RFQ can be written as follows:

  

U = V

2
X

r

a






2

cos 2ψ + AIo kr( )cos kz








  sin ωt + φ( )



where V is the difference potential between adjacent pole tips, and:

  k = 2π / βλ

From this, the following electric field components are obtained:

  

Er = − XV

a2 r  cos 2ψ − kAV

2
I1 kr( )cos kz

Eψ = XV

a2 r  sin 2ψ

Ez = kAV

2
Io kr( )  sin kz














sin ωt + φ( )

with

  

A = m2 −1( ) / m2Io ka( ) + Io mka( )( )
X = 1− AIo ka( )

The quantity VA is the potential difference that exists on the axis between the beginning
and the end of a unit cell.  Then the space average longitudinal field is:

  

Eo = 2AV

βλ

The energy gain for a particle with charge e and synchronous velocity β c traversing a
unit cell is approximately:

  

∆W = eEolT cosφs

l = βλ
2

and T = π/4 is the transit time factor for a longitudinal field with space variation sin kz and time

variation sin ωt, knowing that when the particle travels one period βλ = 2π/k, the RF phase

changes by 2π.

Applying the equations of phase oscillations to the RFQ gives the angular frequency for
small oscillations:

  

Ωs
2 = eAVω 2  sin φs

4moc2β 2

the angular length of the separatrix, φm:

  

tgφs = sin φm − φm

1− cos φm

and the spatial length of the separatrix:



  
zm = βλφm

2π

Note that here φm is the phase difference between the two extreme elongations of the
separatrix.

To avoid space-charge phenomena it is interesting to keep the longitudinal density
constant during bunching which means:

  
zm = cte

condition which determines φs and A as functions of β.

The next interesting aspect of the RFQ is the transverse focusing during bunching and
acceleration.  The magnitude of the electric quadrupole strength is XV/a2 which means that:

– for given a, m, β the strength is constant in a unit cell
– the same strength can be maintained in every unit by keeping XV/a2 constant.

The equation for the transverse oscillation is:

d2x

dτ2 = XV

moc2
λ
a







2

cos 2πτ –
π2

2
AV

moc2β 2  sin φ











x

where τ is the reduced variable:

  
τ = ωt + φ( ) / 2π

The previous equation is of the Mathieu type:

  

d2x

dτ2 + A + B cos 2πτ[ ]x = 0

which means that solutions can be stable for some combinations of A and B .  It can be shown
that the oscillations will be stable if the following conditions are satisfied:

XV

2π2moc2
λ
a







2

< 1 − VA

2moc2β 2 sin φ

X2V

8π3moc2
λ
a







4

> − πA

2β 2 sin φ

An analysis of these inequalities shows that in practice the transverse oscillations are
stable with any values of the synchronous phase (up to -90°) just as in accelerators with static
lenses.

In practice an RFQ can bring proton (or ion) energies from a few 10 keV to a few MeV
over a very reasonable overall length (1 to 2 meters).
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LONGITUDINAL BEAM DYNAMICS IN CIRCULAR
ACCELERATORS

J. Le Duff

Laboratoire de l'Accélérateur Linéaire
Université Paris-Sud, 91405 Orsay, France

1 . ACCELERATION BY TIME VARYING FIELDS

1 . 1 Time varying magnetic field:  the betatron concept

The betatron accelerator is the only circular machine which uses a time varying magnetic
field to accelerate the particle.  It is typically an induction accelerator. Notice that induction
linear accelerators are also used.

The betatron, as shown on Fig. 1, is a very simple machine which consists of a magnet
fed by an alternating current at a frequency usually between 50 to 200 Hz.  The magnet poles
which surround the vacuum chamber where particles circulate are truncated cones.  In this
machine the magnetic field is used for guiding the particles on a circular trajectory as well as for
acceleration.

Fig. 1  The betatron scheme

The variable magnetic field produces an electric field component according to Maxwell's
equations:

  

E = − gradV − ∂A

∂t
B = µH =  curl A

In the present case where there is no scalar potential, and according to the field symmetry,
one has:

  

V = 0

Ar = Az = 0    Aθ = A r,z,t( )

Eθ = − ∂Aθ
∂t

showing that the electric field is tangent to the circular orbit defined by



  
BoR= − p / e

where e is the algebraic particle charge.

Moreover, from the single component Aθ one gets the magnetic field components:

  

Br = − ∂A

∂z
Bθ = 0

Bz = 1
r

∂
∂r

rA( ) = A' + A

r

The flux of B linking any circle r = cte is then:

  

Φ = Bz2πr  dr = 2π 1
r

∂
∂r

o

r

∫
o

r

∫ rA( )r  dr = 2πrA  .

Denoting by 
  
Bz the average field value inside the circle, the flux will be also:

  
Φ = πr2Bz

which shows that:

  

A = 1
2

rBz  .

Then one gets:

  

Eθ = − ∂A

∂t
= − 1

2
∂
∂t

rBz( ) = − r

2
∂
∂t

Bz  .

Putting r = R the voltage over one turn is:  

  

2πREθ = −πR2 dBz

dt
= − dΦ

dt

which is a well known law in electronics that a time variation of the flux induces a voltage. The
induction accelerator is often considered as a transformer in which the primary current is the
alternating current and the secondary current is the circulating electron beam.

The acceleration is given by the Newton-Lorentz equation:

dp

dt
= e  Eθ

dp

dt
= − e

2πR

dΦ
dt

= − 1
2

eR
dBz

dt

If one wants to keep the particle on the same trajectory the following relation must also be
fulfilled:

  

dp

dt
= −e  R

dB0

dt



and hence

  

B0 = 1
2

Bz + cte

which is the betatron relation.

1 . 2 Time varying electric field:  the cyclotron case

The cyclotron is an example of a circular accelerator using a radio frequency accelerating
field.  A magnet (Fig. 2a) produces a constant B field in the useful area for the particle
trajectories.  The box in which the particles circulate is divided into two pieces, separated by a
gap (Fig. 2b) fed with an RF signal which produces an alternating electric field.

Fig. 2a  Cyclotron magnet Fig. 2b  Shape of electrodes

Each time the particle crosses the gap it experiences an accelerating force provided the
phase of the RF has the right polarity.  After each crossing the particle, with velocity ν, follows
a circular trajectory with radius r, due to the vertical magnetic field perpendicular to the particle
velocity:

r = mν
eB

Having described half a circle the particle comes back through the gap and is accelerated
once more provided the field polarity has reversed.  Since the magnetic field is constant the
particle trajectory will spiral as shown in Fig. 3.

Fig. 3  Cyclotron orbit

A synchronism condition for the accelerator is obtained by proper choice of the RF
frequency:



ω RF = ωr = eB

m

where ωr  is the angular revolution frequency and m the mass.  However, since standard

cyclotrons have a fixed RF frequency, this relation can only be satisfied for constant mass,
which implies non-relativistic particles:

m = m0  .

This would be the case for instance, for heavy particles (protons and ions) for which the kinetic
energy remains small compared to the rest energy.

Within the previous assumptions the cyclotron would remain a rather low energy
machine.  So let us consider the case of higher energies where particles become relativistic.  At
each transit in the gap the energy gain is:

∆E = eV̂ sin φ

where φ is the phase of the particle with respect to the RF phase:

φ = ω RFt − θ

θ  being the azimuthal angle of the trajectory.  Differentiating with respect to time gives:

φ̇ = ω RF − ωr

or φ̇ = ω RF − ec2 B

E

It is seen that with ωRF and B constant, it is not possible to have a synchronous particle
with φ = cte ( φ = 0 ).  The formula shows that φ starts decreasing, reaches a minimum value
( φ = 0 ) and then increases.  Notice that the maximum tolerable φ range of variation during
acceleration is π.

Since phase and energy are related let us now consider their evolution during the
acceleration cycle.  A smooth approximation consists of assuming that the acceleration is made
continuously, hence:

φ̇ = ∆φ
Tr / 2

= ωr

π
∆φ

where ∆φ is the relative phase change at each half revolution, Tr being the revolution period.
Hence one obtains:

∆φ = π
ωr

φ̇ = π ω RF

ωr
−1







∆φ = π ω RFE

ec2B
−1





Differentiating the phase with respect to the energy, within the smooth approximation,
leads to:



dφ
dE

≈ ∆φ
∆E

= π
eV̂ sin φ

ω RFE

ec2B
−1





or d cos φ( ) = − π
eV̂

ω RFE

ec2B
−1



 dE

Integrating both sides gives the energy-phase equation of the cyclotron:

cos φ =  cos φ0 − π
eV̂

ω RF

2ec2B
E2 − E0

2( ) − E − E0( )





where index 0 refers to the initial conditions:

E0 = rest energy

φ0 = injection phase

It is interesting to represent on a graph the phase-energy evolution.  Using the kinetic
energy W = E - E0 as the new variable one gets:

cos φ =  cos φ0 + π
eV̂

1 − ω RF

ωr0






W − π

2eV̂E0

ω RF

ωr0
W2

where ωr0 = ec2 B/E0 is the starting revolution frequency.

Figure 4 shows the variation of cos φ as a function of W for different initial conditions

φ0.  Plots which, during acceleration remain within the range -1 < cos φ < 1, only are
meaningful from the stability point of view.

Fig. 4  Energy-phase diagram

Selected particles, according to their initial phase φ0 can reach high energies, ;but the
cyclotron is nevertheless limited in energy as seen in the figure.  The machine parameters must
be chosen to obtain the largest useful φ0 range.  This implies for instance ωRF  < ωr0 but it also
depends very much on the particle species.



In the attempt to reach higher energies the concept of the synchrocyclotron has been quite
important.  Here the RF frequency is varied to keep the synchronous condition during
acceleration.  A new limitation however occurs due to the size of the magnet.  A more efficient
synchronous machine is the so-called synchrotron, which will be treated in more detail in the
next sections.

1 . 3 Time varying electric field:  the synchrotron case

A synchrotron is a circular accelerator where the nominal particle trajectory is kept at a
constant physical radius by means of a magnetic field variation, as well as an RF frequency
variation, to follow the energy variation.

Let's assume now that an RF cavity with an electric field component parallel to the
particle trajectory is located at some azimuthal position of such a circular accelerator.  In the
cavity gap the electric field is supposed to have a sinusoidal time variation with angular
frequency ωRF. Then one can write:

  
E z,t( ) = E1 z( )E2 t( )

where E1(z) is shown on Fig. 5 as a periodic function of period L = 2πR, while E2(t) is of the
form:

  

E2 t( ) = E0  sin ωRF
t0

t

∫ dt + φ0











Fig. 5  RF field envelope along the circumference

The particle position is given by:

  

z = z0 + vdt
t0

t

∫

and the RF frequency is chosen to be an integer multiple of the revolution frequency:

  

ω RF = hω r = h
2πv

L

where v is considered here as the average particle velocity over one turn.

The periodic function E1(z) can be expanded in a Fourier series:



  

E1 z( ) = A0 + An  cos n
2πz

L






n=1

∞

∑
with

  

A0 = g

L

An = 2
πn

sin 
πng

L

The integral of the force over many revolutions shows that all the trigonometric terms in
the expansion will give no effective contribution to the energy gain, apart from a single term
which corresponds to n = h. Then the average energy gain per turn can be written:

W = e E1
−g/2

+g/2

∫ z( )E2 t( )dz = eE0g sin ω RFdt + φ0
t0

t

∫










with

  

ψ0 = φ0 − 2πhz0

L

W = eE0 Ahcos2
2πhz

L
−L/2

+ L/2

∫ sin ψ0 ⋅ dz

W = eE0AhL

2
sin ψ0 = eE0L

πh
sin 

πhg

L
sin ψ0

W = eE0g
sin 

πhg

L
πhg

L

sin ψ0 ≅ eE0gsin ψ0   for g small enough

The energy gain per turn can also be expressed as:

  

W = e E1 z( )E2 t( )dz= eE0gsin ωRFdt + φ0

t 0

t

∫










−g/ 2

+g/ 2

∫

and since the gap center is at z = o one has:

W = eE0g sin ψ0 = V̂ sin ψ0

showing that ψ0 represents the RF phase seen by the particle when crossing the gap.

From above it is seen that the force acting on the particle can be considered as an average
force, continuously acting on the particle all over the circumference, provided the initial phase
of the particle entering the gap is maintained constant. In other words the effect is equivalent to
a force given by a travelling wave propagating at the same velocity as the particle velocity.

Since only one harmonic of the Fourier expansion is acting effectively, one can write the
equivalent field as:



  

E = E0Ahcos
2πhz

L
sin ωRFdt + φ0∫( )

E = Eo

2
Ah sin ωRFdt + φ0 − 2πhz

L∫



 + sin ωRFdt + φ0 + 2πhz

L∫



  








where the first term in the bracket represents a travelling wave with wavelength λ = L/h and
phase velocity equal to the particle velocity, while the second term in the bracket gives no effect
on a time average.

2 . DISPERSION EFFECTS DUE TO THE GUIDE FIELD IN A 
SYNCHROTRON

2 . 1 Momentum compaction

By definition the momentum compaction α  is the constant parameter which relates the
variation of the orbit length of a particle, in a circular accelerator, to the momentum deviation
(note that the nominal closed orbit has been defined for the nominal energy E).

  

α = p

L

dL

dp
= p

R

dR

dp

where p, L and R are respectively the particle momentum, the nominal circumference and the
physical radius (2πR = L).

One has:  

  

E = γm0c2 = 1− β 2( )−1/2
m0c2

p = mv= γβ m0c2

c
= β 1− β 2( )−1/2 m0c2

c

E = pc

β

and by logarithmic differentiation one gets:  

  

dE

E
= dp

p
− dβ

β

dp

p
= dβ

β
+ 1

2
2βdβ
1− β 2 = dβ

β
1+ β 2

1− β 2







= dβ
β

1− β 2( )−1

dE

E
= dp

p
− 1− β 2( ) dp

p
= β 2 dp

p

which leads to:  
E

R

dR

dE
= α

β 2

The average magnetic field along the nominal closed orbit is given by:



  

Bc.o. = 1
2πR

Bc.o.∫ ds

= p / e

2πR

ds

ρ∫ = p / e

R
   (ρ =  bending radius)

Bc.o. R= p / e

and by differentiating

  

d Bc.o.

Bc.o.
+ dR

R
= dp

p

p

Bc.o.

d Bc.o.

dp
= 1− α

or

  

R

Bc.o.

d Bc.o.

dR
= 1− α

α

Exercise:  calculation of α

Consider an isomagnetic guide field where all the bending magnets have the same
curvature 1/ρ and are separated by straight sections(1/ρ = 0) which can include quadrupole
magnets.  To first-order approximation only the curved part of the orbit in the bendings
contributes to a change of the length of the trajectory with momentum.

In a bending magnet one has:

ds0 = ρdθ

ds= ρ + x( )dθ
ds− ds0

ds0
= dl

ds0
= x

ρ
= dxc.o.

ρ

The radial change in closed orbit with
momentum is given by:

Dx = dxc.o.

dp / p

where Dx is the dispersion function (or local momentum compaction factor).  A summation of
all these small changes in the orbit length will give the change in the circumference.

  

dl = dL = 2πdR∫
dR= 1

2π
dl = 1

2πρ
xds0 = x m

m
∫∫

where the subscript m means that the integral has to be calculated in the magnets only where
1/ρ ≠ 0.  Finally one gets:



  

α = p

R

dR

dp
= p

R

x m

dp
=

Dx m

R

It can be shown that in smooth machines  

  
α ≅ 1 / Qx

2

where Qx is the radial wavenumber.  In most cases however <Dx>m has to be numerically
computed from lattice programmes.

2 . 2 Revolution frequency versus momentum

If fr is the nominal revolution frequency corresponding to the nominal energy E (or

momentum p), the parameter η will be defined as follows:  

  

η = p

fr

dfr
dp

Since

  

fr = βc

2πR

one gets

  

dfr
fr

= dβ
β

− dR

R
= 1− β 2( ) dp

p
− α dp

p

dfr
fr

= 1

γ 2 − α






dp

p
and hence

  

η = 1

γ 2 − α

For an electron machine η   ≅  -α

2 . 3 Transition energy

The transition energy γtr is the energy which corresponds to η = 0

  

1

γ tr
2 = α

γ tr = 1 / α ≅ Qx

For small machines Qx is of the order of a few units, while for very large machines it can

approach 100. Hence, γtr will be in the range of 1 to 100 which is of interest only for proton

machines because for electron machines γ >> γtr .

Indeed it is possible in electron storage rings to make α  very small by using special
focussing to make the transverse emittance very small as required for instance by synchrotron
radiation users. In that case it is necessary to look to higher order in dp/p to get correct



dispersion relations.  There are specific problems in proton synchrotrons related to the crossing
of the transition energy which can be found in another lecture.

3 . SYNCHROTRON OSCILLATION IN ADIABATIC LIMIT

One will consider the acceleration of particles with a radio frequency (RF) electric field
which has a resonant condition with the nominal revolution frequency, or at least
approximately.

3 . 1 Synchronous particle

The accelerating voltage across the gap of the RF cavity can be expressed as:  

  

V = V̂  sin ω RFdt' = V̂  sin φ t( )
0

t

∫

where   ̂V  and ωRF are slowly varying functions of t, but can also be constant as for instance in
storage rings.

The RF frequency fRF is set up to be an integer multiple of the nominal revolution
frequency fr

  
fRF = hfr

where h is called the harmonic number.  In these conditions a particle which has the nominal
energy and circulates on the nominal trajectory will always experience the same RF phase when
passing the RF gap:  

  
φ t( ) = φs

It is called the synchronous phase and it is related to the synchronous particle.

During the acceleration in a synchrotron the energy of the synchronous particle varies and
so does the revolution frequency (unless particles are ultra relativistic).  Clearly, if one wants to
keep the accelerated particle on the same trajectory (R = cte) the magnetic field must vary with
time:  

  

e B R= p = m0cβγ = m0cβ 1− β 2( )−1/2

dp

dt
= eR

d B

dt
= eR Ḃ

The energy gain per turn for the synchronous particle is:  

  
∆p( )turn = eR Ḃ Tr

where Tr is the revolution period:

  

Tr = 1
fr

= 2πR

βc

Hence:



  

∆p( )turn = 2πeR2

βc
Ḃ = 2πeρR

βc
Ḃ

Since:

  

∆ E2( ) = ∆ p2c2( )
one gets:

  
∆E = βc∆p

and

  
∆E( )turn = 2πeρRḂ

where the energy gain per turn is obtained from the RF cavity:

  
∆E( )turn = eV̂  sin φs

Exercise

Assume a 10 GeV proton synchrotron where the magnetic field reaches 1.5 Tesla in one
second, following a linear variation.  For a 10 GeV proton kinetic energy one has:

  

pc = E2 − m0c2( )1/2
= 10.9 GeV

β = 0.996 ;    γ = 11.7

hence
Bρ = P / e = 36.4  T.m

and
ρ = 24  m   R ≅ 1.5ρ = 36  m( )

As a result:

V̂ ≥ 8.14 kVolts  eV̂ sin φs << m0c2( )
Notice that in an electron synchrotron the particle radiates some energy per turn, and the

amount of energy gain per turn must be greater than this loss in order to get an acceleration
process.

3 . 2 Non-synchronous particle

In the following the parameters of the synchronous particle will be defined by subscript s.
Any other particle will then be defined by its deviation from the synchronous one:

revolution frequency: fr = frs + ∆fr   (or ω  = ωs + ∆ω)

RF phase: φ = φs + ∆φ

momentum: p = ps + ∆p

energy: E = Es + ∆E



azimuthal angle: θ = θs + ∆θ

The azimuthal angle is related to the azimuthal position by ds = Rdθ.  Over one revolution

this angle varies by 2π while the RF phase varies by the quantity 2πh.  Hence, one has:

  
∆φ = −h∆θ

The - sign comes from the fact that a particle behind the synchronous particle (∆θ < 0) arrives

later in the gap (∆t > 0 and ∆φ > 0).  Moreover, since θ = ∫ ωdt, one has:

  

∆ω = d

dt
∆θ( ) = − 1

h

d

dt
∆φ( ) = − 1

h

dφ
dt

and from the definition of η

  

∆p = − ps

hηωs
φ̇

This can also be expressed in terms of energy:

  

∆E = dE

dp
∆p = v∆p = ωR∆p

∆E

ω
= − pR

hηω
φ̇

On each revolution the particle gains the energy:

∆E( )turn = eV̂ sin φ

which corresponds to the momentum increment:

  

∆p( )turn = eV̂

ωR
 sin φ

Dividing by the revolution period one gets the rate per second:

  

ṗ = ω
∆p( )turn

2π
= eV̂

2πR
 sin φ

or

  
2πR ṗ = eV̂  sin φ

and for the synchronous particle:

  
2πRsṗs = eV̂  sin φs

By subtracting the two last expressions one gets:

  
2π∆ Rṗ( ) = eV̂ sin φ -  sin φs( )

Expanding the left hand side to first order in ∆R and 
  
∆ṗ gives:



  

∆ Rṗ( ) = Rṗ − Rsṗs = Rs + ∆R( ) ṗs + ∆ṗ( ) − Rsṗs

≅ ṗs∆R+ Rs∆ṗ

≅ ṗs
dR

dp





 s

∆p + Rs∆ṗ

≅ Ṙs∆p + Rs∆ṗ = d

dt
Rs∆p( ) = d

dt

∆E

ωs







The motion of any arbitrary particle in terms of deviations from the synchronous particle
is then expressed by the following set of first order differential equations:

dW

dt
= eV̂ sin φ − sin φs( )

dφ
dt

= − 1
2π

hηωs

psRs
W

where the new variable W = 2π Rs ∆p = 2π ∆E/ωs has been introduced.

It is worthwhile mentioning that the two variables φ, W are canonical since the equations

of motion can be derived from a Hamiltonian H(φ, W, t):

  

dφ
dt

= ∂H

∂W
dW

dt
= − ∂H

∂φ
with:

  

H φ,W,t( ) = eV̂ cosφ - cosφs + φ − φs( )sin φs[ ] − 1
4π

hηωs

Rsps
W2

From the set of first-order equations of motion one can also derive a second-order
differential equation for each variable.  For instance the phase motion is given by:

  

d

dt

Rsps

hηωs

dφ
dt









 + eV̂

2π
sin φ - sin φs( ) = 0

3 . 3 Small amplitude oscillations – phase stability

Let's consider the case where the parameters Rs, ps, η, ωs  and V̂  are constant or at least

change very slowly with time as compared to the variable ∆φ = φ - φs.  Hence one can write:

  

˙̇φ + Ωs
2

cosφs
sin φ - sin φs( ) = 0

where:

  

Ωs
2 = eV̂hηωscosφs

2πRsps



Within the approximation ∆φ <<1 the equation of motion for small amplitudes becomes:

  

˙̇φ + Ωs
2∆φ = 0

where Ωs now represents the synchrotron angular frequency.  This quantity must be real in

order to get a stable motion which means that η cos φs has to be positive.  Stable synchrotron
phase motion needs the following conditions to be satisfied:

  

γ < γ tr η > 0 0< φs < π
2

sin φs > 0

γ > γ tr η < 0
π
2

< φs < π sin φs > 0

having eliminated the cases where sin φs < 0 which correspond to a deceleration.

At transition energy η vanishes, Ωs goes to zero and there is no more phase stability, at
least within the first order approximation.  During acceleration through transition energy, in a
proton synchrotron, the RF phase must be switched rapidly from φs to π - φs in order to
maintain stability above transition.

In the case of electron machines, either synchrotrons or storage rings, where the particle
velocity is practically constant and equal to c, one has the following simplifications:

  

ωs = c / Rs    ps = Es / c    η ≅ −α

Ωs = c

Rs
− hα  cosφs

2π
eV̂

Es









1/2

The synchrotron tune which is the number of synchrotron oscillations per turn is
represented by the bracket:  

  

Qs = Ωs

c / Rs

     Note     In an electron machine the RF frequency does not change and this is also true for Rs

 and ωs.

3 . 4 Large amplitude oscillations – RF acceptance

Considering again the equation of motion:

  

˙̇φ + Ωs
2

cosφs
sin φ - sin φs( ) = 0

multiplying by φ̇  and integrating lead to the invariant of the motion:

  

φ̇ 2

2
− Ωs

2

cosφs
cosφ + φsin φs( ) = cte

It is already known that around the stable synchronous phase φs the small amplitude motions
are pure harmonic oscillations which correspond to circles in the frame (φ /Ωs,φ).  For larger



amplitudes the circles will be distorted by the non-linearity of the motion but the curves will still
close on themselves (Fig. 6).  The extreme elongations of the oscillation correspond to φ = 0
and the constant of the motion can be expressed in terms of these values.

When φ reaches the value π - φs the factor (sin φ - sin φs) in the equation of motion
becomes zero and for higher values of φ the force is no more attractive so that the motion
becomes unstable.  Hence π - φs is an extreme elongation corresponding to a stable motion.
The corresponding curve in the (φ /Ωs,φ) space or in the (W,φ) space is called the separatrix and
the area delimited by this curve is called the RF bucket.  The equation of the separatrix is:

Fig. 6  Stable phase space trajectories

  

φ̇ 2

2
− Ωs

2

cosφs
cosφ + φ  sin φs( ) = − Ωs

2

cosφs
cos π - φs( ) + π − φs( )sin φs[ ]

The second value φm, for which φ̇  = 0, is such that:

  
cosφm + φm  sin φs = cos π - φs( ) + π − φs( )  sin φs

From the equation of motion it is also seen that φ̇  reaches an extremum when ˙̇φ  = 0

corresponding to φ = φs.  Introducing this value in the equation of the separatrix gives the
maximum stable values of φ̇  and W:

  

φ̇max
2 = 2Ωs

2 2 − π − 2φs( )tgφs[ ]
Wmax

2 = 2eV̂ 2  cosφs − π − 2φs( )  sin φs[ ] 2πpsRs

hηωs
or

∆E

Es





 max

= ±β eV̂

πhηEs
G φs( )
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This last expression is called the RF acceptance.  The function G(φs) is given by:

  
G φs( ) = 2  cosφs − π − 2φs( )  sin φs[ ]

and varies from     +     2 to 0 when sin φs varies from 0 to 1.



The RF acceptance plays an important role when designing a machine, since it determines
the capture efficiency at injection and the lifetime of stored beams.  Outside the stable region
plots of the trajectories (Fig. 7) show that particles get out of synchronism, their phase sliding
along.  Moreover the energy is continuously changing which means that the particles may get
lost.

Fig. 7  Phase space trajectories for different φs

For any invariant of the motion there exists a relation between the maximum energy and
the maximum phase deviations.  However it is in general difficult to derive it analytically unless
special assumptions are made.  For instance in the case of small amplitude oscillations the
invariant becomes simply:

φ̇ 2

2
+ Ωs

2 ∆φ 2

2
= cte

which leads to:

  

∆φmax = hηEs

psRsΩs

∆E

Es





 max

since 
  
φ̇max is directly related to ∆Emax.

In the case of ultra relativistic electrons this reduces to:

  

∆φmax = αh

Qs

∆E

Es





 max

3 . 5 Potential energy function

The synchrotron motion is produced by a force field which can be derived from a scalar
potential:



  

d2φ
dt2

= F φ( )

F φ( ) = − ∂U

∂φ

U φ( ) = − F φ( )dφ = − Ωs
2

cosφs
∫ cosφ + φ  sin φs( )

The sum of the potential energy and the kinetic energy is a constant (the total energy):

φ̇ 2

2
+ U φ( ) = U0

The RF voltage as well as the corresponding potential energy function are shown on
Fig. 8.  The shape of the latter corresponds to the sum of a linear function and a sinusoidal
one.  An oscillation can only take place if the particle is trapped in the potential well which
means that the total energy cannot exceed a certain value (dotted line) otherwise the particle will
slide along the curve.  Hence the maxima of the curve correspond to unstable equilibrium for
the synchrotron motion.

Fig. 8  Accelerating voltage and potential energy function

4 . ADIABATIC DAMPING OF SYNCHROTRON OSCILLATIONS

So far one has assumed that the parameters Rs, ps, ωs and V̂  did not change appreciably
at least over a time scale of one synchrotron period.  However in a synchrotron these
parameters will vary over a large range, even slowly, during an acceleration cycle.  Then one
needs to study the long term evolution of the motion under adiabatic changes of these
parameters.  This is possible with the help of the Boltzman-Ehrenfest adiabatic theorem which
states that, if p and q are canonically conjugate variables of an oscillatory system with slowly
changing parameters, then the action integral is constant:

  

I = pdq= cte∫
the integral being taken over one period of oscillation. It has been already mentioned that the
variables W and φ, describing the synchrotron motion, were canonically conjugate. Hence
applying the theorem leads to:



  

I = Wdφ = cte∫
Consider the corresponding Hamiltonian of the motion and let's expand it to second order

approximation to take care of small amplitude oscillations only

  

H W,φ,t( ) ≅ − eV̂

2
cosφs∆φ 2 − 1

4π
hηωs

Rsps
W2

leading to harmonic solutions for the motions:

  

W = Ŵ  cosΩst

∆φ = ∆φ̂  sin Ωst

Since:

  

dφ
dt

= ∂H

∂W
= − 1

2π
hηωs

Rsps
W

one gets the action integral:

  

I = W
dφ
dt∫ dt

I = − 1
2π

hηωs

Rsps
W2∫ dt

I = − 1
2

hηωs

Rsps

Ŵ2

Ωs
= cte

where Ŵ  is the amplitude of the energy oscillation related to the amplitude of the phase
displacement through:

  

Ŵ = 2πRspsΩs

hηωs
∆φ̂

So one gets:

  

∆φ̂ ∝ η
EsRs

2V̂  cosφs
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Keeping all parameters constant except the energy which is ramping, the formula shows
that the phase excursion ∆φ̂  is reduced as the one-fourth power of the energy.

It appears also that the product Ŵ.∆φ̂  is invariant which means that the phase space area
is invariant and Liouville's theorem still holds in adiabatic conditions.  The phase space area is
not damped, only the shape of the ellipse is modified.

From the previous treatment one also gets:



  

∆Ê ∝ ωs
EsRs

2V̂  cosφs

η








1/4

∆R̂∝ α
ωs

V̂  cosφs

Es
3Rs

2η








1/4

the last formula representing the orbit excursion due to the momentum deviation during the
ramping.

The adiabatic damping can also be treated without the Hamiltonian formulation.
Remembering the general equation for synchrotron oscillations limited to small phase
deviations:

d

dt

Es

hαωs
2

dφ
dt









 + eV̂  cosφs

2π
∆φ = 0   (for the case β = 1)

one can write it in the form:

Es

hαωs
2

d2φ
dt2 + Ės

hαωs
2

dφ
dt

+ eV̂ cos φs

2π
∆φ = 0

or

  

d2φ
dt2

+ Ės

Es

dφ
dt

+ Ωs
2∆φ = 0

where the second term represents a damping term.  From the definition of Ωs one has:

  

Ės

Es
= −2

Ω̇s

Ωs
 .

To integrate this equation the procedure consists of choosing a solution similar to the one
obtained without the additional damping term:

  

∆φ = ∆φ̂  sin Ωs τ( )dτ + cte
t

∫








 = ∆φ̂ t( )  sin ψ t( )

and assuming ∆ ˆ̇φ  and Ω̇s  are small first-order quantities (adiabatic limit).  Putting this solution
into the differential equation and neglecting all second-order terms gives:

  

2∆ ˆ̇φΩs − ∆φ̂Ω̇s





 cosψ t( ) = 0

2
∆ ˆ̇φ
∆φ̂

− Ω̇s

Ωs
= 0

and integrating leads to:



  

∆φ̂ ∝ Ωs
1/2

∆φ̂ ∝ Es
−1/4

result which is similar to the one obtained previously.

5 . TRAPPING, MATCHING, ACCUMULATING AND ACCELERATING 
PROCESSES

Whether the circular accelerator is used as a synchrotron or a storage ring, the operation
of the RF will be quite different.

5 . 1 Acceleration into a synchrotron

In that case, as mentioned before, the accelerating cycle is fast.  Only a single injected
pulse is accelerated.  This injected pulse must be trapped in the RF buckets with a maximum
efficiency which means that the RF acceptance hence the RF voltage has to be large enough,
compatible with the energy spread of the transferred pulse.  The RF frequency at injection must
be such that it will fit with the bending field and the injection orbit.  The synchronous phase is
then set automatically at φs = 0 or π which means no average acceleration.

Matching means that the RF frequency and the RF voltage are adjusted such that the
phase-space trajectories are homothetic to the contour of the injected bunch.  If this was not the
case the shape of the bunch would change during the synchrotron period and, for instance, the
bunch length could become short giving rise to instabilities.  Matching also requires careful
adjustment of the injector to make it compatible with the possibilities of the synchrotron.

To start the acceleration it is necessary to move the synchronous phase so that the
synchronous particle gets energy at each revolution from the RF cavities.  This can be done by
offsetting the magnetic field followed by a change of the RF frequency.

The synchronous particle is the one for which the revolution frequency satisfies

  

ωs = ω RF

h

and it follows a closed orbit for which the physical radius satisfies

  
ω B, Rs( ) = ωs

As mentioned previously the rate of change of momentum for the synchronous particle is:

  

dps

dt
= eRs Ḃ

Hence the RF frequency must follow:

  

fRF t( )
h

= 1
2πRs

βc = 1
2π

e

m t( )
B t( )

fRF t( )
h

= 1
2π

ec2

Es t( )
ρ
Rs

B t( )
Since



  

Es
2 = m0c2( )2

+ ps
2c2

the RF frequency must follow the magnetic field variation with the following law:

f RF t( )
h

= c

2πRs

B t( )2

m0c2 / ecρ( )2
+ B t( )2

















1/2

This asymptotically tends towards fr = c/2πRs when B is getting large compared to

moc2/ecρ corresponding to v  → c (pc >> moc2).

In practice the magnetic field can either follow an approximately linear law or a sinusoidal
one

  

B t( ) = B̂

2
1− cosωt( ) = B̂  sin2 ω

2
t  .

In the case of an electron synchrotron it is not necessary to vary the RF frequency
because the particle velocity is very close to c and does not change with energy.  However the
electron loses energy in each revolution due to synchrotron radiation.  Hence the synchronous
particle is the one which arrives at the right phase φs to compensate for both this energy lost and
the field variation.

5 . 2 Accumulation into a storage ring

A storage ring is roughly a synchrotron operating at fixed energy.  In some cases a very
slow ramping can be done if the operating fixed energy differs from the injection one.

5.2.1  Electron storage rings

As for the electron synchrotron the energy lost has to be compensated.  If the energy lost
per turn is δE, then the synchronous phase is such that:

  
δE = eV̂  sin φs

which means that φs will depend on the peak RF voltage V̂ .  Moreover the energy lost per turn
is a strong function of the operating energy:

  

δE keV[ ] = 88.4
E GeV[ ]

4

ρ m[ ]
 .

If the storage ring operates between two energies, the maximum voltage will be
determined by the upper energy and for the reason of beam lifetime due to particle diffusion
through the separatrix, sin φs ≤ 0.7.  If one keeps at injection the same voltage as required at the

highest energy then sin φs at injection can be very small leading to a large bucket acceptance.

Since the particle motion is damped around the synchronous particle the bunch length and
energy spread become quite small leaving most of the bucket empty for a new injected pulse
which will damp also and so on.  This is the simple way of accumulating particles in an electron
storage ring where Liouville's theorem does not hold any more due to non-conservative forces.



However accumulation of very high circulating currents in an electron storage ring may
lead to typical instabilities related to coherent motion in the transverse phase space.  Hence it is
often desirable to keep Q constant when ramping the energy even slowly.  Of course this will
lower quite a lot the peak voltage required at injection and make the bucket smaller.  Then the
injector and the transport system to the storage ring have to be matched to the injection
conditions.

5.2.2  Proton storage rings

Here the accumulation process is often called "stacking".  It consists of trapping particles
into buckets on a special orbit, called the injection orbit, close to the injection septum.  Then the
buckets are accelerated towards an inner orbit in the vacuum chamber.  Such an acceleration is
done with constant bending field, just by changing the RF frequency.  Finally the RF voltage is
switched off so that the particles will debunch.  Hence, the RF is switched on again at the
injection RF frequency to take care of new injected particles and the new buckets are accelerated
to another stacking orbit close to the previous one.  In doing so the previous injected particles
will be slightly disturbed.  The energy difference ∆Es between RF switch off of successive

pulses is normally chosen to be approximately the bunch area divided by 2π which corresponds
to the energy width of an ideally debunched pulse.  In this process the stacking efficiency
suffers from the non-linearity of the motion in the neighbourhood of the separatrix.
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COASTING BEAM LONGITUDINAL COHERENT
INSTABILITIES

J.L. Laclare

ESRF, Grenoble, France

Abstract
Nowadays, the performance of most machine are limited by coherent
instabilities.  It is one of the most important collective effects which
prevents the current from being increased above a certain threshold
without the beam quality being spoiled.  An intense cool beam (high
intensity contained in a small phase space volume) is always unstable.
A small density perturbation in the particle distribution, which can be
due to either previous beam manipulations or even statistical noise
(related to the point-like aspect of the particles), can grow exponentially
by driving the entire beam into an unstable process.  In phase space, the
beam blows up, and becomes hot.  With regards to the scope of the
lecture, the physical mechanisms which will be considered throughout
can be applied to any type of machine:

- linear accelerators,
- circular accelerators,
- storage rings

and beam:
- bunched beams
- continuous beams.

1 . INTRODUCTION

In the first part of the lecture, we will limit ourselves to storage rings with a coasting
beam which implies:

- Constant magnetic field

- no radio frequency applied.

These conditions are met in proton or heavy-ion cooler rings.  They are also met in pulsed
machines during injection or extraction of a debunched beam.

This regime does not exist on electron machines in which the RF is always on.  With
bunched beams, because of synchrotron motion, coherent instabilities manifest differently.
However, the theoretical approach is essentially similar and easier to follow once the coasting
beam case has been fully understood.  The bunched beam case will be dealt with in the
advanced course lecture.

The source of the instability can only be an electromagnetic field.  With a very weak (very
low intensity) beam, individual particles behave essentially like single particles.  The external
guiding field imposes the trajectories and has been designed so that these trajectories are stable.

With an intense beam, the large number of moving charges is responsible for the
generation of an extra:



- "space-charge" field, or
- "self" electromagnetic field as shown in Fig. 1.

Fig. 1

If the intensity is large enough, this self field becomes sizeable in the sense that it can no
longer be neglected when compared to the external guiding field.  It can strongly influence the
collective particle motion.

We will also limit ourselves to situations in which the external guiding field magnitude
largely dominates.  In other words, particle behaviour is still almost single particle behaviour.
The self field acts as a perturbation.

As far as units are concerned, all formulae will be written in the International System
units.  Our formulae will make extensive use of the following standard quantities:

ε0 = 8.854 10-12 A s

µ0 = 4 π 10-7 V s A-1m-1

c = 2.998 108 m s-1
ε0µ0 c2 = 1

e = 1.602 10-19 A s

(1)

The self field follows Maxwell's equations.

We will do our best to avoid detailed calculations of electromagnetic fields and therefore
to make explicit reference to their form.  However, since these equations govern the fields and
therefore the source of the instabilities, it is advisable to keep them in mind.  Let E and B be the

electric field and magnetic induction respectively.  Then,  E and B can be drawn from the
potentials

V and A solutions of : ∆V  -  1
c2

  ∂
2V

∂t2
  =  - ρ

ε0
  

where  ρ is the particle charge density 

∆A  -  1
c2

  ∂
2A

∂t2
  =  - µ0j   

where j  is the particle current density by means of

E = - grad V - ∂
∂t

A and B = rot A

(2)

Obviously, boundary conditions which depend on the geometry and electromagnetic



properties of the environment (vacuum chamber, surrounding magnets, etc.) strongly influence
the solution and therefore the perturbed motion of particles.

2 . SINGLE-PARTICLE MOTION

We will first ignore the self field and consider the unperturbed single particle motion.  For
a coasting beam, in the first order, the longitudinal motion is very simple.

dp
dt

 = e [ E + v × B ] (3)

For the longitudinal component  

dp//
dt

 = e [ E// + (v × B)// ] (4)

there is no longitudinal field, no RF

 E// is nul and (v × B)// is a second order term (5)

Therefore,

 
dp//
dt

 = 0   p// is a constant of the motion (6)

The revolution period T around the orbit length L is written:

T = 2 π
ω

 = L
βc

(7)

It depends on the particle momentum and can be expanded in terms of momentum deviation.

Let us choose a reference (machine axis for instance)

p//0 = m0γ0β0c (8)
Let us then expand:

β = β0 ( 1 + 1

γ0
2

  
p// - p//0

p//0
 ) and L = L0 ( 1 + α   

p// - p//0
p//0

  + ..) (9)

L0 = 2 πR is the  perimeter of the machine

α = 
p//
L

 ∂L
∂p//

 momentum compaction
(10)

in smooth machines   α ≈ 1

Qx
2

   where  Qx
2  is  the horizontal betatron tune

Second- and higher-order contributions to orbit lengthening (transverse peak amplitude



x and z dependence for instance) are neglected.

It is usual to write:

dT
T

 = η 
dp//
p//

 = - dω
ω   with η = α  - 1

γ0
2

 = 1

γt
2

 - 1

γ0
2

 

(11)

γt = 1
 α1/2

 defines the transition energy

Et = m0γt   c2
(12)

Below transition:  E0 < Et  and  η < 0 particles with a positive momentum deviation
circulate faster than the reference.

Above transition :  E0 > Et  and  η > 0 particles with a positive momentum deviation
circulate slower than the reference.

When dealing with longitudinal (//) or transverse (⊥ ) instabilities the sign of η is essential.
It indicates whether the slow particles at the tail, moving in the wake field, have a higher or
lower energy than the fast particles at the front which create this wake field.

In order to describe trajectories two coordinates are necessary. Let p/ / 0
 and ω0  in rad s-1

be the momentum and angular revolution frequency respectively for the reference.  We define
two coordinates attached to the reference particle frame.

τ   and  τ = dτ
dt

τ is expressed in s (seconds) and represents the time delay between the passing of the reference
particle and the test particle at the same point around the circumference.

τ is the time derivation of τ.  The couple  τ,τ    defines the coordinates of the test particle in the
longitudinal bidimensional phase space.

With the definition of η as given above:

τ  =  dT
T

 = η 
dp//
p//

is a constant of the motion.  Accordingly, the time delay:  τ = τ0 + τ̇  t  is a linear function of

time.

The differential equation of motion is:



τ = η
p//0

 
dp//
dt

 = ηe
p//0

  [E + v × B]// (t,θ) (13)

Until now the right hand side has been null.  Later on it will take into account the self field as a
perturbation.

Fig. 2

3 . LONGITUDINAL SIGNAL OF A SINGLE PARTICLE

With a view to expressing the self field, one has to solve Maxwell's equations. On the

right hand side of Maxwell's equation, the expression of the beam current  density j (t,θ)  and

therefore of the current which will be noted  S//(t,θ)  (in Ampere) is required.

Machine physicists are used to visualizing the beam current by looking with an
oscilloscope at the signal drawn from longitudinal PU electrodes.  We will assume a perfect
longitudinal PU electrode with infinite bandwidth located at position θ around the ring.  We will
also assume that a single test particle rotates in the machine.  At time t = 0 the fictive reference is
at θ = 0.  The PU is located at position θ as shown in Fig. 3.

Fig. 3

The reference loops its turn with a period T0 and passes at the PU location at times:

t0
p
 = 1

ω0
 ( θ + 2 p π ) (14)

The test particle is delayed by τ0 at time t = 0.  It arrives at the PU at times:



tp = t0
p

 + τ = τ0 + t0
p
 ( 1 + τ ) (15)

The elementary signal is a series of periodical impulses delivered at each passage :

Fig. 4

The period T depends on the test particle momentum:

T = T0 (1+τ) =T0 (1+η 
p// - p//0

p//0
(16)

The mathematical expression of the signal is:

s// (t,θ) = e 
p = + ∞

∑
p = - ∞

 δ[t - τ - 1
ω0

 ( θ + 2 p π ) (17)

where

δ[.]  is the Dirac function (18)

The series of periodical Dirac functions can be transformed into a series of exponential
functions:

s// (t,θ) = 
eω0
2π

 
p = + ∞

∑
p = - ∞

 exp jp[ω0(t - τ) - θ]

where  j2 = -1
(19)

and

τ = τ0 +  τt (20)

Under this form, the signal can easily be Fourier analysed in the frequency domain.



s// (Ω,θ) = 1
2π

s// (t,θ)
t = - ∞

t = + ∞
 exp(-jΩt) dt

= 
eω0
2π

 
p = + ∞

∑
p = - ∞

 δ{Ω-pω0(1-τ)} exp -jp[ω0 τ0 + θ]

(21)

The latter expression shows that when plugging the signal on a spectrum analyser, with Ω
along the horizontal axis, we get a series of infinitely sharp lines at all harmonics pω of the test

particle revolution frequency:  ω = ω0(1-τ) with p running from - ∞  to  + ∞

 Ωp = pω = pω0(1-τ) (22)

The spectral power amplitude is the same for all harmonics.

Fig. 5

If one considers a population of test particles with different momentum p// and therefore
τ, then the width of the frequency band around harmonic p is proportional to p.

Fig. 6



In the above figure, the noise spectrum of a coasting beam with a uniform population of
particles between two momenta

± 
δp//
p//0

 = ± τ
|η|

(23)

symmetric with respect to the reference particle momentum is sketched.

One can anticipate an overlap of the frequency bands for |p| values larger than or equal to
p0v with:

1
2p0v +1

 = |η| 
δp//
p//0

(24)

These bands are called incoherent frequency bands.
The adjective incoherent is used to specify the fact that particles behave like independent

particles, there beeing no coupling between them.

In accelerator physics, the electromagnetic noise picked up from the beam by means of a
spectrum analyser is often called a Schottky scan.  These longitudinal Schottky scans of a
coasting beam make it possible to measure the momentum distribution within the beam.

4 . DISTRIBUTION FUNCTION

In the previous section, we obtained the expression of the current or signal of a single
particle.  Maxwell's equations require the total beam current.  This can be obtained by adding
the individual signals of all the single particles constituting the beam.

To obtain a general mathematical expression, we introduce a distribution function:
Ψ(τ,τ,t) which represents the particle density in the bidimensional phase space and we write
the signal of the entire beam:

S//(t,θ) = N τ=0
τ=T0 τ=-∞

τ=+∞Ψ(τ,τ,t)s//(t,θ)dτdτ
(25)

N is the total number of particles and therefore the following normalization is assumed:

1 = τ=0
τ=T0 τ=-∞

τ=+∞Ψ(τ,τ,t)dτdτ
(26)

Let us now introduce some basic notions and definitions concerning distributions.

A distribution is called a stationary distribution when the density does not change with
time around any point of the phase space.  There are as many incoming particles as departing
particles around this point.  We have seen that phase space trajectories are horizontal lines.
Therefore, any function of τ only would satisfy our requirement.



On the contrary, a stationary Ψ cannot depend on τ.  As a matter of fact, a τ dependence
would automatically move to other points.  Accordingly, a stationary coasting beam can be
represented by:

Ψ(τ,τ,t) = g0(τ) (27)

Such a function can represent the distribution of an unperturbed beam.  It must be pointed out
that the resulting signal is constant in the time domain.

S// (t,θ) = I (28)

In the frequency domain there is a single line at zero frequency:

S// (Ω,θ) = I δ(Ω) (29)

The whole rich frequency spectrum of the individual particles composing the beam has
disappeared.  Such a dc current can only generate a dc electromagnetic field with essentially a
transverse electric field and an azimuthal magnetic field.

Fig. 7

The right hand side of the differential equation is null.

τ = η
p//0

 
dp//
dt

 = ηe
p//0

  [E + v × B]// (t,θ) = 0 (30)

There is no force to drive an instability.

The conclusion is that a perfect coasting beam is always stable.  In fact, a perfect coasting
beam does not exist.  A beam is a collection of point-like moving charges.  On an average it can
be represented by a stationary distribution.  However, on top of it, some statistical noise is
always present (Schottky scans).

Fig. 8



When we used an integral over a distribution function (instead of a sum over individual
particles) to draw the signal of the entire beam, we removed this noise.  In addition, there are
always distribution defects remaining as a memory of previous beam manipulations (injection
kickers, remaining RF structure from a linac or a booster injector, etc...).  Therefore, there are
physical reasons for representing the beam by the sum of a stationary distribution plus a
perturbation.  Any density perturbation is automatically periodic in τ with a period T0.  We will
consider a single harmonic:  harmonic p of the circumference.  Accordingly, we assume a
perturbation which consists of a prebunching of the beam with p wavelengths around the ring.

Fig. 9

This can be obtained with a term like:

gp(τ) exp jpω0τ (31)

In addition, there is no reason to imagine that the perturbation will move exactly with the
average particle frequency ω0.  We will assume a slight frequency shift:  ω//pc
This can be obtained by multiplying the previous term by:

exp jω//pct (32)
Finally, we assume:

Ψ(τ,τ,t) = g0(τ) + gp(τ) exp j(pω0τ+ ω//pct) (33)

For reasons of normalization:

g0 (τ) dτ
τ

 = 1
T0

(34)

 gp (τ) exp j(pω0τ + ω//pct) dτ dτ
τ,τ

 = 0 (35)

The perturbation rearranges the particles but does not change the total number N.



Back to ω//pc , this frequency shift is a complex number.

If Im(ω//pc) < 0 (36)

The perturbation increases exponentially with time. The whole beam gets bunched on harmonic
p. The growth rate for self bunching is given by:

1
τp

 = - Im(ω//pc) (37)

On the contrary,

If Im(ω//pc) > 0 (38)

then, the perturbation is damped and disappears.

The signal induced by the above distribution is given by:

S//(t,θ) = I + S//p (t,θ)
with

S//p (t,θ) = IT0exp j[(pω0+ω//pc)t-pθ] gp(τ)dτ
τ

(39)

and Fourier analysed:

S//(Ω,θ) = I δ(Ω) + S//p (Ω,θ)
with

S//p(Ω,θ)=IT0exp(-jpθ)δ[Ω-(pω0+ω//pc)] gp(τ)dτ
τ

(40)

We find the dc component induced by the stationary distribution at zero frequency and in
addition the frequency line induced by the perturbation at:

Ωc = pω0+ω//pc (41)

This frequency line is not an incoherent frequency line but on the contrary a coherent one
in the sense that we had to arrange the particles by means of a distribution to obtain this line.
We have assumed an initially coherent motion.  The signal or current of the beam is a complex
quantity.  It will be associated with complex impedances (usual practice in classical electricity).

With a view to finding a solution for  
ω//pc , the next step is to write down the

electromagnetic field induced by the beam.



                     Stationary distribution Perturbation spectrum

Fig. 10

5 . ELECTROMAGNETIC FIELD INDUCED BY THE BEAM

As already stated, the solution of Maxwell's equations depends on the boundary
conditions imposed by the environment.  It is obvious that:

– the detailed environment seen by the beam is different for different machines and changes
around the circumference of a given ring.

– one cannot expect to analytically express exact solutions for the electromagnetic field with
handy formulas.

In view of this, in this chapter we will consider the most simple type of environment and
use the resulting electromagnetic field expression to introduce the notion of machine coupling
impedance.

Let us consider a round beam of radius a travelling in a straight line along the axis of a
circular pipe of radius b.  For the time being, we will also assume a perfectly conducting pipe.



Fig. 11
With a perfectly conducting pipe, the solution of Maxwell's equations inside the pipe is

independent of the environment outside the pipe.  In particular the induced EM field is null
outside the pipe and also in the wall thickness.  It is completely stopped on the pipe inner

surface by a return current Iw = - S//p uniformly distributed around the pipe, with the same
amplitude as the direct signal but with the opposite sign.

Fig. 12

Let : 
E//(t,θ) = E// exp j(Ωct - pθ)

∆ab = 
(K1(z a)I0(z b)+I1(z a)K0(z b)]

I0(z b)
 

In and Kn being 
 the usual Bessel functions

(42)

Also let

  z r = Ωc r
βγc

 for 0 ≤r≤a 

Then

E//=j(p2

R2
 - Ωc

2

c2
)
µ0S//p
πΩcz a

 [ 1
z a

 - ∆ab I0(z r)]

For this simple case of beam environment, the expression of the EM field is already
complicated.  In the longitudinal direction, the electric field is 90° out of phase with respect to
the signal.

It is null on the crests and in the valleys of the line density when the signal is maximum,
and maximum on the front and back slope when the signal is null.

Transversally, the field varies across the beam cross section:



 I0(Ωc r
βγc

) for 0 ≤r≤a (43)

Fig. 13

This variation is small provided the argument of Bessel's function remains small at the beam
edge and more generally across the pipe:  r = b.

z b = Ωc b
βγc

 « 1

where Ωc = pω0+ω//pc ≈ pω0 = pβc
R

 
(44)

For  z b = 1 ; γ 2πR
p

 = 2πb (45)

The longitudinal wavelength with a relativistic correction γ in the direction of motion is
equal to the pipe perimeter, or the frequency of the perturbation is equal to the pipe cut-off
frequency.

Ωc = γβc
b

 = γβωpipe cut-off (46)

The EM field configuration is drastically changed around and above the cut-off frequency.

Let us evaluate orders of magnitude.

Assume b = 0.03 m
ωpipe cut-off = c

b
 = 1. 1010 rad s-1

fpipe cut-off = 
ωpipe cut-off

2π
 = 1.6 GHz

(47)



z b = Ωc
βγwpipe cut-off

 = 1

implies
fc(z b=1) = βγ fpipe cut-off = βγ 1.6 GHz

(48)

The frequency around which tthis is occurs depends very much on machine energy.
Consider two examples:

50 MeV/Amu β=0.3 γ=1.05 
fc(z b=1) = 0.5 GHz

and z b «1 leads to  fc ≤ 50 MHz
100 GeV/Amu β=1 γ=101

fc(z b=1) = 160 GHz
and z b «1 leads to  fc ≤ 16 GHz

(49)

In the following, we will assume that we stand well below these limits, in which case a
good approximation for the electric field can be obtained by using the development of Bessel's
functions for small values of the argument.

E// (t,θ) = - 1
2πR

 Z0 g

2jβ0γ0
2

 Ωc
ω0

 S//p (t,θ)

where
Z0 = µ0 c = 377 Ω
g = 1 + 2 Log(b

a
)

(50)

Under all these assumptions, we have obtained the usual handy expression of the

"longitudinal space charge electric field".  The β0γ0
2 dependence shows that this field can

severely affect very low energy particles.

6 . NEGATIVE-MASS INSTABILITY

In this section, a qualitative treatment of the longitudinal instability induced by space charge
forces is presented.  Immediate conclusions can be drawn from the fact that the space-charge
electric field is 90° out of phase with respect to the signal.  Then, the sign of η

dω 
ω0

 = - η dp 
p//0

 with η = 1

γt
2

 - 1

γ0
2

(51)

defines whether the perturbation amplitude increases (instability) or decreases (stability).
Below transition energy (η < 0)

– acceleration on the front slope (2 in Fig. 14) means increased momentum and therefore
higher revolution frequency.  Particles move ahead.



– deceleration on the back slope (3) implies that particles will move backwards.

Fig. 14

Conclusion:  Particles will move from the crests to fill the valleys and the initial
perturbation will disappear.

It can be concluded that space charge has a stabilizing effect below transition energy.
Obviously, the reverse applies above transition when η > 0.  Above transition, space-charge
fields make the coasting beam potentially unstable.  This effect is commonly called negative-
mass instability in view of the apparently strange fact that above transition, particles with higher
energy go slower in the machine (longer trajectory even though their velocity is higher).

7 . INTRODUCTION OF THE LONGITUDINAL COUPLING IMPEDANCE 
Z//

At this point, we could have started a quantitative treatment of the detailed motion of the
perturbation.  However, our pipe model of beam environment is very crude and our
conclusions regarding stability would not be relevant to an actual machine.  On the other hand,
our mathematical possibilities are very limited.  The analytical solution for the simple pipe
model was complicated already.  Extracting complete solutions of Maxwell's equations taking
due account of an actual machine environment (all the changes of the geometry and
electromagnetic properties of the vacuum chamber around the circumference) is definitely
impossible.  In order to remain as general as possible in our discussion about stability we shall
introduce a new machine parameter:  the longitudinal coupling impedance Z/ / ω( )

Z/ / ω( )  is in fact a parameter which can only be drawn once Maxwell's equations have



been completely solved.  It gathers all the details of the electromagnetic coupling between the
beam and the surroundings.  By varying its form, we will be able to consider any type of beam
self electromagnetic field.

To introduce this parameter, let us use the expression of the space charge field.  This
expression shows that the field is proportional to current.

E// (t,θ) = - 1
2πR

 Z0 g

2jβ0γ0
2

 Ωc
ω0

 S//p (t,θ) (52)

It is written in a form identical to Ohm's law and the quantity between brackets must be
expressed in Ω. This latter quantity will be called the longitudinal coupling impedance in
general:

E// (t,θ) = - 1
2πR

 Z//(ω) S// (t,θ) (53)

and longitudinal space charge impedance in the present particular case with:

Z//SC(ω) = Z0 g

2jβ0γ0
2

 ω
ω0

(54)

At this stage, some generalization is necessary.  Since both electric and magnetic forces act on
the particles:

τ = η
p//0

 
dp//
dt

 = ηe
p//0

  [E + v × B]// (t,θ) (55)

we include the magnetic field contribution in our definition and write:

[E + v × B]// (t,θ) = - 1
2πR

 Z//(ω) S// (t,θ) (56)

Up to now we have considered a pure perturbation at a single frequency. However, the
most general beam signal spectrum (bunched beam for instance) is not limited to a single
frequency but is spread over a wide frequency range.

Each individual frequency ω present in the Fourier transform of the signal contributes to

the force and must be combined with the corresponding impedance at ω.

[E+v×B]//(t,θ)= -1
2πR

 Z//(ω)S//(ω,θ)exp jωt dω
ω=-∞

ω=+∞
(57)

in which the following definitions are assumed.



S// (ω,θ) = 1
2π

S// (t,θ)
t = - ∞

t = + ∞
 exp(-jωt) dt

and reciprocally

S// (t,θ) = S// (ω,θ)
ω = - ∞

ω = + ∞
 exp jωt dω

(58)

With a view to obtaining an expression of Z//(ω) in terms of physical quantities, let us
apply the previous relation to a Dirac charge e rotating at frequency ω0 in the machine.

S//(t,θ) = ∑
p

eδ(t- θ+2kπ
ω0

)

S//(ω,θ) = 
eω0
2π

 ∑
p

exp(-jpθ) δ(ω-pω0)

-2πR[E+v×B]//(t,θ) = 
eω0
2π

 ∑
p

Z//(pω0)exp(jp(ω0t-θ))

(59)

We now follow the field particle while remaining τ behind it by taking θ=ω0(t-τ) and

obtain

- 2πR
e

[E+v×B]//(τ) = G(τ)

= 
ω0
2π

 ∑
p

Z//(pω0)exp(jpω0τ)
(60)

The voltage per unit charge G(τ) expressed in volts per Coulomb is usually called the
Green function.  It is expanded into a series over all harmonics of the revolution frequency.

If the impedance is smooth enough or the machine long enough so that the wake field is
null after one revolution, the series can be approximated by an integral.

G(τ) = 1
2π

 Z//(ω) exp(jωτ) dω
-∞

+∞
(61)

This last expression can be inverted to obtain



Z//(ω) =  G(τ) exp(-jωτ) dτ
-∞

+∞
 (62)

In other words, Z/ / ω( )  is the Fourier transform of 2πG(τ).

Ideally, this relation can be used in numerical codes to calculate the function Z/ / ω( ) .  A
short bunch of particles is sent on axis through a structure.  Maxwell's equations are solved
step by step at predetermined mesh points.  This allows the Green function and afterwards its
Fourier transform to be obtained numerically.

8 . LONGITUDINAL COUPLING IMPEDANCE Z// ωω( )  OF AN 
ACCELERATOR RING

Designers are confronted with the problem that they have to include in their machine all
sorts of bellows, flanges, cross section changes, PU electrodes, RF gaps, kickers, septum
magnets, etc.,  which influence the impedance.  During the last two decades, progress has been
made towards estimating impedances better.  Numerical codes and experimental tools have been
developed.  However, RF properties are difficult to predict or measure and we are still far from
the situation where we could predict the curve Z/ / ω( )  accurately enough before commissioning
a machine.  We have also learnt a lot from existing machines.  Most of them suffering from
instabilities despite many attempts to measure and lower their impedance.

As already stated, the impedance is a complex function of frequency.  A priori, it has an
imaginary part and a real part.  The space charge impedance from a perfectly conducting round
pipe was an example of a purely imaginary impedance.  Basically, in the broad sense, a ring
impedance can be inductive, or capacitive or resistive.  Our equations are written in such a form
that we have to consider the complete frequency axis (positive and negative ω).  In addition, for
reasons which will be understood later in the course of this lecture, the quantity of interest is not
directly

Z//(ω) but Z//(ω)
ω  or Z//(ω)

p
 with p = ω

ω0 (63)

Accelerator physicists are used to plotting

Im(Z//(ω)
ω )   and   Re(Z//(ω)

ω )
(64)

with ω along the horizontal axis.



Fig. 15

In a standard machine, out of the four major components of the impedance, the first one is
the space charge component already introduced.

Z//SC(ω)
p

 = -j Z0 g

2β0γ0
2

 where p stands for ω
ω0

(65)

It corresponds to a pure negative inductance (imaginary part only) very large for low
energies.  For instance:

50 MeV/Amu β0=0.3 γ0=1.05 g≅ 2.4 Z//SC
p

 = -j1.4 kΩ

10 GeV/Amu β0=1 γ0=11.7 g≅ 2.4 Z//SC
p

 = -j3.3 Ω
(66)



Fig. 16

The resistive wall impedance is the second major component.

Previously, the pipe was assumed to have a perfectly conducting wall (conductivity
σ = ∞) and no resistance was opposed to the return wall current Iw .  For finite σ, Iw  flows in

a strip of length 2πR, width 2πb, thickness δ : the skin depth at frequency ω.  On top of the

space-charge field, the beam sees a uniform longitudinal electric field set up by Iw . δ0 being the

skin depth at frequency ω0.  We will write:

δ2 = δ0
2 

ω0
ω  with  δ0

2 = 2
µσω0 (67)

and consider two regimes.

At very low frequency, the skin depth δ is larger than the wall thickness δw (thin wall).
The impedance seen by Iw  is the pipe resistance

Z//RW = 1σ 2πR
2πbδw 

   or  Z//RW
p

 = R
σbδw 

 1
p (68)

The impedance seen by the beam is exactly the same.

At high frequencies, the wall is thicker than the skin depth.  It can be shown that the
previous formula must be amended by replacing δw by δ and multiplying by (1+j) (an
imaginary term appears).

 Z//RW
p

 = (1+j) R
σbδ 

 
ω0
ω  = (1+j) Z0β0δ0

2b
 1

p (69)

The transition between the two expressions occurs when δ = δw.



Fig. 17

The energy lost in the wall is drawn from the beam which is decelerated.  As far as
instabilities are concerned, the resistive wall impedance is not the source of problems in the
longitudinal direction.  It essentially affects the transverse motion.

The two last major components correspond to resonating objects.  Let us start by some
general definitions and remarks concerning resonators.  The impedance of a resonator is often
written:

Z// = Rs
1 + jQ( ω

ωr
 - ωr

ω )
(70)

Rs is the shunt impedance in Ω; Q the quality factor ; ωr  the resonant frequency 

When the resonator is driven at very low frequency,

ω = pω0 « ωr        
Z//
p

 = j 
Rsω0
Qωr (71)

it behaves like a pure inductance.  At resonance, it is a pure resistance.

ω = pω0 = ωr        
Z//
p

 = Rs
ω0
ωr (72)

At high frequencies,

ω = pω0 » ωr        
Z//
p

 = Rs
ω0ωr
jQω2 (73)

it behaves like a pure capacitance.



Fig. 18

As shown in Fig. 18, the real part is maximum (Rs) at the resonant frequency.  The
resonator bandwidth ∆ω full width, half height is given by:

 
∆ω = ωr

Q  .

It can be shown that the time ∆t during which a resonator of bandwidth ∆ω memorizes
the energy left by a Dirac excitation is given by:

∆ω∆t =ωr

Q
 ∆t ≈  1

(74)

(uncertainty principle).

Fig. 19
The immediate consequence is that the response or wake field of a narrow-band resonator



(high Q and small ∆ω) lasts for a long time.  Particles well separated in time are coupled by
such a resonant object.  The RF cavities are the most current sources of narrow-band
resonators.  They are tuned to resonate at the fundamental frequency hω0.  However, resonant
higher-order longitudinal (and also transverse) modes with high Q are always present.  The

representation of a narrow-band resonator in the impedance diagram with 
Z/ /

p
 along the vertical

axis is sketched below.

Fig. 20

Narrow band resonators constitute the third type of impedance usually met in an
accelerator ring.  The last component of the impedance corresponds to the numerous changes of
cross sections, bellows, flanges, etc.  It is obvious that these structures can trap some magnetic
field and therefore behave like an inductance at low frequencies.  This has been measured on
existing machines.

We also learnt that when no special care is taken, the vacuum chamber is essentially
resistive at frequencies around the pipe cut-off frequency.  This is due to the fact that the path
followed by the return current is very complicated and the resistance high when the vacuum
chamber wall is not smooth or correctly shielded along the longitudinal axis.  It has also been
observed that the resistive part drops at frequencies higher than the cut-off frequency.

The object is to represent the above observations with the simplest impedance model.  In
this respect, a broad band resonator with a resonant frequency around the vacuum pipe cut-off
frequency:

ωrBB ≈ ωcut-off = c
b (75)

can give an overall satisfactory result.  To a certain extent, most experimental results drawn
from existing rings have been correctly fitted by assuming the existence of such a component
with Q ≈1 (as sketched below) and a shunt impedance Rs adjusted to obtain the good value of
the low frequency inductance.



Fig. 21

Concerning orders of magnitudes, the full range

 0.2 Ω ≤ Z//
p max

=  Rs 
ω0
ωr

  ≤ 50 Ω (76)

has been found.  The lowest values are obtained with modern machines.  At present, a
considerable effort is being put into designing a very smooth chamber.  Unavoidable changes of
cross section are systematically shielded and are no longer seen by the beam.

For such low-Q objects, the impedance curve varies slowly with frequency and the
resonator bandwidth ∆ω is large.  Therefore, the wake field decays rapidly.  It is a local
interaction which can only couple particles close to each other along the longitudinal axis.

This handy broad band-model can only be used as a crude representation of reality.  It
will constitute the last component of our inventory of contributions to a ring impedance.

9 . VLASOV'S EQUATION AND DISPERSION RELATION

At this point, all necessary ingredients to start the most general discussion on beam
stability have been gathered.

– distribution function:  Ψ(τ,τ,t) = g0(τ) + gp(τ) exp j(pω0τ + ω//pct) (77)

– perturbation signal:  S//p (t,θ) = IT0exp j[(pω0+ω//pc)t-pθ] gp(τ)dτ
τ

(78)

– the general impedance of a ring Z//,

– the general expression of the EM field generated by a signal in a ring with impedance Z//

[E+v×B]//(t,θ) = -1
2πR

Z//
ω=-∞

ω=+∞

 (ω) S// (ω,θ)exp jωt dω (79)



[E+v×B]//(t,θ) = - 1
2πR

 Z//(Ωc) S// (t,θ) (80)

in the present case.

= - I
β0c

 Z//(Ωc)exp j Ωct-pθ gp(τ)dτ
τ

where Ωc stands for  pω0+ω//pc

(81)

when the expression of the perturbation signal is used.

– The EM force acts back on the particles,

. τ = η
p//0

 
dp//
dt

 = ηe
p//0

  [E + v × B]// (t,θ) (82)

in which θ =ω0(t-τ) in order to follow the particle along its trajectory.

τ = - ηeIZ//(Ωc)

m0γ0c2β0
2

 exp j pω0t+ω//pct gp(τ)dτ
τ

 (83)

The goal is to find out the solution

Ωc or ω//pc (84)

and to discuss beam stability via the imaginary part.  The evolution of the distribution is
governed by the collision-free Boltzmann equation:

∂Ψ
∂t

 + div(Ψv) = 0 (85)

This equation is similar to the one commonly used in electromagnetism for the charge density

∂ρ
∂t

 + divj  = 0 with j  = ρv
(86)

In our particular case:  v =

dτ
dt
dτ
dt

(87)

The equation can be developed  
∂Ψ
∂t

 +v gradΨ + Ψ div v  = 0 (88)



and then simplified, since div v  = 0 when canonical variables like τ,τ
 
are used.

∂Ψ
∂t

 +v gradΨ = 0

∂Ψ
∂t

 + ∂Ψ
∂τ

 τ + ∂Ψ
∂τ

 τ = dΨ
dt

 = 0
(89)

In this form, it is called Vlasov's equation.

We now apply Vlasov's equation to the assumed distribution :

Ψ(τ,τ,t) = g0(τ) + gp(τ) exp j(pω0τ + ω//pct) (90)

and get:
∂ψ
∂t

 =  jω//pc gp(τ) exp j(pω0τ + ω//pct)

τ∂ψ
∂τ

 = j pω0 τ gp(τ) exp j(pω0τ + ω//pct)

τ∂ψ
∂τ

 = τ 
∂g0
∂τ

 + second order term 
∂gp
∂τ

 « 
∂g0
∂τ

(91)

Limiting ourselves to first order terms, we obtain:

gp(τ) = j τ
pω0τ + ω//pc

 
∂g0
∂τ

(92)

in which

τ = - ηIZ//(Ωc)

(
m0c2

e
)γ0β0

2
 exp j pω0τ+ω//pct gp(τ)dτ

τ
(93)

At first glance, it seems difficult to exploit this expression since the function gp  which
gives the details of the initial perturbation appears explicitly.  However, one can integrate both

sides of the equation over τ values.  The equation then obtained from which the solution Ωc
will be drawn is called the Dispersion Relation.  It is independent of gp  .  In other words, the
growth rate of the instability is independent of the exact form of gp  .

1 = 
η( q

A
)I

(
m0c2

e
)γ0β0

2
  j Z//(Ωc)

pω0
 

∂g0
∂τ

ω//pc
pω0

 +τ
 dτ

(94)



The Dispersion Relation has been written for all types of particles :

q
A

 = 1 for protons or electrons

q = number of charges

A =  number of masses
for heavy ions

m0c2
e

 = 

0.511 MV for electrons

0.938 GV for protons

0.932 GV for heavy ions

(95)

A priori, the frequency shift ω//pc appears twice,

1 = 
- η( q

A
)I

(
m0c2

e
)γ0β0

2
  j Z//(Ωc)

pω0
 

∂g0
∂τ

ω//pc
pω0

 +τ
 dτ (96)

under the integral sign and as an argument of

Z// (Ωc) = Z// (pω0 + ω//pc) (97)

However, it is assumed that
ω//pc « pω0 (98)

and therefore, the value of the impedance can be taken at pω0.  Accordingly, we will write:

Z// (Ωc) = Z// (p) (99)

We understand now why the quantity of interest is not

Z// (p) but Z// (p)
p

 (100)

To avoid carrying heavy expressions we will use the quantity:



Λ// = 
η( q

A
)I

2π (
m0c2

e
)γ0β0

2
(101)

and write the Dispersion Relation

1 = - 2π
ω0

Λ// j 
Z//(p)

p
 

∂g0
∂τ

ω//pc
pω0

 +τ
 dτ (102)

1 0 . MONOCHROMATIC BEAM

We apply the Dispersion Relation

1 = - 2π
ω0

Λ// j 
Z//(p)

p
 

∂g0
∂τ

ω//pc
pω0

 +τ
 dτ (103)

to an infinitely cool beam with momentum p//0 
:

g0(τ) = δ(τ)

∂g0
∂τ

ω//pc
pω0

 +τ
 dτ = 

ω0
2π

 
ω//pc
pω0

-2
(104)

Finally one obtains:

ω//pc
pω0

2
 = - Λ//

η  jη Z//(p)
p

  with  Λ//
η  positive (105)

1)  Let us first consider a pure resistive component.  The equation has two roots and whatever
the sign of p, one of the two roots has  Im(ω//pc) < 0. The beam is unstable.



2)  We assume now a pure space-charge interaction.

j Z// SC(p)
p

 = Z0g

2β0γ0
2

 is real and positive (106)

– below the transition energy (η < 0) the beam is stable.

– above the transition energy (η > 0) the beam is unstable (negative-mass instability).

3)  We now consider the effect of a pure inductance, for instance the broad-band impedance at
low frequencies.  The results obtained with space charge must be inverted.  In particular the
beam is stable above transition.

The mathematical tools used to solve our problem (Vlasov's equation, Dispersion
Relation, complex plane for frequencies and impedances, etc.) are very powerful.  However,
the physical meaning is rather lost in this series of mathematical treatments.  We have begun
with a prebunching of the beam with p wavelengths around the circumference.  This
prebunching coupled with the impedance creates a longitudinal force at a frequency close to
pω0 which reacts back on particles like an RF cavity would do.  As a matter of fact the
expression of ω//pc is in all respects identical to the standard expression of the synchrotron
frequency ωs on a flat top of a magnetic field.

ωs
2 = 

-η( q
A

)VRFcosφs hω0
2

2πm0c2
e

γ0β0
2

    
ω//pc

2

ωs
2

 = 
jZ//(p)I  

VRFcosφs
(107)

VRFcos φs   is replaced by  jZ//(p)I (108)

The results (curves corresponding to a given growth rate Im(ω//pc)), are generally
represented in the impedance complex plane as shown below.

With the exception of the vertical axis (pure space charge below transition and broad band
inductance above transition), all the working points in the impedance diagram correspond to an
unstable motion.  For a given impedance, the Dispersion Relation tells us at which rate a
perturbation will grow.  This is certainly the essential piece of information. However, the
details of the evolution of the beam deterioration are inaccessible.

s.Let us qualitatively describe the instability in phase space.  With a working point along
the vertical axis in the unstable region (point A, Fig. 22), the resistive part of the impedance is

null.  The frequency shift 
ω//pc has no real part which means that the RF field generated by

the perturbation is exactly tuned to pω0.  The peaks of longitudinal density get trapped in the
center of the buckets as shown in Fig. 23.  The growth time is the synchrotron period in these
bucket



Fig. 22

Fig. 23

When the working point is associated with a resistance (point B, Fig. 22), the frequency
shift has both a real and an imaginary part.  The RF buckets are generated at

Ωc = pω0 + Re (ω//pc)
(109)

The initially monochromatic beam starts wiggling far away from the bucket centers (Fig. 24).



Fig. 24
As already indicated, the resistive part contributes directly to the imaginary part of the

frequency shift.

ω//pc
pω0

2
 = -  jΛ// 

Z//(p)
p

 (110)

It is interesting to analyse the solution of the above equation by drawing the curves

Re(Z//(p)
p

) ∝  
Im(ω//pc)

p2
(111)

corresponding to a fixed growth rate in the frequency domain.

One can easily conclude that the resistive wall is far less harmful to the beam than the
broad-band resistance peaked at high frequencies around the pipe cut-off frequency.  In general
the instability is of the microwave type with hundreds or thousands of mini-bunches around the
circumference.

The conclusion of this section is that a cool beam with a very small momentum spread is
unstable with respect to longitudinal instability.  This is a problem to be faced by the new
generation of cooler rings making use of either stochastic or electron cooling.  There exists a
threshold at which the instability growth rate is equal to the cooling rate.  Under this threshold,
the momentum spread can no longer be reduced.

The case of a beam with momentum spread is dealt with in the next section.

Fig. 25

1 1 . COASTING BEAM WITH MOMENTUM SPREAD

It has been shown that in a ring, a very cool beam is subject to microwave instabilities
which lead to a beam blow up in momentum.  In this section, we will comment on the solution
of the Dispersion Relation when a momentum spread is assumed.  It will be shown that a
sufficient momentum spread in the beam can cure the instability.  Different realistic momentum
distributions can be assumed.  We will treat the case of a parabolic spread:



g0(τ) = 
3ω0
8πτL

 {1- (τ2

τL
2

)}   for  τ  ≤ τL

and  g0(τ)dτ
τ

 = 
ω0
2π

  as required
(112)

Fig. 26

The important quantity is the spread.  Different distribution models with the same Full
Width at Half Height spread behave almost identically.  Only minor differences can be
expected.

With the present model,

τFWHH = 2τL = 2 η  dp
p// L

 = η  dp
p// FWHH

 (113)

the Dispersion Relation can be split into real and imaginary parts:

Λ//c Re(Z//
p

) = Im(J-1) and Λ//c Im(Z//
p

) = - Re(J-1) (114)

by making use of the following notations:



Λ//c = 
3 q
A

I

2πηm0c2
e

γ0β0
2 dp

p// FWHH

2

J = xdx

x+
ω//pc

pω0τL-1

+1

(115)

In the stability diagram, the curves corresponding to a constant value of:

U = Im(
ω//pc

pω0τL
) = Im(

2ω//pc

pω0η dp
p// FWHH

(116)

can be drawn.

Fig. 27

The stability limit corresponds to the curve U = O. It is divided into two parts, the heart
shape curve around the origin and the positive part of the vertical axis.

The actual shape of the stability limit depends on the distribution edges.  Sharp edge
distributions are less stable.  A small rounding of the edges makes the contour more circular in
the direction of the vertical axis.  Distributions with long tails like a gaussian for instance are
stable along the lower part of the vertical axis.  When one neglects this distribution edge effect,
the stability limit can be approximated by a circle.



Λ//c
Z//(p)

π  ≤ 0.5   or 

Z//(p)
π  ≤  

m0c2
e

 
γ0β0

2 η
q
A

 I
 dp
p// FWHH

2 (117)

The minimum momentum spread required for stability is:

 dp
p// FWHH

2
 ≥   

q
A

 I

m0c2
e

 ηγ0β0
2

 Z//(p)
p

(118)

1 2 . LANDAU DAMPING BY MOMENTUM SPREAD

We can summarize the results of the last two sections as follows:

1) A monochromatic beam is unstable and the coherent frequency shift is given by:

ω//pc
pω0

2
 =  

- η q
A

 I

2πm0c2
e

γ0β0
2

 j Z//(p)
p

 (119)

2) Stability requires a minimum spread in incoherent frequencies

dω
ω0 FWHH

2
= η2 dp

p// FWHH

2
 ≥   

q
A

 I

m0c2
e

 ηγ0β0
2

 Z//(p)
p

(120)

It is clear that around the harmonic p of the revolution frequency the incoherent frequency
band is pdω wide.  The two formulae can be combined and the result can be expressed as
follows:  Stability requires the monochromatic beam coherent frequency shift to remain
sufficiently inside the incoherent frequency band.

ω//pc
pω0

 ≤   2
π   dω

ω0 HWHH
 = 2

π   pdω
pω0 HWHH

(121)

HWHH stands for Half Width at Half Height



Fig. 28  Coherent frequency shift for a monochromatic beam

The stabilizing effect linked with the incoherent frequency spread is a general mechanism
called Landau-Damping.  The way it physically acts against the forces which drive the
instability is hidden in Vlasov's equation which was used to establish the Dispersion Relation.

Let us try at least to qualitatively explain this Landau-Damping.  We will proceed in two
steps:
– We first ignore the self force and assume at t = 0 a prebunching of the beam with p wave

lengths around the circumference.
i) With a monochromatic beam, all particles have the same revolution frequency;  the

initial prebunching remains forever and a spectrum analyser indicates an infinitely
narrow line at pω0

ii) Now, we introduce a spread in momentum and therefore in revolution frequency in
the beam.  The initial prebunching will disappear.

After a time interval

∆t = 2π
pdωFWHH

(122)

two particles which have a difference in revolution frequency equal to dωFWHH and which
had started from the same position at t = 0 are now separated by one wavelength.  Therefore,
after ∆t the prebunching has disappeared.  ∆t will be called the coherence time.  Obviously, the
larger the spread the shorter the coherence time.

After this introduction, we have all the elements to understand Landau-Damping.  From
now on, we reintroduce the self field.  In the case of a monochromatic beam, the growth time of
the instability is:

τp  = -1
Im(ω//pc)

 (123)

There are two extreme cases.

In the first case, the incoherent frequency band is so narrow that the coherence time is
much longer than the growth time of the monochromatic beam.  Then, the beam behaves
essentially like a monochromatic beam and blows up.

At the other extreme, the incoherent frequency band is so wide that the coherence time is
much shorter than the monochromatic beam growth time.  Then, the edges of the distribution



are rapidly out of phase with respect to the driving force.  They do not contribute to the
coherent signal anymore nor as a consequence to the amplitude of the force.  The beam remains
stable.

The regime where the beam is just at the stability limit stands between these two extreme
cases.  One can advance that the threshold is reached when the coherence time is of the order of
the growth time.

- Im(ω//pc) ≈ pdωFWHH (124)

For comparison, in our summary of the results we noted:

ω//pc ≤   2
p

  pdωFWHH (125)

The order of magnitude is correct.

1 3 . LIMITS OF THE THEORY

Several generations of accelerator physicists have worked on this problem of coherent
instabilities.  The synthesis of their work presented in the previous sections is a powerful and
well established theory.  This should not hide two major difficulties.

The first difficulty is that before applying this theory, one has to know the impedance of
the ring perfectly.  Unfortunately this is very difficult and even though a continuous effort is
being made on the subject, the design of vacuum chambers is still largely empirical.
Development of tools allowing for a more reliable approach to the design of vacuum chambers
is progressing.  A certain number of numerical codes solving Maxwell's equations in a structure
excited by the passage of a mini bunch exist.  They have been successfully tested on several
types of structures.  An example is shown for the Petra multicell RF cavities traversed by a
short gaussian bunch.

Fig. 29  Fields excited by a Gaussian bunch (σ = 2 cm) traversing a PETRA cavity

The second difficulty is that the theory has its own limitations.  It is a perturbation theory
which uses Vlasov's equation to first order.  Therefore, it applies to conditions where the



instability remains very weak.  Furthermore, the result drawn from this theory is a single
complex number, namely the frequency shift.  This is certainly an essential piece of
information.  However, in the case of unstable conditions, one cannot have access to the time
evolution of the beam deterioration.  To answer such a question, the only possibility is again to
use numerical simulation codes working in the time domain.

An example of simulation is given in the next figure.  It shows the development of a
microwave instability.  The beam-environment coupling assumes a broad band impedance
centered around the pipe cut-off frequency.  The simulation starts with an initial 10%
longitudinal modulation of the particle density at the pipe cut-off frequency corresponding to
harmonic 10 in the present case.

Evolution of Momentum Distribution Evolution of Fourier Spectra

Fig 30  Development of a longitudinal microwave instability
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COASTING BEAM TRANSVERSE COHERENT INSTABILITIES

J.L. Laclare
ESRF, Grenoble, France

Abstract
Nowadays, the performance of most machines is limited by Coherent
Instabilities.  It is one of the most important collective effects which
prevents the current from being increased above a certain threshold
without the beam quality being spoiled.  For the transverse instabilities
we will follow a very similar approach to the longitudinal case in the
previous chapter.  Thus, a large number of basic explanations and
comments again apply and will not be repeated.  Wherever relevant we
will insist on the differences.  With regard to the scope of the lecture,
the physical mechanisms which will be considered throughout can be
applied to any type of machine :

- linear accelerators,
- circular accelerators,
- storage rings

and beam:
- bunched beams
- continuous beams.

1 . INTRODUCTION

In the longitudinal plane, the coherent motion is driven by a longitudinal modulation of
particle density which creates a longitudinal electric field along the beam axis.  When reverting
back to the example of the round pipe, this self field is associated with a return or image current
Iw flowing downstream and uniformly distributed on the inner side of the chamber wall.

In the transverse case, we will arbitrarily choose the X plane, the perturbation consists of
a slight initial transverse displacement of the beam.  Due to the focusing of the external guide
field, the beam then oscillates from side to side when progressing along the machine.

The first remark is that the total wall current Iw  has the same magnitude as before but is
no longer uniformly distributed in the wall.  When comparing the new situation with the

unperturbed one, the beam sees a differential current ± δIw which flows in the opposite
direction on either side of the pipe.

x

z

δIw
Fig. 1

This requires a longitudinal electric field, which varies linearly in strength across the



aperture, and also a vertical and constant dipole magnetic field.  This magnetic field acts back on
the beam.

Longitudinal
electric field

Dipole
magnetic field

- δIw

δIw

Beam current

Fig. 2

This magnetic field can either:

– increase the initial displacement thus leading to an instability, or,

– reduce the initial displacement and therefore stabilize the beam.

2 . SINGLE-PARTICLE TRANSVERSE MOTION

The transverse unperturbed motion is described in the following form:

x + ϕ 2 x = 0 (1)

where ϕ = ωβ = Qxω  is the betatron advance per second, Qx the particle horizontal tune,
and ω the particle revolution frequency.

The transverse position will be expressed as:

x(t) = xcosϕ(t) =xcos[ ϕ dt +ϕ0
0

t
]

(2)

The couple ϕ , x   instead of x , x   will be used for the description of the transverse



motion in canonical variables.

ϕ = dϕ
dt

 and x = x2+(x
ϕ

)
2

1
2

(3)

are two invariants of the unperturbed motion.

Both parameters Qx and ω  depend on momentum p// and transverse betatron amplitudes

x  and z .
In the following we will restrict ourselves to:

 
ω = ω (p//)

and
Qx = Qx(p//,x) (4)

Concerning the dependence on momentum, we introduce the following complementary
definitions.

ξ = 
p//
Qx

 dQx
dp//

 and ωξ  = Qx0ω0
ξ
η

(5)

where ξ is called the machine chromaticity.

We develop ϕ  with respect to the reference

p//0 , Qx0 .

We assume an unperturbed longitudinal motion:

τ = τ0 + τt with constant τ
and obtain

ϕ = Qxω = Qx0ω0(1-τ) + ωξτ + ϕ(x)
(6)

ϕ = ϕ
0

t
dt + ϕ0 = Qx0ω0(t-τ) + ωξτ + ϕ(x)t + ϕ0

(7)

Later on, we will perturb the motion by applying the transverse beam self field in the
right-hand side of the equation of motion.

x +ϕ2x = e
m0γ0

 [E+v x B]⊥ (t,θ=ω0(t-τ))
(8)

In the ϕ  , x  plane, the quantity of interest will be



x = d
dt

 x2+(x
ϕ

)
2

1
2 = - sin ϕ

ϕ
 (x + ϕ2x)

(9)

Therefore, the perturbed motion will be studied by means of:

x = - sin ϕ
ϕ

 e
m0γ0

 [E+v x B]⊥ (t,θ=ω0(t-τ))
(10)

3 . TRANSVERSE SIGNAL OF A SINGLE PARTICLE

The transverse PU electrodes deliver a signal proportional to the local beam centre-of-
mass position and to the current.

S⊥  = S// xCM (11)

Let us analyse the transverse signal of a single particle.

S// = s//(t,θ) (12)

The longitudinal signal consists of a series of periodic Dirac impulses with amplitude e and
period

T = 2π
ω (13)

The transverse amplitude is simply:
x = x cos ϕ(t) (14)

therefore,

s⊥ (t,θ) = ex 
k=+∞

∑
k=-∞

 δ(t-τ- θ+2kπ
ω ) cos ϕ(t)

(15)

The signal display is sketched below.



s⊥ (t,θ)

t

T =
2π
ω

Qx-nQx
= δQx = 0.1 or 0.9

Fig. 3

The wave number is written as:

Qx = nQx + δQx with nQx the integer part

and 0<δQx<1 the non integer part (16)

Beam sampling at the position of the PU turn after turn makes it impossible to identify

(modulo 1) the integer part 
nQx of the wave number.  As a consequence, the same signal is

obtained for
δQx and 1 - δQx

After development of the series of Dirac's, the signal expression becomes:

s⊥ (t,θ) = 
eω0x

4π

p=+∞
∑

p=-∞
 exp -j(pθ+ϕ0)[exp jωp

+t + exp jωp
- t]

(17)

with two series of frequencies:

 

ωp
+ = (p+Qx)ω

ωp
-  = (p-Qx)ω

Thus, in the spectrum, around every harmonic of the revolution frequency, there are two
betatron (upper and lower) sidebands.

It is interesting to look for the incoherent frequency spread induced by a momentum
spread and a betatron amplitude spread.

δωp
+ = [(p+Qx0)ω0-ωξ]τ + ϕ(x)

δωp
-  = [(p-Qx0)ω0+ωξ]τ - ϕ(x)

(18)

The spread arising from momentum via the chromaticity varies with p.  On the contrary, the
spread due to amplitude spread is constant whatever the value p of the harmonic of the



revolution frequency.

As an example, for the lower sidebands, the incoherent spread due to momentum
vanishes for

p = Qx0 - 
ωξ
ω0 (19)

ω

(p-Qx0)ω0 ≈ − ωξ

Incoherent power spectrum
ωp

-
incoherent bands

Fig. 4

As seen on the above figure, for this value of p the incoherent band is very narrow.  The

same picture would apply for the upper sidebands around 
(p+Qx0)ω0 ≈ ωξ  .

A priori, these narrow betatron frequency bands represent a potential danger since there
will be minimum Landau damping by momentum spread at this frequency.  One will have to
avoid chromaticity tunes which associate these narrow sidebands with large values of the
transverse impedance.

In the following we will arbitrarily privilege the lower sidebands whenever it is necessary
to solve the dispersion relation, or when we support our comments by figures.  However,
lower and upper sidebands are intimately linked and indissociable.  We will further develop this
fact in the following paragraphs.

4 . DISTRIBUTION FUNCTION

To study transverse instabilities, we consider the following distribution:

Ψ(ϕ,x,τ,τ,t) = Ψ0 + ∆Ψp
g0(τ)f0(x) + gp(τ)fp(ϕ,x)exp j(pω0τ+ω⊥ pct)

(20)



The first term  Ψ0 = g0(τ)f0(x) is the stationary part normalized as follows:

g0(τ)dτ
τ

 = 
ω0
2π

 and f0(x)xdx
x

 = 1
2π

(21)

The second part ∆ψp is the perturbation.  Due to the τ dependence, it consists of a sinusoidal

(exp j(pω0τ)) transverse displacement of the beam with p wavelengths around the
circumference.

2πR

xCM

Initial perturbation with p = 4
Fig. 5

It is also assumed that this perturbation will move at a coherent frequency 
ω⊥ pc apart from

pω0.  The frequency offset 
ω⊥ pc is a complex number.  For a lower sideband, we will write:

ω⊥ pc = -Qx0ω0 - ∆Qxpcω0 (22)

It is the sum of two quantities:

– the central incoherent Qx0ω0 betatron frequency and,

– the coherent ∆Qxpcω0 transverse betatron frequency shift.
The stability is evaluated from the expression

Im(ω⊥ pc) =  -ω0 Im(∆Qxpc)
(23)

5 . TOTAL BEAM SIGNAL

In order to measure the total signal induced by the beam, one has to integrate the single
particle signal over the distribution.



S⊥ (t,θ) = Ψ(ϕ,x,τ,τ,t)s⊥ (t,θ)dv
v (24)

Let Σ represent the following integral:

Σ = gp(τ)fp(ϕ,x)x2cosϕ dϕdxdτ
ϕ ,x,τ (25)

Then, the transverse signal can be written:

S⊥ (t,θ) = 2πΙΣ
ω0

 exp j[(pω0 + ω⊥ pc)t-pθ]
(26)

in the time domain and,

S⊥ (Ω,θ) = 2πΙΣ
ω0

 exp (-jpθ) δ(Ω−(pω0+ω⊥ pc))
(27)

in the frequency domain.  The chosen form of our perturbation leads to a single frequency line
which will be used to probe the environment.

Spectrum analyser
signal

ω

Coherent line
Incoherent band

around
(p-Qx0)ω0

(p-Qx0)ω0
(p-Qx0-∆Qxpc)ω0

Fig. 6

6 . DEFINITION OF TRANSVERSE COUPLING IMPEDANCE

Now we introduce the transverse coupling impedance.  It relates transverse
electromagnetic field and transverse signal at a given frequency as follows:



[E+v x B]⊥ (t,θ) = 
-jβ0
2πR

 Ζ⊥ S⊥ (t,θ)
(28)

with the units:  the signal S⊥  in Am and transverse impedance Z⊥  in Ωm-1 .

The generalization to any signal is straightforward, it combines spectrum amplitude and
impedance over the entire frequency range:

[E+v x B]⊥ (t,θ) =

-jβ0
2πR

 Z⊥ (ω)S⊥ (ω,θ) exp(jωt) dω
ω=-∞

ω=+∞

(29)

In general, one cannot analytically express Z⊥ (ω).  The solution of Maxwell's equations
is never simple.  To support the above definition, we just write down the results that one would
tediously obtain for a continuous pipe of radius b through which a circular beam of constant
radius a would travel.

For frequencies below the pipe cut-off frequency:

ω « ωpipe cut-off = c
b (30)

one could write:

[E+v x B]⊥ (t,θ) = 
-jβ0
2πR

 -jRZ0

β0
2γ0

2
 ( 1

a2
 - 1

b2
) S⊥ (t,θ)

(31)

provided the pipe wall is perfectly conducting σ = ∞ .

The quantity between brackets is the transverse space-charge impedance:

Z⊥ SC =  -jRZ0

β0
2γ0

2
 ( 1

a2
 - 1

b2
)

(32)

is a pure imaginary quantity and constant in the low frequency domain.

For a non-perfectly-conducting wall, σ ≠ ∞, one has to add the resistive-wall
contribution.  One would find that the transverse and longitudinal resistive-wall impedances are
linked by:

Z⊥ RW =  2c

b2
 Z//RW

ω (33)



This handy formula is only valid for the resistive wall contribution of a circular pipe.  It
shows that the curves (impedance diagram)

Z⊥ RW and Z//RW
ω

will be very similar.

For completeness, let us recall that

Z//RW =  (1+j) 
Z0β0

2b
 δ0 ω

ω0

1
2

(34)

in which 
δ0 = 2

µσω0 is the skin depth at frequency ω0.

7 . TRANSVERSE COUPLING IMPEDANCE Z//(w) OF AN ACCELERATOR
RING

In qualitative terms, observations made on several machines agree with the following
description for the transverse coupling impedance of an accelerator ring.  There are four major
components.  The space-charge impedance was already introduced in a previous section under
crude assumptions.  Below the pipe cut-off frequency its expression is:

Z⊥ SC =  -jRZ0

β0
2γ0

2
 ( 1

a2
 - 1

b2
)

(35)

ω
Space charge

negative inductance

Ζ⊥

Fig. 7

It is a negative inductance large for slow particles in a pipe of small cross section.

The resistive-wall impedance was also previously mentioned.  It will be shown later on
that this component of the impedance is the main source of transverse instabilities.  Provided the
skin depth δ

δ2
 = 2

µσω (36)



at the considered frequency and ω is thinner than the wall thickness δw, then the resistive wall
impedance can be expressed as:

Z⊥ RW =  (1+j) RZ0

b3
 δ0 

ω0
ω

1
2

(37)

At lower frequencies,

Z⊥ RW =  2cR

b3σδwω (38)

ω

Resistive wall
impedance

δ < δw thick wall

δ > δw thin wallZ⊥

Fig. 8

Due to the b3 dependence, machines with vacuum chambers of small cross section
present a large impedance to the beam.

The third contribution to the machine impedance corresponds to high-Q resonators.  As
was the case for the longitudinal impedance, the main sources of such resonant objects are RF
cavities.

ω

Z⊥

Im(Z⊥ )
Re(Z⊥ )

Fig. 9



With regard to the broad-band transverse impedance, up till now we have assumed a
perfectly smooth circular pipe with neither cross section changes, bellows, nor flanges, etc.
With a view to seeing the difference between an actual chamber and the circular pipe by means
of a simple impedance model, it is common practice to introduce a transverse broad-band
resonator.

A priori, there is no physical reason to believe that the parameters of this transverse
broad.band resonator are linked to the parameters of the longitudinal broad-band resonator.
However, measurements made on existing machines show that in the low frequency range the
relation

Z⊥ BB = 2c

b2
 Z//BB

ω
 = 2R

β0b2
 Z//BB

p
(39)

strictly valid for the resistive wake of a circular pipe, can lead to correct orders of magnitudes.

If one remembers that a typical range of longitudinal broad-band impedance value is:

0.2 Ω ≤ Z//BB
p

 ≤ 50 Ω
(40)

then it can be concluded that the transverse broad-band impedance is in the MΩ/m range.

The scaling factor puts large machines with small vacuum chamber cross-section at a

disadvantage.  However, it is also easier to achieve the lowest values of 

Z//BB
p  in large

machines.

The use of a transverse broad-band impedance model to roughly simulate the effect of
abrupt variations of the vacuum chamber, bellows, flanges, etc. leads to the introduction of:

– a positive inductance at low frequencies largely counterbalanced by the space-charge
negative inductance for low energy machines,

– a resistive contribution around the pipe cut-off frequency,

– a capacitance at higher frequencies.



ω
ωrBB

Ζ⊥ BB Re(Ζ⊥ BB)

Im(Ζ⊥ BB)

Fig. 10

At this stage it is necessary to point out an essential difference between transverse and
longitudinal cases.  The longitudinal motion is slow when compared to the revolution period.  It
takes many turns to perform a complete synchrotron oscillation and one can, in most cases,
ignore the fact that some of the sources of impedance (RF cavities for instance) are localized.

In the transverse case, this approximation is not valid.  A particle performs Qx0
oscillations per turn and the modulation of the amplitude function βx  cannot be ignored.  The
fact that particles are more (less) sensitive to impedance sources localised in high (low) βx  has
to be taken into account.  We can continue to assume a smooth machine with uniformly
distributed focusing and impedance provided we introduce a kind of effective impedance to
which localized objects contribute as follows:

Z⊥ effective = Qx0
R

 βxZ⊥ local
(41)

As an example, the narrow transverse modes of RF cavities would contribute less if

cavities were installed in low βx straight sections.

8 . DISPERSION RELATION FOR COHERENT MOTION

In this paragraph, we will gather all the results of previous paragraphs and then apply
Vlasov's equation to find out consistent solutions for coherent motion.  We will obtain a general
dispersion relation.  The solution of this equation will give the coherent frequency at which the
perturbation oscillates.

ω⊥ pc = -Qxpcω0 (42)

The sign of the imaginary part will tell us whether coherent motion is stable or instable.
Hereunder,the successive steps leading to the dispersion relation are summarized.



Distribution
  

Ψ(ϕ,x,τ,τ,t) = Ψ0 + ∆Ψp
g0(τ)f0(x) + gp(τ)fp(ϕ,x)exp j(pω0τ+ω⊥ pct)

(43)

Notation

  

Σ = gp(τ)fp(ϕ,x)x2cosϕ dϕdxdτ
ϕ ,x,τ

(44)

Transverse signal
 

S⊥ (t,θ) = 2πIΣ
ω0

 exp j[(pω0 + ω⊥ pc)t-pθ]
(45)

Electromagnetic field
 
[E+v x B]⊥ S⊥ (t,θ) = 

-jβ0
2πR

 Z⊥ (p)S⊥ (t,θ)
(46)

Differential equation for single-particle motion

x = - 
sin ϕ

ϕ
 e
m0γ0

 [E+v x B]⊥ (t,θ=ω0(t-τ))
(47)

Vlasov's equation

dΨ
dt

 = 0 = ∂Ψ
∂t

 + ∂Ψ
∂ϕ

 ϕ + ∂Ψ
∂x

 x + ∂Ψ
∂τ

 τ + ∂Ψ
∂τ

 τ

∂Ψ
∂t

 = jω⊥ pc gp(τ)fp(ϕ,x)exp j(*)

∂Ψ
∂ϕ

ϕ = ϕ gp(τ) 
∂fp(ϕ,x)

∂ϕ
 exp j(*)

∂Ψ
∂x

x =  g0(τ)∂f0(x)

∂x
 
sinϕ

ϕ
 
IΣjZ ⊥ (p)

m0γ0c
e

 exp j(*)

+ neglected second order term (48)

∂Ψ
∂t

τ = jpω0τ gp(τ)fp(ϕ,x)exp j(*)
(49)

τ = 0  no longitudinal electromagnetic field

Intermediate equation



 j(pω0τ+ω⊥ pc) gpfp +ϕgp
∂fp
∂ϕ

= - g0
∂f0
∂x

 
sinϕ

ϕ
 
IΣjZ ⊥ (p)

m0γ0c
e

 

(50)

In the perturbation gpfp we separate the ϕ dependance on one hand and the x and τ
dependences on the other.  In view of this, we introduce an intermediate function:   h(x,τ) and
write:

gp(τ)fp(ϕ,x) = h(x,τ) cosϕ -j
sinϕ

ϕ
 (pω0τ+ω⊥ pc)

(51)

Vlasov's equation reduces to:

h(x,τ) = -   IcΣjZ⊥ (p)

m0γ0c2
e

 
g0

∂f0
∂x

(pω0τ+ω⊥ pc)2 - ϕ2
(52)

However, coming back to the original definition of Σ, one can also write:

Σ = π h(x,τ) x2dxdτ
x,τ (53)

In the previous expression of Vlasov's equation, after multiplication of both sides by πx2

and integration with respect to x and τ one finally gets the dispersion relation:

  1 = 
-π(q

A
)Ic

(
m0c2

e
)γ0

 jZ⊥ (p)
g0(τ)∂f0(x)

∂x
 x2

(pω0τ+ω⊥ pc)2 - ϕ2

τ,x

 dτdx

(54)

In the next three paragraphs examples of solutions of the dispersion relation are given.

9 . BEAM WITHOUT TUNE SPREAD

First, we assume a very cool beam in the longitudinal transverse plane:  no momentum
spread.  In addition the wave number does not depend on the transverse betatron amplitude.  In
mathematical terms:



g0(τ) = 
ω0
2π

 δ(τ)
(55)

and

ϕ = Qx0ω0(1-τ) + ωξτ + ϕ(x) with ϕ(x) = 0
(56)

We use the following relation:

∂f0(x)
∂xx

x2dx = -2 f0(x) 

x
xdx = - 1

π
(57)

and obtain:

  (ω⊥ pc
2

 - Qx0
2 ω0

2) = ω0
2(Qxpc

2  - Qx0
2 )

= 
( q
A

)Ic

2π(
m0c2

e
)γ0

 jZ⊥ (p)

(58)

Qxpc
2

 is the coherent wave number.

The equation always has two roots (lower and upper sidebands):

ω⊥ pc
±

 = Q⊥ pc
±

ω0
(59)

For small perturbations they are given by:

Re(ω⊥ pc
±

) = ± Qx0ω0 - 
( q
A

)Ic Im Z⊥ ((p±Qx0)ω0

4πQx0(
m0c2

e
)γ0

 

(60)

Im(ω⊥ pc
±

) = ± 
( q
A

)Ic 

4πQx0(
m0c2

e
)γ0

 Re Z⊥ ((p±Qx0)ω0

(61)

If the impedance has a resistive part, the coherent motion is always unstable.

The two series of coherent frequencies corresponding to lower and upper sidebands are
solutions of the coherent motion:

ω+ = pω0 + ω⊥ pc
+

   and  ω- = pω0 + ω⊥ pc
-

(62)

Due to the properties of the impedance, for opposite values of the frequency ω :



Re(Z⊥ (ω)) = - Re(Z⊥ (-ω))
Im(Z⊥ (ω)) = Im(Z⊥ (-ω)) (63)

both series lead to identical results. For instance one can look for conditions for instability:

Im(ω⊥ pc) < 0
(64)

Unstable motion for the upper sidebands when

ω+ ≈  (p + Qx0)ω0   is negative

Unstable motion for the lower sidebands when

ω- ≈  (p - Qx0)ω0   is positive

This can be sketched in the impedance diagram:

ω

Re(Z⊥ )
Curve corresponding

to constant Im(ω⊥ pc

−
)

Curve corresponding

to constant Im(ω⊥ pc

+
)

(p-Qxpc)ω0 wave unstable
when combined with a positive

resistance (positive part of ωaxis)

(p+Qxpc)ω0 wave unstable
when combined with a negative

resistance (negative part of ωaxis)

Fig. 11
In this figure, it is obvious  that the transverse instability of a coasting beam is essentially

a low frequency mechanism.  This is because the beam is very sensitive to the low frequency
region where the skin resistance tends to be very large, in particular much larger than the broad-
band resistance.

In the stability diagram with

Re(Z⊥ (w)) and Im(Z⊥ (-ω))

coordinates, the curves corresponding to constant growth rate are vertical lines.



Λ⊥ pcIm(Ζ⊥ )
. 5

−. 5

1. 0

0 Λ⊥ pcR

Λ⊥ =
(q
A

)Ic

Stability diagram
no tune spread

Fig. 12

The beam is always unstable except along the vertical axis.  If the impedance were a
purely imaginary number (inductance for instance), then the frequency shift would be real and
coherent motion would be stable.  In this respect, for the transverse plane we do not find the
equivalent of the negative mass instability for the longitudinal plane.

When the beam is stable, a tune measurement device (RF knock out for instance) which

necessarily detects the coherent motion only, indicates a certain value Qxpc of the coherent

wave number.  A priori, our results indicate that Qxpc is a linear function of beam intensity

and one could imagine that the experimental curve Qxpc versus current would allow the

imaginary part of Z⊥ (p) to be measured.

Unfortunately this is not the case. As a matter of fact, the space-charge contribution is not
accessible and one will measure

Im(Z⊥ -Z ⊥ SC)

This specificity of the space-charge component deserves some explanation.  Let us
assume a perfectly centered intense beam at low energy.  The actual wave number of particles
oscillating around the beam center, called incoherent wave number, is the result of two
quadrupolar fields:

– the focusing of the external guide field

– the space-charge defocusing effect.

This incoherent wave number is the quantity noted Qx0 in this report.  In other words:



Qx0 = Qx external guide field + ∆Qx space charge (65)
Obviously the tune is depressed by space-charge

∆Qx space charge < 0
 (66)

However, it must be pointed out that the space-charge field is null at the beam center.
Now we rigidly displace the beam center and look for the coherent wave number.  The beam
center motion is influenced by:

– the focusing from the external guide field,

– the coherent deflecting magnetic field due to the broad-band inductance,

– the coherent deflecting field due to space-charge.

However, the space-charge field is still null at beam center.  The coherent wave number
logically compensates the incoherent tune depression due to space-charge.

As a conclusion, with a tune measurement device one cannot have access to Z⊥ SC
simply because the beam center of mass is not influenced by this field.

A practical remark can be made concerning the choice of the wave number.  We have seen
that the resistive wall impedance is likely to be the main source of instability. It behaves like

ω-0.5

in the thick wall assumption.  It is therefore necessary to have the lowest coherent line at a
frequency as high as possible

ω ≈ (p - Qx0)ω0

In view of this, with a tune 0.1 above an integer, the first coherent frequency line is at

ω ≈ 0.9ω0



Re(Z⊥ RW)

ω

For Qx0 just below an integer

the lowest (p-Qx0)ω0 line
is associated with a large Re(Z⊥ RW)

For Qx0 just above an integer

the lowest (p-Qx0)ω0 line
is associated with a small Re(Z⊥ RW)

Fig. 13
On the contrary, with a tune of 0.9 (0.1 below the closest integer), this first coherent

frequency line is at ω ≈ 0.1ω0.  This factor 9 in frequency leads to a factor 3 in the value of
corresponding resistive-wall impedance and consequently instability growth rate.  Therefore,
preference must be given to tunes just above an integer.  As shown in this paragraph a beam
with no spread in tune is always unstable.  A spread in tune can provide the necessary Landau
damping.

There are two principal possibilities for providing a tune spread:

- chromaticity via momentum spread, or

- transverse non linearities (tune variation with amplitude).

These two cases are studied independently in the two next paragraphs.

1 0 . LANDAU DAMPING BY MOMENTUM SPREAD

We will assume a parabolic stationary distribution in momentum:

g0(τ) = 
3ω0
8πτL

 1- τ
2

τL
2

(67)
and solve the dispersion relation.

The denominator of the quantity in the integral can be written as the product of two terms

(ω⊥ pc-Qx0ω0+((p+Qx0)ω0-wξ)τ)

(ω⊥ pc+Qx0ω0+((p-Qx0)ω0+wξ)τ)
(68)



They are associated with the upper (for the first one) and lower (for the second one) sidebands.
We know from the previous paragraph that both waves lead to the same result.  We will
therefore concentrate on the slow wave (second term above) and look for the solution

ω⊥ pc ≈ -Qx0ω0.  In this case, the first term above can be approximated by -2Qx0ω0.

The then simplified dispersion relation can be written as follows:

1 = 
-( q

A
)Ic

2Qx0ω0(
m0c2

e
)γ0

 jZ⊥ (p)
g0(τ) dτ

τ+ 
ω⊥ pc+Qx0ω0

(p-Qx0)ω0+ωξτ (69)

To simplify the writing we use the following definitions:

∆ωp = (p-Qx0)ω0+ωξ  η(δp
p

)
L (70)

This quantity represents half the full width band (measured at the foot) of incoherent spread of

frequency around the considered lower sideband line (p-Qx0)ω0.

Λ⊥ pc = 
3( q

A
)Ic

16πQx0(
m0c2

e
)γ0∆ωp

(71)

x1 = - 
ω⊥ pc+Qx0ω0

∆ωp
 = 

(Qxpc-Qx0)ω0
∆ωp

 = 
∆Qxpcω0

∆ωp (72)

x1 is the coherent betatron frequency shift normalized to the incoherent spread defined above.

We also use:



J⊥  = 1-x2
x-x1 

 dx
-1

+1

(73)

With these notations the dispersion relation can be finally written:
1

J⊥
 = Λ⊥ pc jZ⊥ (p)

(74)
The stability diagram with:

Λ⊥ pc Re(Z⊥ (p)) and Λ⊥ pc Im(Z⊥ (p))

along the axes is shown in Fig. 14.
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The imaginary part of the coherent frequency is positive and the movement is damped for

small values of the transverse impedance.  When compared to the previous example of a
monochromatic beam, provided the impedance is reasonably small, the incoherent frequency
spread arising from momentum can stabilize the coherent motion.  On the contrary, for large
Z⊥ (p) Landau damping is not strong enough and coherent motion is instable.  The curve
Im(x1) = 0 defines the stability limit. Its contour can be approximated by a circle:

Λ⊥ pcZ⊥ (p) < 3 2
4π

 F
(75)

with F ≈ 1 for the assumed parabolic distribution.



Although the detailed form of the stability limit curve depends on the exact momentum
distribution function, very similar results would be obtained for other realistic distribution

functions with the same 
(δp

p
)
FWHH.   The criterion can be rewritten in terms of the incoherent

spread. We will use the FWHH as a reference:

∆ωp FWHH = 2∆ωp (76)
Then stability requires:

∆ωp FWHH > 
( q
A

)IcZ⊥ (p)

4Qx0(
m0c2

e
)γ0 (77)

It is interesting to note that the quantity on the right hand side of the above relation can be
very simply linked with the coherent betatron frequency shift one would obtain with a
monochromatic beam (cf previous paragraph).

∆ωp FWHH > π ω0 Qxpc-Qx0monochromatic
beam (78)

∆ωp FWHH

stable band ±
∆ωp FWHH

π

Spectrum of
Incoherent frequencies

The coherent motion
is Landau damped
if the coherent shift

∆ω⊥ pc
remains

within the stable band

Fig. 15

For standard uncorrected optics, ξ ≈ -1 and 
ωξ = 

Qx0ω0
η  are negative above



transition.  This corresponds to the worst situation because

∆ωp FWHH = (p-Qx0)ω0+ωξ  η(δp
p

)
FWHH

vanishes around 
p ≈ Qx0(1 - 

ξ
η

)
.

To improve the situation, one has to change the sign of the chromaticity by introducing
sextupoles in the dispersive sections of the lattice.  Correction of chromaticity in both planes is
not always simple in particular in large machines.  The non-linearities generated by the
sextupoles can severely limit the single particle dynamic acceptance of the machine.  The
optimization of the sextupolar correction scheme is often very challenging. It can largely
influence the choice of the basic linear optics.

It must be pointed out that transverse stability of coherent motion is not necessarily the

only reason to correct chromaticity.  When the uncorrected ξ is large, the incoherent tune
spread due to momentum is also large.  In a tune diagram, space between dangerous betatron
resonances is always limited.

For machines working below transition, the natural chromaticity is in general positive and
has therefore the right sign to always provide some Landau damping.  In the impedance

diagram, one can draw the line which represents the incoherent frequency band 
∆ωp FWHH

as a function of ω. .

It can be seen that the low frequency region is the most dangerous and for two reasons.
The resistive wall impedance is large and the frequency band is narrow.

ω

Re(Z⊥ )

−ωξ

∆ωp FWHH

RW

BB

Fig. 16

This is the reason why transverse instability is currently a low-frequency mechanism.  If
Landau damping is insufficient, coherent motion can also be stabilized by a feedback system.
Fortunately, the conception of such a system is easier at low frequency.
1 . LANDAU DAMPING BY AMPLITUDE DEPENDENT TUNE



Now we separately consider the influence of a tune spread arising from a betatron
amplitude spread in the beam.  In order to write down the corresponding dispersion relation, we
assume a monochromatic beam:

g0(τ) = 
ω0
2π

 δ(τ)
(80)

and for instance a parabolic distribution of betatron amplitudes:

f0(x) = 2

πxL
2

 1 - ( x
xL

)
2

 for 0 < x < xL

and
f0(x) = 0 for x > xL (81)

Under these assumptions, the dispersion relation takes the following form:

1 = 
-( q

A
)Ic

2πQx0ω0(
m0c2

e
)γ0∆QL

 jZ⊥ (p) x dx

x - 
∆Qxpc

∆QL0

1

(82)

The following definition:

∆QL = ∂Qx

∂x2
 xL

2

(83)

is used to measure the total incoherent tune spread due to amplitude in the beam.  We then note:

x1 = 
∆Qxpc

∆QL (84)

This complex number measures the coherent tune shift in total incoherent tune spread units.
The integral can then be written:

J⊥  = x dx
x - x10

1

(85)
We also note

Λ⊥ pc = 
-( q

A
)Ic

2πQx0ω0(
m0c2

e
)γ0∆QL

 

(86)
and are left with



1
J⊥

 = Λ⊥ pcjZ⊥ (p)
(87)

As was already done in the previous examples, the solutions can be worked out by

drawing the curves corresponding to a given value of Im(x1) in the stability diagram.

Λ⊥ pcRe(Z⊥ (p)) = Im( 1
J⊥

)

Λ⊥ pcIm(Z⊥ (p)) = -Re( 1
J⊥

)
(88)

The results are shown in Fig. 17.
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As already mentioned, the details of the stability contour depend on the tails of the

distribution.  The transverse distribution enters the integral via its derivative 

∂f0
∂x  which for the

specific suggested example presents a discontinuity at the edges.  This explains the heart shape
of the stability contour which would be much less pronounced, and even not exist, for a
smoother distribution.  In view of this, we suggest using

Λ⊥ pcZ⊥ (p) < 0.5 (89)
as an approximation of the stability criterion.  The interpretation is very similar to that



given in the previous paragraph for a momentum spread.  When the incoherent tune spread due
to amplitude spread is large enough,

∆QLω0 = ∆ωp L > 
( q
A

)IcZ⊥ (p)

πQx0(
m0c2

e
)γ0 (90)

coherent motion is Landau damped.

If one compares the above result with that previously obtained for a momentum spread,

 ∆ ωp FWHH > 
( q
A

)IcZ⊥ (p)

4Qx0(
m0c2

e
)γ0 (91)

with ∆ωp FWHH = 
p-Qx0 ω0+ ωξ  η δp

p
 FWHH

(92)

apart from the distinction between the definitions used for FWHH and total (L), the main
difference is that the width of the incoherent band due to amplitude spread is now independent
of p.  Another way to summarize the results is to express the necessary incoherent spread in
terms of the coherent betatron frequency shift one would obtain with a monochromatic beam.

∆ωp L > 4 ω0 Qxpc-Qx0monochromatic
beam (93)
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SYNCHROTRON RADIATION

R.P. Walker
Sincrotrone Trieste, Italy

Abstract
The basic properties of synchrotron radiation are described, and their
relevance to the design of electron and proton rings is discussed.  The
development of specialized sources of synchrotron radiation is also
considered.

1 . INTRODUCTION

The electromagnetic radiation emitted by a charged particle beam in a circular accelerator
is termed "synchrotron radiation" (SR) after its first visual observation nearly 50 years ago in
the General Electric (G.E.) 70 MeV Synchrotron.  The theoretical basis for understanding
synchrotron radiation however goes back much further.  Maxwell's equations (1873) made it
clear that changing charge densities would radiate electromagnetic waves, and Hertz
demonstrated these waves in 1887.  The first more directly relevant development was the
publication of Liénard's paper entitled "The electric and magnetic field produced by an electric
charge concentrated at a point and in arbitrary motion" [1].  This work includes the energy loss
formula for particles travelling on a circular path with relativistic velocities.  Later, Schott
published a detailed essay that included also the angular and frequency distribution of the
radiation, as well as the polarization properties [2].

No further interest appears to have been taken in the topic until the early 1940's, when
theoretical work in the Soviet Union showed that the energy loss may pose a limit on the
maximum energy obtainable in the betatron [3].  Then in 1946 Blewett measured the energy
loss due to SR in the G.E. 100 MeV betatron and found agreement with theory, but failed to
detect the radiation after searching in the microwave region of the spectrum [4].  It was later
pointed out by Schwinger however that the spectrum peaks at a much higher harmonic of the
orbit frequency and that the power in the microwave region is negligible [5].  The first direct
observation of the radiation as a "small spot of brilliant white light" occured by chance in the
following year at the G.E. 70 MeV synchrotron, when a technician was looking into the
transparent vacuum chamber [6].  Later accounts of the event may be found in Refs. [7,8].

Soon after the discovery of SR the first systematic studies of the spectral distribution of
the radiation were carried out in the visible part of the spectrum [9].  The results showed
agreement with theory, which had been re-derived by Schwinger and expressed in a convenient
form for practical computation [10].  At the 300 MeV synchrotron at Cornell experiments were
carried out which accurately confirmed that the energy loss rate was proportional to the fourth
power of electron energy, in agreement with theory [11].  Later, detailed spectral measurements
were carried out in the UV and soft X-ray region by Tomboulian and Hartman [12].
Agreement between theory and measurement was also reported in the work carried out at the
synchrotron of the Lebedev Institute, Moscow [13].

The emission of synchrotron radiation exerts a strong influence on the electron beam
dynamics.  It was already known before the first observation of SR that the energy loss would
lead to a damping of the energy or synchrotron oscillations, a process known as Radiation
Damping [14–16].  It was subsequently discovered, firstly by means of a quantum mechanical
treatment [17] and later by a classical approach [18], that quantum fluctuations in the emission
would give rise to a growth of oscillation amplitude and that the combined effect of the two
processes would lead to a stable equilibrium [18].  Soon after, the same processes were found
to occur also for the betatron oscillations [19,20].  Experimental verification of these effects
was carried out at the synchrotron of the Lebedev Institute, Moscow [21].



Synchrotron radiation is of major importance in the design of electron synchrotrons and
storage rings.  The energy loss strongly affects the size of accelerator needed to reach a given
energy.  The design of the magnet lattice affects the processes of radiation damping and
quantum excitation, and determines whether an equilibrium can be reached and the magnitude
of the resulting beam dimensions.  The emission of SR also has important implications for the
design of ring components.  A powerful r.f. system is needed to replace the energy lost due to
SR.  The design of the vacuum system must take into account the heat generated and the large
amount of gas desorbed when SR beams impinge on the vacuum chamber walls.  At high
energies it becomes necessary to shield the vacuum chamber to prevent high energy photons
escaping into the air and causing damage to other accelerator components.  On the positive side,
SR is widely used as a sensitive means of observing the electron beam.

Synchrotron radiation is also of major importance as a source of radiation for
experiments.  Following the work at Cornell in the early 50's it was pointed out that SR would
be a useful source both for absorbtion measurements and as a standard for calibrating detectors
in the VUV (vacuum ultra-violet) region of the spectrum [12].  Subsequently, in the early
1960's, several SR facilities were set up on rings built initially for High Energy Physics, in the
U.S.A, Japan and in Europe.  So successful was this "parasitic" use of the SR that a second
generation of storage rings were built, for dedicated use as synchrotron radiation sources.  At
present a third generation of more sophisticated rings are under construction, and further
developments are likely to continue.

In this Chapter the basic properties of synchrotron radiation and the way it affects the
design of electron rings are described.  Subsequent Chapters consider in more detail the effect
of SR on beam dynamics.  The development of specialized SR sources is treated briefly in
Section 6.  SR is emitted by any accelerated charge, but until recently particle energies have
been sufficiently low that the effects have needed to be considered only in the case of electrons.
For the next generation of high energy proton machines however the effects of SR emission
will become significant.  Although the treatment in this and subsequent chapters will be directed
to the most common case, i.e. electrons, the formulae presented are valid for both electrons and
protons unless indicated otherwise.  Some special aspects of SR emission in proton rings are
considered in Section 7.

2 . BASIC PROPERTIES

2 . 1 Radiated power

The instantaneous power radiated by a moving electron, valid in the relativistic case, is
given by the Liénard formula:

P = 2
3

e2

4πε0c
γ 6 β̇β2 − ββ ∧ β̇β( )2





(1)

where βc is the velocity and γ ((1-β2)-1/2) is the usual relativistic factor.  The result is most
easily derived by a Lorentz transformation of the result for a non-relativistic electron [22],
obtained by Larmor:

P = 2
3

e2

4πε0c

v̇2

c2 (2)

We consider first the case of linear motion, for which ββ ∧ ββ = 0  .  In this case it can be
shown that:

P = 2
3

e2

4πε0m2c3
dp

dt






2

(3)



where p is the relativistic momentum (γβmc).  Since the rate of change of momentum (dp/dt) is
equal to the gain in energy per unit distance (dE/ds), we can write the ratio of the rate of energy
loss to the rate of energy gain as follows:

2
3

e2

4πε0m2c4
dE

ds




 = 2

3
r0

mc2
dE

ds
(4)

Thus, unless the rate of energy gain is comparable to the rest mass energy (0.511 MeV)
in a distance equal to the classical electron radius (2.8 10-15 m) the radiative energy loss is
negligible.  As a further demonstration of this fact, it can be calculated that the energy loss in a
typical 2 GeV linac, 200 m long, is only 7 10-5 eV.

In the case of circular motion, we have ββ ∧ ββ = β β .  In this case it may be shown that:

P = 2
3

e2

4πε0m2c3 γ 2 dp
dt







2

 (5)

Thus, for the same applied force (dp/dt) the power radiated is a factor of γ2 larger than for
linear motion; moreover, it should be remembered that a given force is much more easily
generated with a magnetic field compared to an electric field:  a field of 1 Tesla produces the
same force as an electric field of 300 MV/m.

For circular motion we have from the above that the instantaneous rate of power emitted
is:

P = 2
3

e2c

4πε0

β 4γ 4

ρ2 (6)

Evaluating this expression we find that the resulting instantaneous power is apparently
very small - only 7 µW even in the case of LEP at 100 GeV.  A more directly meaningful
parameter is the total energy loss per turn:

U0 = P

βc∫ ds = 2
3

e2

4πε0
β 3γ 4 ds

ρ2∫ (7)

For an isomagnetic lattice (uniform bending radius in the bending magnets) the result
simplifies to:

U0 = e2

3ε0

β 3γ 4

ρ
(8)

In practical units, for electrons:

U0 [eV] =  8.85 104  
E4 [GeV]

ρ [m]
 =  2.65 104  E3[GeV]  B [T] (9)

Since an accelerating voltage at least as great as the energy loss per turn is required for the
electron to be stable it can be seen from the examples in Table 1 that this can be an appreciable
quantity.  For a beam of electrons the total power emitted can be obtained as follows:



Pb = 
U0 Ne

T0
   =  

U0 Ib
e   (10)

where Ne is the number of electrons in the ring, T0 the orbit time, and Ib the average beam
current.  In practical units therefore the total power (in Watts) is simply the energy loss per turn
(in eV) multiplied by the beam current (in Amps).  With beam currents in the few mA to few
100 mA range it can be seen that the total SR power can be very large.  This is also the power
that the r.f. system must provide to make up for the losses due to SR emission.

It can be seen that there is a rapid increase in SR emission with energy, varying as E4.
There is therefore also a strong dependence on the mass of the particle, ~ 1/m4, and so for
protons with the same energy and bending radius the quantities are reduced by a large factor,
~1013, compared to electrons.

Table 1
Energy loss per turn (U0 and critical energy (εc) in various electron storage rings

Ring E [GeV] ρ [m] U0 [MeV] εc [keV]  

EPA 0.6 1.43 0.008 0.34
SRS 2.0 5.6 0.25 3.2
DORIS 5.0 12.3 4.5 22.5
PEP 18 166 56.1 78.1
HERA 30 550 140 109
LEP 55 3100 261 119

100 3100 2855 715

2 . 2 Qualitative description of angular and spectral properties

Consider an electron travelling with speed βc along a circular path with constant radius ρ
in a bending magnet (Fig. 1a).  Viewed in a frame moving with the same speed in a direction
tangent to the curve at some point P, the motion appears as shown in Fig. 1b.  There is clearly
an acceleration of the electron in the x' direction which gives rise to the emission of radiation.
Since the motion in this frame is non-relativistic the radiation pattern is that of the familiar
dipole radiation with sin2θ distribution, where θ is the angle with respect to the acceleration
(x') axis [22].  Transformation of this distribution into the laboratory frame results in a
distribution which is strongly peaked in the forward direction.  This is evident from the fact that
the angle at which zero emission occurs (x' axis, θ = 0) transforms to an angle 1/γ in the
laboratory frame (Fig. 1c), which can be a very small angle, e.g. 1/10 mrad for 5 GeV
electrons.

The compression of the radiation into a narrow range of angles has an important
consequence for the spectrum of the radiation.  The radiation received in a given direction
corresponds to only a small arc of the electron trajectory, of length 2ρ/γ (see Fig. 2).  The
radiation pulse length is the difference between the time it takes for the electron to travel around
the arc from A to B (te) and the time for the photons to travel directly from A to B (tυ).  The
radiation pulse length is then:

∆t = te - tυ = 
2ρ
γβc

   - 
2ρ sin (1/γ)

c    ≈  
ρ

γ3c
  (11)

The short time interval implies a wide frequency range with typical frequency given
approximately by ω ~ 1/∆t ~ γ3c/ρ.  In terms of the electron revolution frequency (ωrev ≈ c/ρ)
we see that  ω/ωrev ~ γ3.  The spectrum therefore extends to very much higher frequencies than
the orbit frequency.
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Fig. 1  Circular particle motion (a), the trajectory and dipole radiation emission pattern as seen
in a frame moving with the average electron speed β c(b) and the corresponding radiation
pattern transformed into the lab. frame (c).

As an example, if we take the parameters of the G.E. synchrotron (E = 70 MeV, ρ = 29.2
cm) we obtain a typical wavelength of about 7000 Å, i.e. in the visible part of the spectrum.  It
is evident also that with higher electron energies, ≥ 1 GeV, the emission will extend into the X-
ray region.
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Fig. 2  Illustration of the limited arc of the trajectory which contributes to the radiation seen by
an observer in a given direction



3 . SPECTRAL AND ANGULAR PROPERTIES

A complete calculation of the spectral and angular distributions of the radiation is
somewhat lengthy and therefore beyond the scope of this introduction and so here we only
sketch the main features of the calculation and present the most important results.  Further
details may be obtained from various reports and textbooks [22–27].

3.1 Observer and emitter time

For charges in relativistic motion a fundamental concept is the distinction between
observer and emitter (or "retarded") time.  An electron at position r at time t' emits radiation
towards an observer at a distance R(t') away in a direction defined by the unit vector n(t'), see
Fig. 3.  The radiation arrives at the observer at a later time t, where:

t = t' + 
R(t')

c  (12)

Although this relation between the two times appears relatively simple, the fact that the
distance R is changing with t' complicates the analysis significantly.  Taking the derivative of
the above it can be shown that:

dt
dt'  = 1 - n · β = 1 - β cos θ (13)

Thus, when the direction of motion (β) is pointing close to the direction of the observer
(n) we see that a time interval for the emitter (dt') is seen as a much shorter time interval (dt) for
the observer:

dt

dt'
 ~_

1
2

 
1

γ 2  +  θ 2





(14)

This is another description of the compression of the pulse length, with its consequent effect on
the radiation spectrum, that was discussed in section 2.2.  It also explains why the radiated
intensity is very much greater for relativistic particles.  The intensity of the radiation per unit
solid angle at the observer can be related to the square of the apparent acceleration of the
particle, i.e. the acceleration seen in the time frame of the observer, which is therefore increased
by a large factor due to the time compression effect [27].

r (t')  

e- R(t')  n  ^ 

θ 
β 

Ο 

Fig. 3  Geometry of the emission of synchrotron radiation from a charged particle in arbitrary
motion



3 . 2 Potentials and fields of a moving charge

The scalar electric and magnetic vector potentials of a slowly moving charge are given by
the standard expressions:

V = 
e

4πε0R
  A = 

ev
4πε0R

  (15)

where R is the distance from the charge to the observer and v  the charge velocity.  In the case
of a relativistically moving charge we must take into account that the potential created by the
charge reaches the observer at a later time, according to Eq. (12).  Charges moving towards the
observer contribute for a longer time and therefore result in a larger potential [26].  It can be
shown that the resulting expressions are similar, but includes the time correction factor
Eq. (13):

V t( ) =
e

4πε0
 

1
R 1- n ⋅ββ( )











ret.

   A t( ) = e

4πε0
 

v
R 1 − n ⋅ββ( )











ret.

  (16)

where [ ]ret.means evaluated at the emitter, or retarded time t'.

The electric and magnetic fields can then be calculated by applying Maxwell's equations:

E = −∇V − µ0
∂A
∂t

B = µ0 ∇ ∧ A( ) (17)

The operation is not so straightforward however, since derivatives with respect to the
observer's position involve changes in emitter time.  The resulting expressions are given as
follows:

E t( ) = e

4πε0

n − ββ
1 − n ⋅ββ( )3 R2γ 2











ret.

+ e

4πε0c

n ∧ n − ββ( ) ∧ β̇β{ }
1 − n ⋅ββ( )3 R













ret.

(18)

B t( ) = n ∧ E
c

From the above expressions we note the following features:

• E and B are mutually perpendicular;

• for a static charge  ββ =  β̇β =  0( )  we recover Coulomb's Law E = e n / 4πε0R;

• the first term is independent of acceleration and is proportional to 1/R2, and is
therefore negligible at large distances; this is termed the "velocity field";

• the second term depends directly on the acceleration, and since it varies as 1/R
dominates at large distances; this is called the "acceleration field" or the "far field".  

The second term is therefore the one that we shall consider.  For this term we see that E
and B are perpendicular to n.



3 . 3 Power distribution

The flow of energy is described by the Poynting vector, S:

S = 1
µ0

E ∧ B( ) (19)

which is the energy passing through a unit area in direction S .  The energy received per unit
solid angle in direction n at distance R from the source is therefore:

dP

dΩ
= R2 S ⋅ n( ) = 1

µ0c
RE( )2 (20)

To express this in terms of the energy radiated per unit time of the emitter, we must
include the factor in Eq. (13):

dP

dΩ
t'( ) = dP

dΩ
dt

dt'
= dP

dΩ
1 − n ⋅ββ( ) (21)

Inserting the expression for the electric field, Eq. (18), gives the general result for the
angular distribution of the instantaneous power radiated by the charge:

dP

dΩ
t'( ) = e2

4π( )2 ε0c

n ∧ n − ββ( ) ∧ β̇β{ }( )2

1 − n ⋅ββ( )5 (22)

In the case of circular motion β =  β  c/ ρ( )  and in the relativistic case, the resulting
distribution is given by:

dP

dΩ
t'( ) = e2c

2π2ε0

γ 6

ρ2

1 + 2γ 2θ 2 1 − 2cos2φ( ) + γ 4θ 4

1 + γ 2θ 2( )5













(23)

(See Fig. 4).  Thus, in agreement with the results of section 2, we see that the distribution is
strongly peaked in the forward direction within a cone 1/γ.  In the non-relativistic limit the
electric field, Eq. (18), reduces to:

E t( ) = e

4πε0c

n ∧ n ∧ β̇β( )
R

(24)

and hence the power distribution becomes:

dP

dΩ
= e2

4π( )2 ε0c
n ∧ n ∧ β̇β{ }( )2

= e2

4π2ε0c
β̇ 2 sin2Θ (25)

with Θ as the angle between the acceleration axis and the radiation direction.  Figure 5 shows a
comparison of the instantaneous power distribution in the two cases.



Fig. 4 Fig. 5
Definition of angles θ and φ in the instantaneous Illustration of the instantaneous radiation

radiation emission, Eq.(23) pattern from a charged particle in a circular
orbit in the non-relativistic (a) and the
relativistic cases (b), from Ref.[12]

3 . 4 Spectral and angular distributions

In order to obtain the frequency dependence we define the Fourier transform of the

electric field, Ẽ(ω ), and its inverse:

Ẽ(ω ) =  
1
2π

 E(t) eiωt  dt
-∞

∞

∫ Ẽ(t) =  
1
2π

 Ẽ(ω ) e-iωt  dω
-∞

∞

∫ (26)

The total energy received per unit solid angle during one passage of the electron past the
observer is from Eq. (20):

dW

dΩ
 =  

dP

dΩ
 dt =  

1
µ0c

⌠
⌡

 RE( )2  dt 
-∞

∞

∫ (27)

Inserting the expression for the electric field and simplifying, results in the following
integral over frequency:

dW

dΩ
 =  

1
µ0c

 2  RẼ(ω ) 
2

 dω 

0

∞

∫ (28)

The integrand in the above is therefore the required spectral and angular density.
Inserting now the expression for E(ω ) we obtain finally:

d2W

dωdΩ
 =  

1
2πµ0c

  (RE) eiωt  dt 
-∞

∞

∫
2

 (29)

Thus, the total energy received per unit solid angle per unit frequency interval is the
modulus-squared of the Fourier transform of the electric field seen by the observer.

Inserting the expression for the Electric field, Eq. (18), we obtain:



d2W

dΩdω
= e2

16π3ε0c

n ∧ n − ββ( ) ∧ β̇β{ }
1 − n ⋅ββ( )3













ret.

eiωtdt
−∞

∞

∫
2

(30)

Thus, the general prescription for calculating the spectral/angular distribution for arbitrary
electron motion is as follows: calculate the electron motion (r, β, β

.
  ) and the direction and

distance to the observer (n, R) as a function of retarded (emitter) time, t';  calculate the electric
field, Eq. (18);  express as a function of observer time using t = t' + R(t')/c and perform a
Fourier transform.  Alternatively, the integration can be expressed directly in terms of emitter
time t':

d2W

dΩdω
= e2

16π3ε0c

n ∧ n − ββ( ) ∧ β̇β{ }
1 − n ⋅ββ( )2 e

iω t'+ R t'( )
c





 dt'

−∞

∞

∫
2

(31)

For circular motion the result can be derived analytically in terms of Airy integrals or
alternatively modified Bessel functions:

d2W

dΩdω
 =  

e2

16π3ε0c
 γ 2 

ω
ωc







2

 1+ γ 2ψ 2( )2
 K2/3

2  ξ( ) +  
γ 2ψ 2

1 + γ 2ψ 2  K1/3
2 ξ( )







 (32)

where,

ξ = ω
ωc

1 + γ 2ψ 2( )3/2

2
(33)

Because of the horizontal motion of the source the result depends only on the observation
angle in the vertical plane, ψ (Fig. 6).  ωc is the critical frequency defined by:

ωc = 3
2

γ 3c

ρ
(34)

This is very similar to the value of the typical frequency derived earlier from consideration
of the pulse length.  Note that some authors use a value which is twice the above value [22].
Practical formulae for calculating the critical frequency are given in the Appendix.

The two terms in Eq. (32) above correspond to the radiation polarized in the horizontal (σ) and
vertical (π) planes.  The angular distributions at several different frequencies are shown in Fig.
7, for both polarization components, normalized in each case to the peak value on axis (ψ = 0).
On axis the radiation is linearly polarized in the horizontal plane.  As ψ increases the vertically
polarized component increases, and because of a π/2 phase shift, not directly apparent from the
intensities in Eq. (32) above, this results in circularly polarized radiation.  The angular
divergence changes markedly with the radiation frequency.  At ω = ωc, and approximating as a
Gaussian function, the effective standard deviation is 0.57/γ.  



Fig. 6  Geometry of the emission of synchrotron radiation in the case of circular motion

Fig. 7  Angular distribution of synchrotron radiation polarized in the orbit plane (solid lines)
and in the plane perpendicular to the orbit plane (dotted lines)

The variation of the peak intensity on-axis as a function of frequency is given by:

d2W

dΩdω
 =  

e2

16π3 ε0 c
 γ 2 

ω
ωc







2

 K2/3
2  

ω
2ωc







 =  
e2

16π3 ε0 c
 γ 2 H2 

ω
ωc







 (35)

The function H2 is shown in Fig. 8.  As anticipated in section 2.2, it can be seen that the
spectral range is very broad.  The peak value occurs close to the critical frequency (ω/ωc =
0.83) where H2 has a value of 1.47.

Integrating Eq. (32) over all angles one obtains the energy radiated per unit frequency
interval, per turn:



Fig. 8  Functions describing the spectral distributions of peak angular density (H2) and
intensity integrated over vertical angle (S)

dW

dω
 =  

3 e2

4πε0c
 γ ω / ωc( ) K5/3 ω / ωc( ) d ω / ωc( ) 

ω /ωc

∞

∫  (36)

This can be written as follows:

dW

dω
= U0

ωc
S ω / ωc( ) (37)

where S (ω/ωc) is the normalized spectrum, shown in Fig. 8, defined by:

S ω / ωc( ) =  
9 3
8π

 
ω
ωc

 K5/3 ω / ωc( ) d ω / ωc( ) 
ω /ωc

∞

∫  (38)

The spectrum is normalized since:

S ω / ωc ( )
0

∞

∫  d ω / ωc( ) =  1 (39)

It should be noted also that:

S ω / ωc ( )
0

1

∫  d ω / ωc( ) =  0.5  (40)

In other words, half of the power is emitted above the critical frequency, and half below.
The peak of the total spectrum occurs at ω/ωc = 0.29 at which point S = 0.57.  The spectrum of
vertically integrated intensity is also often written in terms of the function G1 (ω/ωc) which
includes all but the numerical factor in Eq. (38) and so the relation between the two is simply    
S (ω/ωc) = 0.620 G1 (ω/ωc).

Integrating over frequency one obtains the total energy radiated per unit solid angle (per
pass):



dW

dΩ
= 7e2

64πε0

γ 5

ρ
1

1 + γ 2ψ 2( )5/2 1 + 5γ 2ψ 2

7 1 + γ 2ψ 2( )












(41)

This distribution is shown in Fig. 9.

The Appendix includes practical versions of the above formulae.

Fig. 9  Angular distribution of power density, polarized in the orbit plane (σ), in the plane
perpendicular to the orbit (π), and total (tot).

4 . PHOTON DISTRIBUTION

So far we have considered that an electron radiates energy continuously, which is an
acceptable assumption from the point of view of calculating the spectral properties etc.  In
reality however, radiation is emitted in discrete 'quanta' or photons, each with an energy, u,
given by:

u = hω (42)

where h = Planck's constant / 2π.  The distribution of the     number    of photons emitted as a
function of angle and frequency is of interest for a number of reasons.  One of the effects on
beam dynamics ("quantum excitation") depends directly on the number of photons emitted as a
function of energy.  Also, since individual photons desorb gas molecules, the effect on the
vacuum system depends on the number of photons, not simply total power.  In addition, the
common unit of intensity employed by SR experimenters is the spectral flux – the number of
photons per second per unit frequency.  Expressions for this quantity are given in the
Appendix.

For the effect on beam dynamics the important quantity is the instantaneous rate of
emission of photons.  We define a quantity n(u), the number of photons per second radiated
(on average) by a single electron per unit energy interval:

n u( )∆u = dW

dω
c

2πρ
1

hω
∆ω (43)



hence,

n(u) =  
P

uc
2  

S u / uc( )
u / uc( ) (44)

where,

uc = hωc (45)

The photon distribution function is shown in Fig. 10.

Fig. 10  Photon distribution function

The total number emitted (per electron per second) is then:

  
N = n u( )∫ du = 15 3

8
P

uc
= 5

2 3
e2

4πε0h

γ
ρ

(46)

From the above we can obtain the simple result that the number emitted per radian is:

  
N

ρ
c

= γ
94.9

(47)

which depends only on the energy, γ; similarly the number emitted per metre is:

N
c    = 6.2 B            (electrons) (48)

which depends only on the magnetic field strength.  It can be appreciated that the number of
photons emitted per electron is a small quantity, and will therefore be subject to large statistical
fluctuations.  This has an important consequence for the beam dynamics that will be treated in
the Chapter on "Quantum Excitation".

For a beam of electrons, the total number of photons emitted is given by:



dF

dθ
  = 

Nρ
c   

Ib
e    =  1.3 1017 E [GeV] Ib [A]       photons/sec/mrad horizontal (49)

In most cases therefore with average beam currents in the mA to several 100 mA range
the total photon flux is large, with important consequences for the vacuum system (see section
5.2).

Two other expressions that will be of use in later Chapters are the mean and mean-square
photon energy.  The mean energy is:

  
u =

u  n u( )du∫
N

= P

N
= 8

15 3
uc (50)

which is related by a numerical factor to the critical energy.  Similarly the mean-square energy
is related to the square of the critical energy:

  
u2 =

u2  n u( )du∫
N

= 8
15 3

uc
2 u / uc( )

0

∞

∫ S u / uc( )d u / uc( ) = 11
27

uc
2 (51)

5 . SYNCHROTRON RADIATION ASPECTS IN ELECTRON ACCELERATOR
DESIGN

5 . 1 R.f. requirements

To make up for the losses due to the emission of SR the r.f. system must provide a
sufficient accelerating voltage and sufficient power.  There is an additional voltage requirement
above that of the energy loss per turn in order to maintain sufficient beam lifetime, as will be
described in a later Chapter on "Quantum Excitation".  The total power needed from the r.f.
system must also take into account the significant losses in the walls of the accelerating cavity.

The very strong dependence of the energy loss with energy is a limiting factor in the
construction of increasingly high energy circular electron accelerators.  Some reduction in the
r.f. requirement  can be achieved by reducing the bending magnet field strength, but at the
expense of a larger and therefore more costly machine.  It can be seen from Fig. 11 that in
electron storage rings built so far, parameter optimization has resulted in a bending radius that
increases roughly as E2 i.e. the field decreases as 1/E.  Thus the energy loss per turn, U0, still
increases as E2.  In LEP a field as low as 0.059 T is used at 55 GeV.  Even so, 128 five-cell
r.f. cavities are needed with sixteen 1 MW klystrons to power them [28].  To reach 100 GeV
superconducting cavities will be used to reduce the power dissipated in the cavity.  Because of
the limitation imposed by SR emission attention is focussed on linear colliders for the next
generation of high energy electron accelerators rather than circular machines.

As can be seen from Fig. 11, the situation is entirely different for proton machines.  In
this case SR emission is not a limiting factor and bending fields have increased by use of
superconducting magnets.

5 . 2 Vacuum system

The power in the SR beams can be very high, up to several kW per metre of orbit length,
and so water-cooled absorbers must be provided.  The main gas load in the system is also
caused by SR [29]:  photons hitting the vacuum chamber produce photoelectrons which in turn
desorb gas molecules from the surface.  If the surface is clean before installation the main gas



Fig. 11  Relationship between energy and bending radius for various circular electron and
proton accelerators

molecules desorped are H2, CO, CO2 and CH4.  The consequence of this is that the gas
pressure will increase, and hence the beam lifetime will decrease, when the beam current
increases.  However, the desorption decreases as a function of the total beam 'dose', as the SR
cleans the vacuum chamber surface.  Typically it is assumed in the design of the pumping
system that a dose of about 50 Amp-hours is required before nominal pressure and lifetime is
reached.

5 . 3 Radiation shielding

When the critical energy of the photons becomes sufficiently large, scattered high energy
photons can escape from the standard type of aluminium or stainless steel vacuum chamber and
cause radiation damage to ring components (e.g. magnet coils and water hoses), failures of
electronic components, production of ozone and nitric oxide in the air, and in the presence of
humidity corrosion of the vacuum chamber by nitric acid.  Problems of this type were
experienced first in PETRA [30] and TRISTAN [31] when energies were raised above 15 GeV,
which required lead shielding to be added around the chambers.  Later higher-energy machines
took this into account at the start.  In the HERA electron ring a copper-bronze alloy was used
for the chamber, and use was made of the dipole magnet yokes as extra shielding [32].  The
LEP vacuum chamber is surrounded by a lead shield between 3 and 8 mm thick [28].

5 . 4 Electron-beam diagnostics

SR is widely used to form visible images of the electron beam [33] both for direct
observation and qualitative measurement of beam size, position, stability and also bunch length.
A typical arrangement is to reflect the visible part of the SR emitted by a bending magnet off a
water-cooled mirror, through the radiation shield wall and into a diagnostics area.  By
focussing the light with a lens onto a screen a direct image of the electron beam can be formed.
Linear photodiode arrays or CCD matrices can be used to obtain accurate information on the
beam profile and a position sensitive detector can provide information about the positional
stability of the beam.  Bunch length information can be obtained from streak cameras or fast
photomultipliers [34].

In storage rings used as synchrotron radiation sources, the stability of the position and
angle of the radiation source points is very important.  For this reason monitors which
determine the position of the SR in the beam-lines have been developed.  Using signals from
these detectors feedback systems can then be used to stabilize the electron beam orbit.



6 . SYNCHROTRON RADIATION SOURCES

As many as 28 electron storage rings are currently used for research using SR, and of
these 17 are fully dedicated to SR.  In addition, 16 new dedicated rings are under construction
or commissioning, and several more are under study [35].  Not included in this list are about 10
smaller rings built exclusively as sources for X-ray lithography.  

The properties of SR that it make it so attractive as a research tool are as follows:

• high intensity or photon flux;
• continuous spectrum covering a broad range from the far infra-red to hard X-rays;
• small vertical angular divergence;
• small source size, determined mainly by the electron beam dimensions;   
• high "brightness" and hence high partial coherence, resulting from the combination of

small source size and divergence;
• polarization - linear in the orbit plane, with a circular component above and below the

orbit plane;
• pulsed time structure, determined by that of the electron beam;
• calculable spectral intensity, allowing use as a calibrated source.

The wide range of applications cover the whole range of basic and applied science, and
also include industrial (e.g. lithography and micro-mechanics) and medical (e.g. angiography)
uses.

By convention the development of synchrotron radiation sources is usually described in
terms of various "generations".  The first generation includes synchrotrons and storage rings
built initially for High Energy Physics and used "parasitically" for SR.  The first experimental
facilities for using SR were set up on the SURF and INS-SOR rings in 1963, followed by
Frascati, DESY and Tantalus.  Others followed, including the SPEAR ring (Stanford, USA),
now dedicated to SR.  The second generation rings are storage rings designed and built from
the outset as dedicated SR sources.  The first was the 300 MeV SOR-Ring in 1974, the first X-
ray ring being the 2 GeV SRS (Daresbury, England).  The third generation are newer dedicated
rings with lower beam emittance (i.e. smaller beam sizes and divergences), and with many long
straight sections into which special "insertion devices" (see below) can be placed.  Third
generation rings fall into three categories, according to the spectral region that they have been
optimized for.  Apart from one operating 0.8 GeV UV/VUV ring (SUPERACO, Orsay,
France) the rest are either 1.2-2.0 GeV VUV/Soft X-ray rings or 6.0-8.0 GeV Soft/Hard X-
rays rings.

The insertion devices that will form the main radiation sources in the third generation
rings are magnetic devices with a field polarity that alternates along the electron beam trajectory
[36].  A periodic deflection of the electron beam is produced, resulting in the emission of
radiation with special properties that depend on the form of the magnetic field distribution.
Compared to conventional bending magnet sources of SR, insertion devices can produce:

• higher photon energies;
• increased flux;
• increased brightness;
• different polarization characteristics.

Higher photon energies can be produced if the insertion device field, and hence critical
photon energy, is larger than that of the bending magnets.  If the device has a single high field
pole, then it is often termed a wavelength shifter.  The first such device was tested in the 240
MeV TANTALUS ring [37].  Several superconducting wavelength shifters are now operating
with peak fields of 5-6 T.  If the device has several magnet poles, then the output flux and
brightness are increased accordingly and the device is generally called a multipole wiggler.  If
the parameters are such that interference effects are important, then very high brightness can be
produced with a line, rather than continuous, spectrum; in this case the device is usually termed



an undulator.  In the standard case where the insertion device deflects the particle in the
horizontal plane the radiation is linearly polarized.  Different polarization characteristics can be
produced with more complicated helical, elliptical or non-sinusoidal electron trajectories [38].

Some aspects related to the design of third generation radiation sources and the effects of
insertion devices on electron beam properties are considered in the Chapter on Quantum
Excitation.  Further details may be found in the Proceedings of a special CERN Accelerator
School on Synchrotron Radiation Sources and Free Electron Lasers, Ref. [26].

7 . SYNCHROTRON RADIATION FROM PROTONS

7 . 1 High energy proton rings

The equations governing the emission of Synchrotron Radiation are the same for both
protons and electrons, however the total power radiated is inversely proportional to the 4th
power of the rest mass, while the critical frequency of the spectrum varies as the inverse of the
mass to the 3rd power.  Thus, for the same energy and magnetic field electrons radiate 1013

more power and with a critical frequency 6 109 times higher.  Until recently the emission of SR
in proton rings has not been of major concern, however, with the advent of the LHC and SSC
this situation has changed.  Table 2 lists the relevant parameters for some existing and future
high energy proton machines.

Table 2
Main parameters for various high energy proton accelerators

Ring                                         E [TeV] ρ [m] B [T] U0 [keV] Ib [mA] P [kW] εc [eV]
HERA  0.8 584 4.7     0.006 159 0.0009    0.003
Tevatron  1.0 754 4.4     0.011    2.5 0.0003    0.005
LHC  7.7 2568 10.0   10.7 851 9.1   63.7
SSC 20.0 10187 6.6 126   72 8.8 288

It can be seen that there are significant differences in the properties of the SR between the
present and future generation of high energy proton machines.  The consequences are
particularly significant in the case of LHC and SSC since both rings employ superconducting
magnets with a cold-bore vacuum tube [39, 40].  The SR power, although modest by electron
ring standards, must be absorbed at cryogenic temperatures and represents a significant fraction
of the heat input to the cryogenic system.  To overcome this problem screens will be employed
at a higher temperature than the vacuum pipe, on which the SR power will be absorbed more
efficiently.  A second problem is the effect on the vacuum pressure.  The critical energy of the
radiation in the LHC and SSC is sufficiently high to cause photo-desorption of gas molecules.
These molecules will then be physisorbed by the screen which acts as a powerful cryopump.
After a time a monolayer of adsorbed material can build up, whereupon the thermal vapour
pressure of H2 will increase rapidly leading to a catastrophic pressure rise.  Solutions to this
problem, involving slots in the shield to pump the desorped gas molecules onto the colder
vacuum tube surface, away from the impinging synchrotron radiation, are presently receiving
detailed attention [41].

7 . 2 Modified synchrotron radiation properties

Although the spectrum of radiation emitted by a proton is in general described by the same
equations as for an electron, an important difference can arise under certain conditions.  In the
derivation of section 3 it was assumed implicitly that the magnetic field was constant over the
arc length seen by the observer (Fig. 2) i.e. over a distance Lo given by:



Lo ~_
ρ
γ

 =  
mc

eB
(52)

With a field of 1 T for example this corresponds to a length of 1.7 mm for electrons and
3.1 m for protons.  Thus in general magnet lengths exceed the required value for the previous
calculation to be valid.  It has been shown however that an effect can be produced on the
spectrum if at the edge of the magnet the field rises from zero to B, or falls from B to zero, in a
distance ∆L that is smaller than Lo [42].  In the case of electrons this condition is not normally
met, but in the case of protons a typical magnet edge (∆L ~ 0.1 m) is usually much smaller than
the distance Lo.  Since the effect is to shorten the emitted radiation pulse the resulting spectrum
extends to higher critical frequency than that corresponding to the central magnet field, ωc, and
is given approximately by:

ωc
'  ~_

Lo

∆L
 ωc (53)

This "edge-effect" was observed for the first time on the SPS [43].  At 270 GeV and with
a 1.2 T dipole field the standard critical wavelength of 16 µm lies in the infra-red region of the
spectrum.  The magnet edge, ∆L ~ 0.1 cm, was much shorter than the value of Lo = 2.5 m, and
so the radiation emitted by the edge of the magnet had a critical wavelength of about 0.6 µm, in
the visible range.  Later a special undulator magnet, which can be considered to be a series of
short magnets with length smaller than Lo, was installed to produce visible radiation from both
protons and anti-protons [44].  More recently a visible light beam monitor was also tested in the
Tevatron using the edge-effect [45].  Critical frequencies in the LHC and SSC are already
sufficiently high that visible radiation will be produced even without the edge-effect.
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APPENDIX

PRACTICAL SYNCHROTRON RADIATION FORMULAE

We first consider the most common case of electrons.

Equation (32) gives the energy radiated per unit solid angle per unit frequency interval
during the passage of a single particle.  In the case of a beam of particles the total energy per
second, i.e. the radiated power (in Watts) is proportional to the number of particles that pass the
observer per second:

d2P

dΩ dω
 =  

d2W

dΩdω
 

Ib

e
 

where Ib is the average beam current in Amps.  The frequency interval can be expressed in any
desired unit e.g. Hz, Ångstrom, wavenumbers etc.  We use here the photon energy (ε),
expressed in eV, which in practical units becomes (in Watts/mrad2/eV):

d2P

dΩ dε
=  2.124 10-3  E2 [GeV] Ib [A] 

ε
εc







2

1+ γ 2ψ 2( )2
 K2/3

2  ξ( ) +
γ 2ψ 2

1 + γ 2ψ 2  K1/3
2 ξ( )







 

where the critical photon energy is given by:

εc [keV]  =  0.665 E2 [GeV] B[T] = 2.218 E3 [GeV] / ρ

and the alternative critical wavelength as:

λc Å[ ] =  18.64 /  E2 [GeV] B[T]( ) =  5.589 ρ /  E3 [GeV] 

It is also common to express SR intensities in terms of the number of photons per second,
obtained by dividing the power in a given frequency interval by the appropriate photon energy
hω.  Alternatively the power divided by h gives the number of photons per second per unit
relative bandwidth:

d2F

dΩ dω/ω
   =  

d2P

dΩ dω
  
1
h
   

In practical units therefore (photons/s/0.1% bandwidth/mrad2):

d2F

dΩ dω / ω
= 1.325 1013  E2 [GeV] Ib [A] 

ε
εc







2

1+ γ 2ψ 2( )2
 K2/3

2  ξ( ) +
γ 2ψ 2

1 + γ 2ψ 2  K1/3
2 ξ( )







 

and on-axis, (ψ = 0):

d2F

dΩ dω / ω
 =  1.325 1013  E2 [GeV] Ib [A] H2 ε / εc( )

Integrating over the vertical angle, the spectral distribution per unit horizontal angle
becomes (in Watts/mrad/eV):



d2P

dθ dε
 =  6.347 10-3  E [GeV] Ib [A] S ε / εc( )

and expressed in terms of photon flux (photons/s/0.1% bandwidth/mrad horizontal):

d2F

dθ dω / ω
 =  3.96 1013  E [GeV] Ib [A] S ε / εc( ) 

The angular distribution of total power, Eq. (41), becomes (Watts/mrad2):

dP

dΩ
 =  5.42 E4 [GeV] B [T] Ib [A] 

1

1+ γ 2ψ 2( )5/2  1+
5γ 2ψ 2

7 1 + γ 2ψ 2( )











 

On-axis therefore the peak power density is given by:

dP
dΩ   =  5.42  E4 [GeV] B [T]  Ib [A] W/mrad2

Integrating over vertical angle gives the linear power density:

dP

dθ
   =  4.22  E3 [GeV] B [T]  Ib [A] W/mrad horizontal

The formulae above are valid for electrons.  In the case of protons the results must be
scaled by an appropriate factor αn where α  is the ratio of electron to proton mass i.e.                
α  = 1/1823.  Thus, εc scales as α 3, λc as 1/α3, d2P/dΩdω and d2F/dΩ(dω/ω) as α 2,
d2P/dθdω and d2F/dθ(dω/ω) as α, dP/dΩ as α5, dP/dθ as α4.



RADIATION DAMPING
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Abstract
The basic formulae for the damping of the energy and betatron
oscillations are derived.  The results are applied to a number of
examples of different lattice designs in which radiation damping effects
are important.  Methods of modifying and measuring the damping rates
are also discussed.

1.  INTRODUCTION

The loss of energy due to the emission of synchrotron radiation, and its replacement by
the r.f. cavities, can give rise to a damping of the oscillations in energy and transverse
displacement (synchrotron and betatron oscillations), a process known as "radiation damping".
The only feature of the synchrotron radiation emission that is involved in this process is the rate
of emission of energy, given in the previous Chapter on Synchrotron Radiation:

P = 2
3

e2c

4πε0

β 4γ 4

ρ2 (1)

From this can be obtained the total energy loss per turn, Uo, which in the case of an
isomagnetic lattice (uniform bending radius in the bending magnets) is given by:

U0 = e2

3ε0

β 3γ 4

ρ
(2)

Because of the dependence on the fourth power of the rest mass the synchrotron radiation
emission, and hence radiation damping effects, are only relevant for electrons at the energies of
present-day accelerators.  However, in the next generation of high energy proton accelerators
the effects of radiation damping may start to become significant.

The process of radiation damping is important in many areas of electron accelerator
operation:

i) it can give rise to a stable (Gaussian) distribution of transverse and longitudinal
beam dimensions due to an equilibrium between the competing forces of radiation
damping and "quantum excitation" – the growth of oscillation amplitudes due to the
    discrete    emission of radiation quanta;

ii) it permits an efficient multi-cycle injection scheme to be employed in storage rings,
by allowing the beam dimensions to damp in size between injection pulses;

iii) it allows large beam dimensions, produced in a linac for example, to be reduced in
specially designed "damping rings";

iv) it helps to counteract beam growth due to various processes such as intra-beam
scattering and collective instabilities.

In this chapter the basic formulae for the damping of the energy and betatron oscillations
are derived, following closely the treatment in earlier texts [1–3].  The main results are
illustrated by a number of examples of different lattice designs in which radiation damping
effects are important.  Methods of modifying the damping rates in a given ring are then
discussed and finally techniques for the measurement of the damping rates are considered.  The



following Chapter deals with the related quantum excitation process and the derivation of the
equilibrium beam dimensions.

2 . ENERGY OSCILLATIONS

Figure 1 shows the accelerating voltage, and hence the energy gain, in an r.f. cavity as a
function of the time of arrival of an electron.  The particle which arrives on every turn at the
correct time (and hence phase with respect to the r.f. voltage) in order to make up the loss due
to synchrotron radiation (U0) is called the synchronous particle, and its energy is the nominal
energy of the design orbit, E0  An electron with a higher energy will in general travel on a
longer path and therefore arrive later at the cavity.  It can be seen from Fig. 1 that such a particle
will receive less energy at the cavity, which therefore compensates for the energy deviation.
Similarly, a lower energy particle travels on a shorter path, arrives earlier at the cavity and
therefore has a higher energy gain.  This describes the usual stable oscillations in energy and
time that occur about the synchronous point, which are analysed in more detail in Ref. [4].  If in
addition the energy loss due to synchrotron radiation increases with the energy of the particle,
then it can be seen that this will provide a damping of the oscillations.

eV Accelerating voltage 

t 
Time of arrival 

at cavity 

Synchronous 
Particle, E o 

U o 

Fig. 1  Variation of accelerating voltage in an r.f. cavity as a function of electron arrival time

We now consider this damping process in more detail.  The standard terminology will be
used which refers to the time displacement of an electron with respect to the synchronous
particle, or equivalently to the centre of the bunch, as shown in Fig. 2.  In this description an
electron which is ahead of the synchronous electron by a distance ∆s has a positive time
displacement τ = ∆s/c.  An electron with a positive energy deviation ε = E-E0 has a larger orbit
length (L) and hence orbit period (T) with respect to the synchronous particle (denoted by the
subscript o) given by:

s 

x,z 
Synchronous 

particle 

∆s 

Fig. 2  Location of the synchronous particle and an electron with a positive time
displacement in an electron bunch



∆T
T0

   =  
∆L
L0

   =  α  
ε
E0

 

where α is the momentum compaction factor, neglecting the relativistic factor which is
negligible for electrons [4].  We assume that changes in energy and time displacement occur
slowly with respect to the orbit period, which permits use of a differential notation:

dτ
dt   = - α 

ε
E0

  (2)

Considering the energy equation, in one turn an electron loses an energy U(ε) and gains
from the r.f. cavity eV(τ);  the net change is therefore:

∆E  =  eV(τ) - U(ε)

and so on average:
dε
dt   =  

eV(τ) - U(ε)
T0

  

Taking the derivative of the above then gives:

d2ε
dt2 = e

T0

dV τ( )
dτ

dτ
dt







− 1
T0

dU ε( )
dε

dε
dt







Inserting Eq. (2) gives:
d2ε
dt2

   +  
1
T0

 
dU(ε)

dε
 
dε
dt  + 

e
T0

 
α
E0

  
dV(τ)

dτ
  ε = 0

(3)
For small oscillations it can be assumed that the accelerating voltage varies linearly with

respect to the arrival time around that of synchronous particle:

eV(τ)  =  U0 + eV
.

 0 τ

where V
.

 0 is the slope of the accelerating voltage dV(τ)/dτ at τ = 0.  Using this expression Eq.
(3) can be written as follows:

d2ε
dt2

   + 2 αε  
dε
dt   +  Ω2ε  =  0

where:

αε  =  
1

2  T0
  

dU

dε
 (4)

Ω2  =  
e
T0

  V
.

 0  
α
E0

  

This can be recognised as the usual equation of harmonic motion for the energy
oscillations [4] with an additional damping term.  Assuming that the damping rate αε is small
with respect to the oscillation frequency Ω, the solution can be written as follows:

ε (t)  =  A e-αεt cos (Ωt - φ)



τ (t)  =  
-α

E0Ω   A e-αεt sin (Ωt - φ)

where A and φ are constants determined by the initial conditions.  It can be seen that as
anticipated the damping rate depends on the change in energy loss with energy deviation
(dU(ε)/dε).

With
damping

No
damping

Synchronous
particle

Fig. 3  Illustration of energy oscillations with and without radiation damping

Figure 3 illustrates the above solutions.  In the absence of damping an electron executes a
harmonic oscillation in energy and time with a fixed amplitude that is represented by an ellipse
of a given size.  With positive damping the particle spirals slowly towards the fixed point,
namely the synchronous particle.  

x 
ds 

dl  

ρ 
s 

reference orbit, E o

Fig.  4  Elements of the reference orbit and a displaced trajectory

We now consider how to calculate the damping rate (αε) from the rate of change of
energy loss with energy (dU/dε).  When the energy deviates from the nominal energy E0the
energy loss changes because of several factors.  Firstly, the energy loss is itself a function of
energy and secondly because the orbit deviates from the reference orbit there may be a change in
magnetic field and a change in the path length.  Figure 4 shows a curved element of the design
orbit in the horizontal plane for a particle of the nominal energy E0, where the radius of
curvature is ρ.  Also shown is the trajectory of another particle with transverse displacement, x .
In general the path length for the elements are related as follows:

dl
ds   =  1 + 

x(s)

ρ
  (5)

For an off-energy particle the closed orbit is defined by:



x(s)  =  D(s)  
ε
E0

  (6)

where D(s) is the dispersion function.  In this case therefore:

dl
ds   =  1 + 

D

ρ
  

ε
E0

  (7)

The energy radiated per turn is defined as the integral of the radiated power (P) around the
off-energy orbit:

U ε( ) = 1
c

Pdl∫
Using Eq. (7) for the path length this can be expressed as an integral over s:

U ε( ) = 1
c

P 1 + D

ρ
ε
E0





∫ ds

We now expand P as a function of energy and transverse displacement, given the fact that
P is proportional to E2 and B2(x), Eq. (1):

P(s)  =  P0 + 
2P0
E0

   ε  +  
2P0
B0

  
dB
dx   x (8)

where P0(s) is the power radiated on the design orbit, corresponding to the field B0.  Inserting
in the expression for U(ε) together with Eq. (6) and keeping only linear terms in ε we obtain:

U ε( ) = 1
c

P0 + 2P0

E0
ε + dB

dx
D

ε
E0

+ P0D

ρ
ε
E0





∫ ds

For the damping rate we require the derivative:

dU ε( )
dε

= 1
c

2P0

E0
− 2P0kρD

E0
+ P0D

ρE0





∫ ds

where the usual focusing parameter k for gradient fields has been introduced               
(kρ = [-dB/dx]/B0).  Since the integral of P0/c around the design orbit is U0, we obtain:

dU ε( )
dε

= 2U0

E0
+ 1

cE0
P0∫ D 1 / ρ − 2kρ( )ds

and hence the equation for the damping rate can be expressed in the following standard form:

αε  =  
1

2T0
  

dU

dε
   =  

1
2T0

  
U0
E0

  (2+D)  

where:

  
D =

1
cU0

P0∫ D 1 / ρ − 2kρ( )ds
(9)



Using the fact that P0 depends on 1/ρ2, the important parameter D can be expressed in the
following standard forms, involving only integrals over various lattice functions:

  

D  =
D / ρ 1 / ρ2 − 2k( )ds∫

1 / ρ2ds∫
=

D 1 − 2n( ) / ρ3ds∫
1 / ρ2ds∫

(10)

It is clear that D is a dimensionless number, with contributions only from the ring bending
magnets (1/ρ ≠ 0).  One term involves both bending and focusing fields (k/ρ ≠ 0) which is
present in "combined function" or "synchrotron magnets".  For these magnets it is convenient
to define a field index, n:

n  =  - 
dB
dx  

ρ
B0

   =  kρ2

which appears in the second expression above for D.

From the expression for the damping rate, Eq. (4), we recall that dU/dε must be positive
for the oscillations to be damped and hence D > -2.  In the most common case of a "separated
function" lattice (as will be seen later) D is a small positive number, in which case dU/dε is
determined only by the E2 dependence of P.  In this case we have the result that:

τε  =  
1

αε
   ≈  

T0 E0
U0

  (11)

i.e. the damping time is approximately the time it would take for an electron to radiate away all
its energy (at constant rate), a useful and easily remembered result.

We conclude this section with a table giving various parameters connected with the energy
oscillations for two widely different electron machines at CERN, the EPA [5] and LEP [6].  It
can be seen that in both cases the damping time is much longer than the synchrotron oscillation
and orbit periods, justifying the approximations used in the derivation above.  Finally, we note
that for protons even at the high energy expected at the SSC (20 TeV) the damping time is still
extremely long, about 12 hours.  

Table 1

Energy oscillation parameters for two electron storage rings

EPA [5] LEP [6]

Energy, E0(GeV) 0.6 55
Energy loss per turn, U0 (keV) 8 260 103

Orbit period, T0(µs) 0.42 89
Synchrotron oscillation period (ms) 0.27 1
Synchrotron oscillation damping time, τε (ms) 64 18

3 . BETATRON OSCILLATIONS

We consider now the damping of the betatron oscillations, starting with the more simple
case of the vertical plane.

3 . 1 Vertical plane



It is convenient to use the following approximate form for the vertical betatron
oscillations:

z  =  A cos (φ(s) + φ0) z'  =  
-A

β
   sin(φ(s) + φ0)

where A is the normalised amplitude of the oscillation:

A2  =  z2 + (βz')2 (12)

However, it is easy to show that the same result is obtained if the complete form for the
amplitude is used:

A2  =  γz2 + 2αzz' + βz'2

s 

z

δp 

p

s 

z

p

Emission of a photon: Energy gain in r.f. cavity: 

p
 II

p
⊥

p
⊥

p  , δp II

Fig.  5  Effect of energy loss and energy gain processes on the electron momentum

We wish to consider the effect on the oscillation amplitude A of energy loss due to
synchrotron radiation and energy gain in the r.f. cavities.  These processes are illustrated in
Fig. 5, occurring at an arbitrary point with respect to the phase of the betatron oscillation.  It
can be seen that since photons are emitted in the direction of the motion of the electron, there is
a change in the value of the momentum, but no change in angle z'.  On the other hand, in the
r.f. cavity there is an increase in the longitudinal component of the momentum (p ) which
therefore reduces the angle.  Since z' = p⊥ /p , after the cavity we have

z' + δz'  =  
p⊥

p  + δp
   ≈  z'(1 - 

δp
p  )

and hence:

δz'  =  -z' 
δε
E0

  

Using Eq. (12) the change in oscillation amplitude is given by:

A δA  =  β2 z' δz'  =  -β2 z'2  
δε
E0

  

Averaging over all possible phases of the oscillation at the time the electron passes
through the cavity, <z'2> = A2/2β, we have:



<δA>
A    =  - 

1
2  

δε
E0

   

Since the gain in energy over one turn is small compared to the electron energy we can
average over one turn to obtain:

∆A
A    =  

-U0
2 E0

  (13)

The motion is therefore exponentially damped (exp - αzt) with a time constant αz given as
follows:

αz  =  - 
1
A  

dA
dt    =  

U0
2  E0 T0

  

which is one half of the approximate value for the energy oscillations derived in the previous
section, Eq. (11).

3 . 2 Horizontal plane

x 

s 

ε - δε 

δ x ε

ε

x
β

x
ε

Fig. 6  Effect of energy loss on the off-energy orbit and betatron motion
in the horizontal plane

The same process as above occurs in the horizontal plane also, but there is an additional
effect due to the emission of synchrotron radiation at points where there is finite dispersion
(which is usually zero in the vertical plane).  As before, there is no change in x or x' due to the
radiation emission (see Fig. 6), however the change in energy implies a change in the off-
energy orbit (xε = D(s) ε/E0) and hence an equal and opposite change in the betatron amplitude
xβ, since x = xε + xβ.  We have therefore:

δxβ  =  - δxε  =  - D 
δε
E0

  

Similarly, the change in angle of the betatron oscillation is given by:

δxβ'  =  - δxε'  =  - D' 
δε
E0

  

The change in the oscillation amplitude A where:



A2  =  xβ
2 +  β  xβ '  2

is therefore given as follows:

A δA  =  xβ δxβ + β2 x'β  δx'β = - (D xβ + β2 D' x'β)  
δε
E0

  (14)

If the rate of energy loss were constant then averaging over the betatron phase would yield
no net increase in amplitude, however, this is not the case and it is necessary to include the
variation of energy loss with xβ.  Since the energy loss in a small element is given by δε = -P/c
δl, where (Eq. (5)):

δl

δs
   =  1 + 

xβ

ρ
 

and expressing P as a function of xβ, as in Eq. (8):

P  =  P0 + 
2P0
B0

  
dB
dx   xβ  =  P0 (1 - 2kρxβ)

gives the result:

δε  =  - 
P0
c   







1  - 2kρxβ + 

xβ

ρ
   δs

Combining with Eq. (14) and averaging over the betatron phase, given that <xβ> = 0,
<x'β> = 0, <xβx'β> = 0, and <xβ2> = A2/2 gives:

<δA>
A    =  

P0
2cE0

   D ( )1/ρ - 2kρ    δs

Over one turn therefore:

  

∆A

A
= 1

2cE0
P0∫ D 1 / ρ − 2kρ( )ds = U0

E0

D
2

using the earlier definition of the quantity D, Eq. (9).

In general, since D is usually positive, this would give rise to an    increase    in oscillation
amplitude, however when the effect of the damping that occurs due to the energy gain in the r.f.
cavities is added, as in the vertical plane Eq. (13), we have:

∆A
A    =  

-U0
2E0

  (1-D)  

and hence the damping rate is as follows:

αx  =  - 
1
A  

dA
dt    =  

U0
2 E0 T0

  (1-D) (15)

3 . 3 Origin of the damping of the betatron motion

It is interesting to note that the main damping effect of the betatron motion described in
section 3.1 appears to occur due to the energy gain in the r.f. cavities, not due to the energy
loss, and as a result it has been remarked that the term "radiation damping" is somewhat



inappropriate.  However, it can be seen from Fig. 5 that in fact the opposite is true if the
canonically conjugate variables of position and      momentum      are used rather than the more usual
position and    angle    , since the transverse momentum, p⊥ , is reduced when a photon is emitted
but is unchanged in the r.f. cavity [7].  The choice of variables therefore determines the
apparent location of the damping effect, however the final result is the same.
4 . DAMPING PARTITION AND THE ROBINSON THEOREM

The results obtained in the previous two sections may be summarized as follows:

αi  =  
Ji U0

2  E0 T0
 (16)

where i represents x, z or ε and Ji are the Damping Partition Numbers:

Jx  =  1-D Jz  =  1 Jε  =  2+D

so called because the sum of the damping rates for the three planes is a constant:

Jx + Jz + Jε  =  4 (17)

a result known as the Robinson Theorem [8].  For damping in all planes simultaneously it is
required that all Ji > 0 and hence that -2 < D < 1.

We have obtained the above result for the total damping explicitly by analysing each
oscillation mode independently, however it may be obtained in a more general and direct way
using the following method [8].  The general transverse and longitudinal motion of a particle
with respect to that of the synchronous particle on the design orbit may be described using 6x6
transfer matrices, relating particle coordinates at some initial position s1 to those at some later
position s2 as follows:

x
x '
z
z '

ε/Eo

τ s2

= M (s2, s1)

x
x '
z
z '

ε/Eo

τ s1

Since the elements of M are real then the eigenvalues of the one-turn matrix M(s + L,s)
can be written as three complex conjugate pairs exp (-α'j ± iβ'j) with j = 1,2,3.  Using the fact
that the determinant of a matrix is the product of its eigenvalues [9] we have:

det M s + L,s( ) = exp − 2α j
'

j=1

3

∑








 ≅ 1 − 2α j

'

j=1

3

∑
(18)

since α 'j <<1.  The amplitudes of the three oscillation modes vary as exp (-αjt) where            
αj = α 'j/T0 i.e. αj are the damping rates.

Considering a general infinitesimal element of orbit between s and s+ds, the matrix can be
written:

M (s+ds,s)  =  I + δM

where I is the identity matrix.  Since all elements of δM are small, it can be shown that:



det M (s+ds,s) ≈ 1 + Tr (δM)

where Tr represents the trace of the matrix.  In the absence of energy loss and gain the
determinant of M is equal to unity.  The only diagonal terms in δM therefore are those
calculated earlier representing changes in x' and z' due to gain of energy δε1:

δx'  =  - 
δε1
E0

   x'   ,   δz'  =  - 
δε1
E0

  z'

as well as that for ε/E0 due to energy loss:

δε  =  - 2 
δε2
E0

   ε

since the rate of emission is proportional to E2.  We have therefore:

det M (s+ds,s)  =  1 - 2 
δε1
E0

   - 2 
δε2
E0

 

For the one-turn matrix, since the determinant of a product of matrices is the product of
the determinants and since the total energy gain and the total energy loss are equal to U0, we
have that:

det M(s+L,s)  =  1 - 
4 U0
E0

 

irrespective of the location of the energy loss and gain.  Combining with Eq. (18) gives the final
result:

α1
j=1

3

∑ = 2
E0

U0

T0

which is identical to the one obtained earlier, Eqs. (16) and (17).  The present derivation
however shows that the result is independent of the nature of the magnetic and electric field
distributions acting on an electron, provided that they are determined a priori, i.e no beam
induced fields are included.  It is valid therefore even in the case of linear coupling between the
horizontal and vertical planes, and when there is bending in the vertical plane.  In the absence of
these factors the matrices for the (z,z') and (x,x',ε/E0,τ) motion and may be treated separately,
giving the result:

αx + αε  =  
3 U0

2  E0 T0
  

or equivalently,
                     Jx  +  Jε  =  3.

5 . RADIATION DAMPING ASPECTS IN VARIOUS LATTICE DESIGNS

5 . 1 Weak focusing lattices

Early accelerators employed "weak focusing" magnets that provided focusing in both
planes simultaneosly for which the field index must lie in the range 0 < n < 1 [10].  There is a



further constraint on the field index in order that the motion is damped in all three planes.  To
derive this we first write the expression for D in a form that is valid in the case of an
isomagnetic lattice:

  
D = 1

2πp
1 − 2n( )∫ D

ρ
ds (19)

We leave ρ inside the integral to indicate that it includes only the bending magnets and not
any straight sections.  We can simplify this by making use of the expression that defines the
dispersion function:

D" = 




k   -  

1

ρ2
  D + 

1

ρ
 

from which it follows by integration that:

 1 / ρ2 − k( )∫ Dds = 1 / ρ( )∫ ds

If the focusing is due entirely to combined function magnets, with field index n = kρ2,
then the above may be written in the isomagnetic case as follows:

1 − n( )∫ D

ρ
= 2πρ (20)

If we now include the fact that the field index is also constant in the bending magnets,
then combining Eqs. (19) and (20) gives:

D = 
1-2n
1-n  

It follows that the damping partition numbers are then given by:

Jx  =  
n

1-n Jz  =  1 Jε  =  
3-4n
1-n  

and so for damping in all three planes 0 < n < 0.75.  The fact that energy oscillations become
undamped for n > 0.75 was appreciated even before the first observation of synchrotron
radiation [11-13].

A present day example of this type of lattice is the NBS 250 MeV storage ring which is
used as a synchrotron radiation facility (SURF).  Originally however the ring was operated as a
180 MeV synchrotron with a field index of 0.8; when it was converted for use as a storage ring
extra gradient coils were added to lower the field index to 0.6 in order to obtain the necessary
damping of all oscillation modes [14].  A more recent example is the compact superconducting
synchrotron radiation source AURORA whose field index varies in the range 0.3–0.7 as the
energy is varied between 150 and 650 MeV [15].

5 . 2 Strong focusing, combined function

Several early types of alternating gradient or "strong focusing", synchrotrons were
constructed using magnets with combined bending and focusing fields, for example the CEA
and DESY I electron synchrotrons, as well as the PS proton synchrotron.  If there are no
separate focusing fields (k ≠ 0 only if 1/ρ ≠ 0) then combining Eqs. (19) and (20) above, gives
in the isomagnetic case:



  
D = 2 −

D / ρ( )ds∫
2πρ

= 2 − αL

2πρ

where α is the momentum compaction factor.  Since α  is usually small it may be seen that       
D  ~ 2 and hence Jx ~ -1, Jz = 1 and Jε ~ 4.  In the case of a combined function lattice therefore
the betatron motion is    anti-damped     in the horizontal plane [16–18].  Electron synchrotrons can
however be built with a combined function lattice, provided the growth that occurs in the
horizontal beam size is acceptable.

In order to overcome the anti-damping of the combined function lattice various correction
methods have been proposed [8,16,17,19,20], some of which are discussed in Section 6.

5 . 3 Strong focusing, separated function

It has been shown that radial damping can be achieved in a combined function lattice by
using focusing and defocusing magnets of slightly different strength [8, 21].  The most
common lattice arrangement however which produces damping in all three planes, is the so-
called separated function lattice i.e.  one in which the functions of bending and focusing are
divided in separate dipole and quadrupole magnets [22,23].  One possibility may be seen
directly from Eq. (10).  It is clear that with a value of n = 0.5 in the bending magnets D = 0,
and hence Jx = Jz = 1, Jε = 2, irrespective of additional quadrupole magnets which may be
arranged to produce an alternating gradient structure.  Such an approach was taken in the design
of both the ACO and ADONE storage rings.

In the case of zero field gradient in the dipole magnets, it may be seen from Eq. (10) that
in the isomagnetic case we have:

  
D =

D / ρ( )ds∫
2πρ

= 2 − αL

2πρ

The value of D in this case results only from the path length effect in the dipole magnets,
which is usually very small.  In all of the above analysis we have assumed that the bending
magnets have a sector geometry, however, only small modifications usually result in the case of
non-zero entrance and exit angles.  In the special case of a lattice with parallel edged dipole
magnets it may be shown that the effective field gradient at the entrance and exit of the magnet
cancels the path length effect exactly, resulting in D = 0.

In separated function lattices therefore Jx ~ 1, Jz = 1 and Jε ~ 2, and so the motion is
damped in all three planes.  This type of lattice is now generally used not only for storage rings,
but also for synchrotrons since this also leads to smaller beam sizes.  The difference between
the two lattice types may be illustrated by the performance of the original DESY I synchrotron
(combined function) and the later DESY II (separated function) [24], shown in Fig. 7.  In
DESY I the increase in horizontal beam size after an initial period of adiabatic damping is due to
fact that the horizontal motion is anti-damped.  A high repetition rate of 50 Hz was necessary in
this case in order to limit the growth of the beam size.  On the other hand, in DESY II the beam
size approaches the equilibrium value even for widely different injected beam sizes and a much
slower repetition rate could be used (12.5 Hz).  

5 . 4 Damping time and injection energy

A common type of injection scheme for electron storage rings is multi-cycle injection, in
which the injected beam damps in size due to radiation damping in the interval between
injections so preventing loss on the injection septum magnet.  In this way a high current can be



accumulated without needing a very high performance injector.  The maximum possible
injection rate depends to some extent on the damping time for the plane in which the injection is
performed, usually the horizontal.  This is particularly important when a ring is being filled at a
lower energy than its final operating value since the damping time varies rapidly with energy,          
~ 1/E3.

Fig. 7  Variation of horizontal beam size with time during the acceleration cycle in the DESY I
(left) and DESY II (right) synchrotrons [24]

The importance of injection energy is illustrated by the unique system of beam storage that
was employed at the CEA when it was operated as an electron storage ring with a low injection
energy of 260 MeV [25].  In order to increase the current that could be accumulated the energy
was cycled repeatedly between injection energy and 2.1 GeV, so that sufficient radiation
damping could occur at the higher energy between successive injections.

The topic of injection energy is particularly relevant in the field of modern compact
sources of synchrotron radiation [26].  Since the critical wavelength of the radiation at the
operating energy varies as ρ/E0

3, it follows that the same value can be obtained with a lower
operating energy using superconducting magnets with a smaller bending radius than
conventional magnets.  This tends to reduce the overall circumference and so make the ring
more compact.  In addition, since the damping time at the injection energy varies as T0ρ/Ei

3 it
follows that a lower injection energy may be used while maintaining the same damping time,
which permits a more compact and cheaper injector to be used.

Table 2

Damping times and injection rates in some electron storage rings
with low energy multi-cycle injection

COSY [29] MAX [27] ALADDIN [30]
Injection energy (MeV) 50 100 100
Damping time (s) 2.5 2.5 13.6



Injection rate (Hz) 10 10 1.25

Many other factors, however, affect the injection process at low energy, such as trapped
ions, intra-beam scattering, instabilities etc., as well as complex beam dynamics [26,27], and
the connection between damping time and injection rate is not well established.  Table 2 gives
data for three storage rings with a low energy injection, showing that multi-cycle injection can
be achieved with a period as short as 1/25th of a damping time.  At even lower energies a multi-
cycle injection becomes impossible, however, it may be possible to inject sufficient current in a
single shot.  For example, the 600 MeV Super-ALIS ring in Japan can be injected in this way at
only 15 MeV, where the radiation damping time is very long indeed (~ 4 min) [28].

6 . MODIFICATION OF DAMPING RATES

In the following sections we consider various ways in which the damping rates can be
modified in an existing lattice.

6 . 1 Gradient wiggler magnet

s 

x

-B/2 +B -B/2
dB
dx- +dB

dx+dB
dx

Fig. 8  Schematic diagram of a gradient wiggler magnet.

In order to modify the damping partition between the three planes a wiggler magnet with a
gradient field may be used.  This was first proposed by Robinson in 1958 as a means of
overcoming the radial anti-damping of the CEA electron synchrotron, which has a combined
function lattice [8,17].  For this reason it is often referred to as a "Robinson wiggler".  

The method is to reduce the damping of the energy oscillation, thereby increasing the
damping of the radial motion, by using a magnet in which higher energy electrons radiate    less   
than lower energy electrons i.e. dU/dε is reduced.  From Eq.(10) it can be seen that D reduces
if 2kD/ρ > 0 i.e. DB(dB/dx) < 0.  A series of magnet poles with alternating polarity of dipole
and gradient fields as shown in Fig. 8 will therefore achieve this.  Such magnets were installed
at CEA in order to permit operation as a storage ring [25,31] and also in the PS to permit
operation with electrons [5].  The magnets used in the latter case are shown in Fig. 9.

Gradient wigglers have also been proposed as a means of decreasing the beam emittance
in various synchrotron radiation sources, as will be discussed in the following Chapter.

6.2 Variation of r.f. frequency

Another technique that can be employed in large rings for modifying the damping partition
numbers is variation of the r.f. frequency [20].  The effect of a change in frequency (f) is to
cause the orbit length (L) to vary, so forcing the electrons to move onto an off-energy orbit:



∆f
f    =  - 

∆L
L    =  - α 

ε
E0

 

Fig. 9  Cross-section of the gradient wiggler magnet used in the PS [5]

where α  is the momentum compaction factor.  The shift in the orbit where there is finite
dispersion, xε = D(s) ε/E0, has various effects, the largest of which results from the dipole field
seen by the particle in the quadrupole magnets, (1/ρ)quads = -kDε/E0 [32].  It follows from
Eq. (10) that there is a change in D given by:

  

∆D ≅
2D2k2ε / E0ds∫

1 / ρ2ds∫
Table 3 shows the magnitude of the effect for three rings of different size, expressed as

the change in the horizontal damping partition number with energy deviation and with mean
orbit radius (R = L/2π).  It can be seen that in order to change Jx by unity the mean orbit
position needs to be shifted by only 0.5 mm in LEP, with a corresponding energy deviation of
only 0.13%, whereas in the EPA this change would require a movement of 30 mm, with an
energy deviation of 5.6%.  The method is effective therefore only in large rings; for example it
was used regularly in PETRA [33] for luminosity optimization.

Table 3

Variation of horizontal damping partition number in various electron storage rings



EPA [5] PEP [34] LEP [6]
dJx/d(ε/E0) -18 -100 -764
dJx/dR        (mm-1) -0.03 -0.26 -0.47

6 . 3 Betatron coupling

The techniques discussed in the above two sections both involve changing the damping
partition between the horizontal betatron motion and the energy oscillations.  Another possibility
is to vary the partition between the horizontal and vertical planes by means of skew-quadrupole
or solenoidal fields, without affecting the energy oscillations.  This was one of the additional
techniques originally proposed as a means of overcoming the radial anti-damping in combined
function lattices [8,20].

6 . 4 Dipole wiggler magnet

It follows from Eq. (16) that an increase in the energy loss per turn U0 will bring about an
increase in all three damping rates.  This can be achieved using a series of magnets with
alternating polarity, arranged so that there is no net deflection of the electron beam as shown in
Fig. 8, but in this case without the gradient field.  Such a device is known as a dipole wiggler,
or alternatively as a damping wiggler.  A dipole wiggler also affects the equilibrium between the
radiation damping and quantum excitation processes and so modifies the emittance in a
complicated way, depending on the ring energy, wiggler parameters and the dispersion
function, and will be discussed further in the following Chapter.  Dipole wigglers are in
operation in LEP and Fig. 10 shows the design of the magnets that are used [35].  

Fig. 10  The dipole wiggler magnet design for LEP [35]

7 . MEASUREMENT OF DAMPING RATES

In general, the damping rates are of less interest as compared with other parameters, such
as for example beam sizes and bunch lengths, and for this reason there are few published
reports about such measurements.  Several measurements have however been made at the SLC
damping rings, whose performance depends very much on the damping rate.  In one
experiment the sum of the three damping rates was inferred indirectly by measuring the energy
loss per turn U0 (Eq. (16)) [36].  This was done by using the relation U0 = Vrf sin (φ), by
measuring the peak accelerating voltage (Vrf) and the phase angle (φ), extrapolated to zero



current.  The damping time was also obtained by measuring the variation of the extracted beam
size as a function of storage time.  More recently a synchrotron light monitor was used with a
fast gated camera to directly measure the beam size as a function of time after injection.  Figure
11 shows a typical result [37].

Fig. 11  Variation of the beam size in the SLC electron damping ring as a function of
time after injection [37]

By fitting the data with an expession of the form:

σβ2  =  σβi
2 exp 





- 

2t

τ
  + σβo2 





1 - exp 





- 

2t

τ
  ,

where σβ0 is the r.m.s. equilibrium beam size and σβi is the inital value after injection, the
damping times in both horizontal and vertical planes (τx and τz)were obtained.

A similar method was used also in the EPA to measure the horizontal and vertical damping
rates.  In this case a stored beam was excited with a fast kicker magnet and the changing beam
profile observed with a synchrotron radiation beam profile monitor [38].  Figure 12 shows a
sample result, from which the damping time may be extracted using the expression above, with
σβi equal to the inital value after the blow-up using the kicker magnet (assuming zero dispersion
at the measurement point).  

For the longitudinal damping rate there is the possibility of making the same observations
as above in the horizontal plane but at a point with large dispersion.  This is because the total
beam size contains contributions from the betatron motion and the energy spread, σ2

total = σ2β
+ D2(σ2ε/E0

2) with different damping rates, τx and τε respectively.  Alternatively, some form of
r.f. excitation could be applied and the resulting changes in the bunch length could be measured
directly using an appropriate electron beam pick-up or synchrotron light monitor system.  



Fig.  12  Variation of the transverse profile of the beam in EPA after excitation
with a fast kicker magnet [38]
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QUANTUM EXCITATION AND EQUILIBRIUM
BEAM PROPERTIES

R.P.  Walker
Sincrotrone Trieste, Italy

Abstract
Effects arising from the discrete, or quantized, nature of the emission of
synchrotron radiation are considered.  Combined with the results of the
previous Chapter on radiation damping, the equilibrium beam
distributions and loss of particles due to finite acceptance (quantum
lifetime) are derived.  The changes in the equilibrium values that are
introduced by insertion devices are also considered.

1 . INTRODUCTION

In the previous Chapter it was shown that the loss of energy due to the emission of
synchrotron radiation (SR) and its replacement in the r.f.  cavities can give rise to a damping of
the betatron and synchrotron oscillations.  When this process was first understood it led to
speculation that the bunch size would eventually become so compressed that emission of
coherent radiation would set a severe limit on the maximum beam intensity [1–3].  However it
was later realized, firstly in connection with the energy oscillations [4,5] and later also for the
betatron oscillations [6,7], that the emission of SR gives rise to another effect – quantum
excitation – that causes a growth in the oscillation amplitudes, and that the combination of the
two effects can give result in a stable equilibrium.

How can the emission of SR give rise to both a damping and excitation ? As shown in the
previous Chapter, radiation damping is related to the continuous loss and replacement of
energy.  However, energy is lost in discrete units or "quanta", i.e.  photons, whose energy and
time of emission vary randomly.  This randomness introduces a type of noise or diffusion,
causing growth of the oscillation amplitudes.  The damping effect is linearly proportional to the
energy loss or gain, δε, and so the total effect depends on the sum of such events, Σ (δε)i, and
therefore on the total energy loss per turn Uo, independent of how the photons are distributed in
energy.  However, as will be seen later, the quantum effect depends on (δε)2 and so the total
effect is no longer simply related to the total energy loss per turn – Σ (δε)i2 ≠ Uo2 – but
depends on the numbers of photons with different photon energies i.e. the photon distribution
function.  A further distinguishing feature of expressions that describe the quantum excitation is
that they all contain Planck's constant, h, whereas in the expressions for the radiation damping
this factor is absent.  

In this Chapter we consider the equilibrium distribution of the particles that results from
the combined effect of quantum excitation and radiation damping, and derive expressions for
the emittance, energy spread and bunch length.  An estimate is also made of the rate of loss of
particles resulting from the finite acceptance for the betatron and synchrotron oscillations,
known as the quantum lifetime.  A basic approach has been taken, following closely that of
Sands [8];  more sophisticated treatments may be found in Refs. [9,10].  An introduction is
also made to the topics of low emittance lattices and the effect on the equilibrium beam
properties caused by insertion devices.   

2 . ENERGY OSCILLATIONS

2 . 1 Mean-square energy deviation

We recall the basic equations for the energy oscillations, with no damping:



ε (t) = A cos (Ωt - φ) (1)

τ (t) = 
-α

E0 Ω   A sin (Ωt - φ) (2)

where α is the momentum compaction factor and Ω the synchrotron oscillation frequency.  The
invariate oscillation amplitude is thus given by:

A2 = ε 2 t( ) + E0Ω
α







2

τ2 t( )  . (3)

When a photon is emitted the energy deviation changes, ε → (ε - u), and so the change in
A2 is therefore:

δ A2 = - 2 ε u + u2 (4)

The first term is linear in u and corresponds to the radiation damping, as can be seen as
follows.  If the energy loss (u) were independent of energy deviation (ε) then over the
synchrotron oscillation period this term would average to zero, i.e. no damping.  However, by
including the linear part of the variation of the energy loss with energy deviation, and averaging
over one turn, we arrive at an equivalent expression for the damping as derived in the previous
Chapter but in terms of A2 rather than A:

dA2

dt    =  
-A2

T0
  

dU
dE   =  

-2A2

τε
 (5)

where τε is the synchrotron oscillation damping time.

We will consider now the second term in the above, which being always positive can be
seen to give rise to a growth in A2.  Since each emission is independent the average rate of
increase is obtained by summing the effect of the n(u) du photons emitted in each energy
interval du:

  

dA2

dt
 =  u2 n(u) du

0

∞
∫  =  N u2 (6)

where n(u) is the photon distribution function introduced in the Chapter on Synchrotron
Radiation.  Both N  and <u2> vary around the orbit, however since the effects that we are
interested in occur slowly with respect to the orbit time we may average over many turns.
Also, it can be shown that the betatron and synchrotron oscillations have only a small effect,
and so we may simply take the average over the design orbit.  Including the radiation damping
term, we have therefore the following total rate of change of A2:

  

dA2

dt
 =  

- 2A2

τε
 +  N u2  (7)

An equilibrium is reached when dA2/dt = 0, in which case the mean value of A2 is given by:

  
A2  =  

τε
2

 N u2  (8)

It follows that the mean-square equilibrium value of the energy deviation is therefore:



  
ε 2  =  

A2

2
 =  

τε
4

 N u2  (9)

2 . 2 Distribution of the energy deviation

The above calculation results in a value of the mean-square energy deviation, but tells us
nothing about the distribution function of the energy deviation, which is also of interest.  In the
approximation used so far that the energy oscillations are linear with respect to energy
deviation, we can write an expression for the energy deviation at a given time as a sum of all the
previous photon emissions, including the damping term:

ε(t) =  Σ
i,t>ti

 ui exp 
- t - ti( )

τε









 cos Ω t - ti( )[ ] (10)

Since the typical energy deviation far exceeds the typical photon energy, the sum
therefore contains a large number of small terms.  These terms are also statistically independent
and equally positive or negative (due to the phase factor).  Therefore, according to the Central
Limit Theorem of probability theory [11], the resulting distribution of the energy deviation is
Gaussian, independent of the probability distribution function for u.  Furthermore, the variance
of the distribution is equal to the sum of the variances of the individual terms:

ε 2  =  Σ
i

 
u2

2
 exp 

-2 t -  ti( )
τε









 (11)

Approximating as an integral and evaluating then gives:

  

ε 2  =  
N u2

2
 exp 

-2 t -  ti( )
τε











-∞
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⌠

⌡
  dti =  

N u2  τε

4
 (12)

in agreement with Eq. (9).  Thus, we can relate the previous mean-square deviation to the
standard deviation of the Gaussian distribution for the energy deviation:

  
σe

2 =  ε 2  =  N u2  
τε
4

(13)

It is interesting to note that, as one might expect, the resulting value corresponds closely
to the statistical uncertainty in the number of photon emissions that occur in one damping time,
multiplied by the typical photon energy:

  σε ≅  N τε  uc (14)

2 . 3 Equilibrium energy spread

We use the following results from the previous Chapters:

uc
2  =  

11
27

 uc
2 N = 

15  3
8   

P
uc

  (15)

and therefore:



  
N u2  =  

55
24 3

 P uc  (16)

where,

P = 
e2 c

 6π ε0
  

γ4

ρ2
           

  
uc =  

3
2

 
h c γ 3

ρ
(17)

Also,

τε  =  
2 E0 T0

Jε  U0
 =  

2 E0

Jε  P
(18)

Inserting in Eq. (13) results in:

  

σε
2 =  

55
32 3

 hc γ 3 
1 / ρ3

1 / ρ2
 

E0

Jε
 (19)

The relative energy deviation is then:

  

σε
E0







2

 =  
55

32 3
 

h

mc
  

γ 2

Jε
 

1 / ρ3

1 / ρ2
  (20)

which simplifies in the isomagnetic case to:

σε
E0







2

 =  Cq  
γ 2

Jερ
   (21)

where the constant Cq is defined by:

  
Cq = 55

32 3
 

h

mc
 =  3.84 10-13   m     (electrons) (22)

Since in most existing rings the chosen bending radius increases roughly as energy [2],
the resulting energy spread values are very similar, typically about 0.1% as can be seen from
the examples given in the table below.

Table 1
Energy spread in various electron storage rings.

Ring E (GeV) ρ (m) σε/E (%)
EPA 0.6 1.43 0.06
ESRF 6.0 25 0.10
PEP 18.0 166 0.12
LEP 55.0 3100 0.08

2 . 4 Equilibrium bunch length

A Gaussian distribution in energy results in a similar distribution in the time deviation τ ,
and hence a Gaussian bunch shape in the longitudinal direction with standard deviation given
by:



στ  =  
α

Ω E0
   σε (23)

In the isomagnetic case therefore:

στ
2 =  

a

Ω






2

 Cq 
γ 2

Jε  ρ
 (24)

Inserting the expression for the synchrotron oscillation frequency,

Ω 2 =  
α

T0 E0
 eV̇0 (25)

we obtain:

στ
2 =  

Cq

mc2( )2  
α T0

Jε  ρ
 

E0
3

eV̇0
 (26)

Expressing the slope of the r.f. voltage in terms of the overvoltage, q = eV̂ / U0 , for the

case of a sinusoidal variation in voltage with peak value V̂ :

eV̇0 = q2 −1( )1/2
 U0 ωr. f . (27)

gives the following:

στ
2 =  

E1

2π
 

α T0

Jε  E0
 

1

q2 −1( )1/2
 ωr. f .

 (28)

where ωr.f. is the angular r.f. frequency, E1 is a constant = (55 3  / 64)   hc / r0  = 1.042 108 eV,
and r0 is the classical electron radius (2.818 10-15 m).

The bunch length, cστ, thus depends on many parameters such as energy, r.f. frequency
and voltage, and the momentum compaction factor, which depends on the lattice design.
Typical bunch lengths lie in the range 1–5 cm, however there are wide variations as can be seen
from the examples in the table below:

Table 2
Natural bunch lengths in various electron storage rings

Ring E (GeV) r.f. (MHz) cστ (cm)
EPA 0.6 19.3 25
SLC damping ring 1.2 714 0.5
ESRF 6.0 352 0.5
LEP 55.0 352 1.6

In a given ring the bunch length is most commonly adjusted by changing the r.f. voltage.
If the overvoltage (q) is large, then Eq. (28) shows that the bunch length is inversely
proportional to q .  Another possibility is to change the r.f. frequency, by using a separate set
of accelerating cavities.  For example, using two r.f. systems (62.4 and 500 MHz) and r.f.



voltage adjustment the bunch length in the BESSY storage ring was varied over a wIDe range
between 0.7 and 8 cm [12].  A further technique that has been used in some cases is an
additional r.f. cavity operating on a higher harmonic of the r.f. frequency in order to change the
slope of the r.f. voltage, V0  in Eq. (26).

It should be noted that the bunch length calculated above is usually only obtained in
practice with very small beam currents.  Most rings exhibit the phenomenum of "bunch
lengthening" as a function of the beam current, due a collective interaction of the beam with its
surroundings.

3 . BETATRON OSCILLATIONS

3 . 1 Horizontal plane

We recall from the previous Chapter that photon emission at a point with non-zero
dispersion gives rise to a change in the off-energy orbit, and hence introduces a change in the
betatron motion.  For an individual photon of energy u therefore:

δ xβ = - D(s) 
u
E0

 δ xβ' = - D'(s)  
u
E0

 (29)

The betatron oscillation invariant is given by:

A2 = γx2 + 2αxx' + βx'2 (30)

and hence the change due to the photon emission is therefore:

δA2  = ( )γD2 + 2αDD' + βD'2   
u2

E02 (31)

Only terms in u2 have been included, since the linear terms correspond to the radiation
damping, as was the case with the energy oscillations.

Defining the important quantity, H:

H(s) =  γD2 + 2αDD' + βD'2 (32)

and following the same procedure as for the energy oscillations, the average rate of increase of
A2 is then given by:

  

dA2 

dt
 =  

N u2  H

E0
2 (33)

where as before the average is taken around the design orbit.  Including the radiation damping
term:

dA2

dt    =  
-2A2

τx
  (34)

results in an equilibrium with mean-square value given by:



  

A2

2
 =  

τx

4
 

N u2  H

E0
2 (35)

This defines the important quantity known as the (horizontal) beam emittance, εx, which by
analogy with the earlier result for the energy oscillations is given as follows:

  

ε x  =  
A2

2
 =  Cq 

γ 2

Jx
 

H / ρ3

1 / ρ2
(36)

The same argument about the cumulative affect of a large number of small deviations can
be applied in this case also, leading to the conclusion that there is a Gaussian distribution in the
conjugate variables x,x '.  Figure 1 illustrates this distribution, which consists of a series of
ellipses each with a constant value of A2.  The ellipse with A2 = εx defines the "1 σ" contour
and hence the r.m.s.  beam size (σx) and divergence (σx') of the distributions projected on the
x, x' axes respectively.
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x'
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σ x
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Area = π ε 

Fig. 1  Gaussian distribution of electron density in the (x,x') plane

It follows from the properties of the ellipse defined in Eq. (30) that:

σx  =  ε β(s) σx'  =  ε γ(s) (37)

Thus, although the emittance is a constant for a given lattice and energy, the beam size
and divergence vary around the design orbit.  At a symmetry point in the lattice therefore,
where α  = 0 and γ(s) = 1/β(s), we have the simple interpretation that the emittance is the
product of the beam size and divergence, ε = σx σx'.

At a point in the lattice where there is finite dispersion the total horizontal beam size and
divergence includes also a contribution from the energy spread.  Since the betatron and
synchrotron motions are uncorrelated the two widths add quadratically, and hence:



σ x  =  ε x  βx (s) +  D2 (s) 
σε
E0
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(38)

σ x '  =  ε x  γ x (s) +  D' 2 (s) 
σε
E0
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In a given ring both the emittance and energy spread vary with E2, and so the beam size
and divergence vary linearly with energy.  This is in sharp contrast to the situation for heavier
particles for which radiation effects are negligible.  In that case, the normalized phase-space
area occupied by the beam is constant, in other words emittance is inversely proportional to
energy.

3 . 2 Vertical plane

In the usual case of no bending and hence no dispersion in the vertical plane, the previous
calculation would predict no quantum excitation and hence zero emittance in the vertical plane.
A small effect arises due to the fact that the photons are not emitted exactly in the direction of
the electron motion, which was neglected in the previous Section.  If a photon of energy u is
emitted at angle θz with respect to the median plane, the change in angle of the electron is given
by:

δz' =  
u
E0

   θz (39)

and hence the change in vertical oscillation amplitude is:

δA2 = 
u2

E02  θz
2 βz(s) (40)

By comparison with the previous formulae, and approximating as follows:

u2 θz
2  ≈  u2  θz

2   ;   θz
2  ≈  1 / 2 γ 2 (41)

the resulting equilibrium emittance becomes:

εz  =  
Cq

2
 

1
Jz

 
βz / ρ3

1 / ρ2
 (42)

which in the isomagnetic case is:

εz  =  Cq 
βz

2ρ
          bending magnets (43)

where the average is taken over the bending magnets.  Taking into account the value of Cq,       
Eq. (22), it can be seen that this value is very small indeed.

In practice the vertical emittance is not given by the value above, but arises from other
processes:



- coupling of the horizontal and vertical betatron motion, arising from skew-quadrupole
field errors.  The latter can arise from angular positioning errors of the quadrupole
magnets, and also from vertical closed orbit errors in sextupole magnets.

- vertical dispersion errors, arising from vertical bending fields produced by angular
positioning errors of the dipoles, and vertical positioning errors of the quadrupoles.

The resulting vertical emittance thus depends only on errors, which can only be estimated
statistically.  It is common to describe the effect in terms of a coupling coefficient, κ , defined
such that the sum of the horizontal and vertical emittances is constant:

εx = 
1

1+κ
   εx0

εz  =  
κ

1+κ
   εx0

(44)

The quantity εx0, calculated with Eq. (36), is often called the "natural beam emittance".  The
vertical beam size and divergence are then calculated as follows:

σz (s)  =  εz βz(s) σz'(s)  =  εz γz (s) (45)

Typically, without correction, the coupling has a value of 1–10 %.  In a given ring the
coupling can be adjusted by means of an appropriate distribution of skew-quadrupole magnets,
which excite a linear coupling resonance [13].

4 . SYNCHROTRON RADIATION INTEGRALS

The equations derived above and in the previous Chapter can be expressed in a general
form that is valID also in the case of a non isomagnetic lattice, using the following Synchrotron
Radiation Integrals [14]:

I2 =  
1

ρ2  ds ⌠
⌡

I3 =  
1

ρ3
 ds 

⌠

⌡


(46)

I4 =  
D

ρ
 

1

ρ2  -  2k






 =  
⌠

⌡


1 − 2n( ) D
ρ3  ⌠

⌡
  

I5 =  
H

ρ3
 ds 

⌠

⌡


It should be noted that a modulus sign has been included in some cases, in order that the correct
values are obtained for elements with an opposite curvature to that of the main bending magnets
e.g. in insertion devices.  The beam parameters that can be calculated using the integrals are as
follows:

Energy loss per turn:

U0 = 
ε2

6π ε0
   γ4 I2 (47)

Damping partition numbers:

Jx = 1 - 
I4
I2

 Jz = 1 Jε = 2 + 
I4
I2

 (48)

Damping times:



τx = 
3 T0

r0 γ3
  

1
I2  - I4

 τz = 
3 T0

r0 γ3
  

1
I2

 tε = 
3 T0

r0 γ3
  

1
2I2 + I4

 (49)

Energy spread:
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   =  
Cq γ2

Jε
  

I3
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 (50)

Natural emittance:

ε x0
 =  Cq γ 2 

I5

I2 -  I4
 =  

Cq γ 2

Jx
 

I5

I2
 (51)

where Cq is defined in Eq. (22).  It can be noticed in the above that I2 and I4 are related to the
radiation damping, whereas I3 and I5 are related to the quantum excitation.

At this point it is worth mentioning that the above equations are valID also for protons,
with appropriate numerical values for r0 and Cq.  In a given lattice therefore, the energy loss
and damping times are reduced as the fourth power of the ratio of the masses of the particles
(mp/me = 1823) and the energy spread and emittance as the third power.  Thus, even in the case
of the next generation of high energy proton machines such as LHC and SSC, the equilibrium
values calculated from the above formulae are so small that in practice the beam dimensions will
be limited by other processes such as intra-beam scattering.   

5 . QUANTUM LIFETIME

5 . 1 Betatron oscillations

The distribution of beam intensity, both radially and vertically, is Gaussian and therefore
in principle extends to infinity.  However, the aperture defined by the vacuum chamber is finite
and so there will be a constant loss of those electrons that approach the vacuum chamber walls.
To calculate the effect we cannot simply use the probability distribution of the beam
displacement (x) at a given point in the ring, since the particles at a given x but lying on
different phase ellipses will arrive eventually at different maximum values (see Fig. 1).  We
need therefore the probability distribution for the maximum value reached at that point in the
ring, xmax, or equivalently the invariant A2, since xmax2 = A2β.  

h(W) 

W 

C 
W 0 

h(W) 

W 

A B 
W 0 

a) b) 

Fig. 2  Distribution of oscillation energies with no aperture (a) and with an aperture (b)

A2, which we shall call W , is a kind of "oscillation energy".  It can be shown that the
probability distribution for W is as follows:

h W( ) =  
1
W

 exp  
- W
W







 
(52)



Consider the number of electrons with oscillation energies increasing above or decreasing
below a value Wo which corresponds to the aperture limit, i.e. Wo = xmax2/β.  Figure 2
illustrates the situation.  With no aperture, and in the steady state, the number of electrons
crossing Wo in each direction must be equal (A = B).  If the aperture is sufficiently far from the
centre of the beam distribution the number of electrons which increase in amplitude, and hence
are lost on the aperture limit, will be very nearly the same as if there were no aperture i.e. A ~_ 
C.  Hence the loss rate (C) can be estimated by the rate at which particles cross the limit Wo due
to radiation damping, in the steady state (B).  The rate is therefore:

dN

dt




 W0

 =   
dN

dW
  

dW

dt




 W0

(53)

where:

dN

dW
 =  N h W( ) =  

N

W
 exp 

-W0

W







(54)

and:

  

dW

dt
 =  

-2W0

τx
 ,   since W =

)
W exp -2t / τx( ) (55)

Hence:

dN

dt
 =  - N

2
τx

  
W0

W
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- W0
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(56)

The loss is therefore exponential:

N =  N0 exp -t / τq( );  
dN

dt
 =  

-N

τq
(57)

where τq is the "quantum lifetime" defined by:

τq =  
τx

2
 

W

W0
 exp 

W0

W







(58)

We can write this in the standard form:

τq = τx

2
 
exp ξ( )

ξ
(59)

where:

ξ =  
W0

W
 =  

xmax
2

2σ x
2 (60)



The lifetime is determined by the minimum value of xmax/σx, or equivalently xmax/√β,
that occurs at some point around the ring (neglecting the effect of any closed orbit errors).  This
is known as the limiting acceptance, which because of the dependence on β may not correspond
to the smallest physical aperture.  Because of the exponential factor the quantum lifetime
increases rapidly with ξ and hence xmax/σx.  To illustrate this fact, the table below gives values
of the quantum lifetime for a range of values of xmax/σx for a typical damping time of 10 ms.

Table 3
Quantum lifetime as a function of limiting aperture.

xmax/σx 5 5.5 6.0 6.5 7.0

τq 1.8 min 20.4 min 5.1 h 98.3 h 103 days

Hence, one arrives at the 'Golden Rule' for long lifetime:

xmax/σx   ≥   6.5     (61)

i.e. the beam aperture should be at least 13 times the r.m.s. beam size in order that the quantum
lifetime does not play a significant part in determining the overall beam lifetime.  Other
processes will then dominate, such as scattering off resIDual gas molecules, Touschek
scattering etc. [15].

5 . 2 Energy oscillations

There is also a quantum lifetime resulting from the finite r.f. acceptance for the energy
oscillations.  The synchrotron oscillations become non-linear at large energy deviations, but if
we assume that the maximum possible energy deviation, εmax, is large compared to the r.m.s.
energy deviation, the calculated loss rate should be approximately correct.  We can estimate this
loss rate in the same way as for the betatron oscillations.  With the oscillation amplitude given
by:

W =  A2  =  ε 2 +   
E0 Ω

α






2

 τ2 (62)

we obtain a similar result to Eq. (59):

τq =  
τε
2

 
 exp ξ

ξ
(63)

where:

ξ = W0

W
 =  

εmax
2

2σε
2 (64)

Inserting expressions for εmax and σε derived earlier we can write:

ξ =  E1 
Jε E0

αh
 F q( ) (65)

where F(q) is the 'energy aperture' function defined by [8]:



F q( ) =  2 q2 -1( )1/2
 −  cos-1 1 / q( )


(66)

and h is the harmonic number of the r.f. system (r.f. frequency divided by orbit frequency).

The overvoltage (q) required to ensure adequate quantum lifetime therefore is smallest in a
lattice with small momentum compaction (α) and high harmonic number (h).  As an example,
the 2 GeV SRS storage ring in its first phase had a relatively large momentum compaction        
(α = 0.135) which gave rise to a high overvoltage requirement of 7.2, for 100 hours quantum
lifetime.  After changing the magnet lattice in order to reduce beam emittance this also resulted
in smaller momentum compaction (α = 0.029) and hence a significantly smaller overvoltage
requirement of 2.7, with a consequent reduction in r.f. power demands.

It can be seen that similar terms appear in the expression above for ξ as in the expression
for the bunch length, Eq. (28).  We can use this fact to make a rough estimate for the bunch
length under the conditions that the quantum lifetime is large.  Combining the relevant equations
we obtain:

στ
Tr.f .







2

 =  
F(q)

ξ q2 −1( )1/2   
1

2π( )2 (67)

where Tr.f. is the r.f. period, i.e. the time interval between r.f. buckets.  Approximating
F(q)/(q2 - 1)1/2 by its limiting value for large overvoltage (=2) then gives:

σt

Tr.f .







2

 ≈  
1

2π2ξ
(68)

Thus, with a value of ξ = 21 for good lifetime (equivalent to a value of εmax/σε = 6.5), we
obtain the simple result that the total bunch length (for example, the full wIDth half maximum)
is about 10% of the bunch separation.

6 . LOW EMITTANCE LATTICES

Here we examine two applications of an electron storage ring in which a low emittance is
a particular requirement.

6 . 1 Synchrotron radiation sources

A small beam size and divergence, i.e. a small beam emittance, is a general requirement of
synchrotron radiation sources, in order to increase the brightness of the emitted radiation.
From the expressions derived earlier, e.g. Eq. (51), it can be seen that to obtain low emittance
requires a lattice design which minimizes the average H function in the bending magnets.  In
particular a small dispersion is required, which is not achieved in the classic separated function
lattice, the FODO.  Various types of lattice have therefore been developed in order to achieve
this [16,17].  The first was the Chasman-Green (CG) structure, which is based on an
achromatic arc composed of a pair of bending magnets with a focusing quadrupole in between
[18].  Such a design results in zero dispersion in the straight sections between achromats which
are therefore suitable locations for insertion devices (see Section 7).  The limited flexibility of
this lattice has led to the extended CG or double-bend achromat (DBA) and triple-bend
achromat (TBA).  For each lattice type there is a minimum achievable emittance which is given
by an expression of the form:



ε x0 , min =  f  
Cq γ 2

Jx
 θb

3 (69)

where θb is the bending angle, assumed equal for all magnets.  The factor f varies depending
on the lattice type from 0.05 in the case of a DBA lattice to 0.36 for a FODO lattice.  It should
be noted however that in all cases the emittance increases as the square of the energy and varies
inversely with the third-power of the number of bending magnets.  In the case of several of the
third generation synchrotron radiation sources that are under construction, the typical natural
emittance is 7 10-9 m rad even though the rings vary widely in energy from 1.5 to 8 GeV.  This
is achieved by adjusting the number of achromats (and hence θb) between 10 and 44.

It can be seen from the equations in Section 4 that some reduction in the emittance can be
obtained by increasing Jx which can be achieved by adding a vertically focusing field gradient
(k and n positive) in the dipole magnets [19].  Some new storage rings (e.g. ALS, Berkeley,
and ELETTRA, Trieste) employ such a gradient field both for emittance reduction and for
optimization of the lattice β functions.  In the latter case for example, the bending magnet has a
field index of 13, giving Jx = 1.3.

6 . 2 Damping rings

A damping ring serves as a temporary storage ring to reduce the emittance of an injected
beam by means of radiation damping.  It can be seen from Eqs. (33) and (34) that a
combination of quantum excitation and radiation damping processes leads to a general equation
for the emittance, of the form:

dε
dt   =  constant  - 

2ε
τx

 (70)

The emittance (ε) therefore varies in time as follows:

ε(t)  =  εi exp 
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2t

τx
  + εo 





1  - exp  





- 

2t

τx
 (71)

where εo is the equilibrium emittance (t = ∞) and εi is the injected beam emittance (t = 0).  For a
given storage time, the optimum ring energy is thus a compromise between the need for both
small equilibrium emittance (low energy) and fast damping (high energy).  Since from Eq. (49)
the damping time is proportional to Toρ/Eo

3 it follows that a fast damping requires also a small
orbit circumference and small bending radius (high field strength).  An example is the
1.21 GeV SLC positron damping ring [20], which has a small circumference (35 m) and
bending radius (2 m, corresponding to a 2 T magnetic field) resulting in a small damping time
of 3.1 ms, sufficient to reduce the initial positron beam emittance by about a factor of 300 with
a storage time of 11.1 ms.

7 . CHANGES IN BEAM PROPERTIES DUE TO INSERTION DEVICES

An insertion device (ID) is a magnetic device located in a straight section of a ring that
produces a transverse field component that alternates in polarity along the beam direction.  Such
devices are used both as special sources of synchrotron radiation [see Chapter on Synchrotron
Radiation] and as a means of controlling various beam parameters [21].  In general, IDs give
rise to both additional radiation damping and quantum excitation, and so result in different
equilibrium values of damping times, emittance and energy spread etc. which depend on the ID
parameters and on the lattice functions at the ID location.



The Robinson, or gradient, wiggler introduced in the previous Chapter was the first type
of insertion device, and was developed as a means of overcoming the radial anti-damping of
combined function lattices.  Such a device can also be used in separated function lattices that are
already damped in all 3 planes as a means of reducing beam emittance. The dominating effect is
the change introduced in the I4 integral, which affects the damping partition numbers.  It can be
seen directly from Eq. (51) that an increase in Jx from its usual value of 1 to 2 can reduce the
emittance by a factor of 2, while still allowing damping of all oscillation modes.

The more common type of insertion device is the dipole or damping wiggler, which in
general contributes to all of the Synchrotron radiation integrals.  It can be seen from the
equations in Section 4 that I2 always increases and hence the damping times all reduce, as
described in the previous Chapter.  The effects on energy spread and emittance are however
more complicated.  It follows from Eq. (50) that the ratio of the modified to the original (no ID)
equilibrium values can in general be written as follows:
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(72)

where the contributions of the insertion device to the integrals are labelled ID.  In the common
case of a sinusoidal field variation these contributions can be written as follows:

         I2
ID =  

L

2 ρID
2            I3

ID =  
4

3π
 

L

ρID
3            I4

ID =  -
1

32 π2  
λo

2

ρID
4  L (73)

where L is the length of the ID, λo the period length and ρΙ∆ is the bending radius
corresponding to the peak field of the ID.  The I4ID term arises from the dispersion generated
by the device itself, the so called self-dispersion.  In most cases however it is negligible
compared to the larger I2ID term.  Simplifying for the isomagnetic lattice case, and also
neglecting the I4 term, i.e.  assuming Jx = 1, results finally in the following:
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It can be seen from the above that if the peak field in the ID is less than that of the bending
magnets (ρID > ρ) there is a reduction in energy spread, whereas if the peak ID field exceeds
the bending magnet field (ρID > ρ)the energy spread is increased.

In the case of the emittance the effect is complicated by the fact that the ID self-dispersion
must be added to the dispersion that is present in the straight section without the ID:
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(75)

The net result must in general be evaluated numerically, however some limiting cases can be
examined.  In the case that the dispersion in the straight section is large we can write (in the
isomagnetic case):
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(76)

Thus the emittance can be increased or decreased depending on the relative values of H
and ρ in the insertion device and in the bending magnets.  It can be seen that if H/ρ in the ID
exceeds H/ρ in the bending magnets then the emittance will be increased.  In modern
synchrotron radiation sources therefore, where it is usually wanted to preserve the low
emittance, the insertion devices are usually placed in straight sections with zero dispersion.  If
however they are placed in a straight section with finite dispersion and if it is wanted to
minimize the emittance increase then it can be seen from the above that the quantity 1 / ρ3 ds∫
should be minimized in the magnet design.

In the case where there is zero dispersion in the straight section, the self-generated
dispersion in the ID dominates.  The largest term involved is:

I5
ID =  

λ0
2

15π3ρID
5  βx  L (77)

A similar expression can be derived in the case of a rectangular, rather than sinusoidal, field
model.  From the above a condition for the emittance not to be increased can be derived as
follows:

λ0
2  B3 ≤  5.87 109  

 E [GeV] ε x0

βx
(78)

It can be seen therefore that except for very high field devices in low emittance and low energy
rings the emittance is generally reduced by the ID.

Fig. 3  Beam emittance in PEP as a function of the total damping wiggler length

It follows from the above that dipole wigglers may be used as a means of either
increasing or decreasing the beam emittance.  For example, they have been proposed as a
means of obtaining a very low emittance in PEP, for operation as a synchrotron radiation
source [22].  With a 1.26 T wiggler with a period length of 12 cm, Fig. 3 shows that a



reduction in emittance of nearly a factor of 10 can be achieved, albeit with a total wiggler length
of some 200 m.  The possibility of including dipole wigglers in the design of damping rings for
the next generation of linear colliders has also been considered [23].

Two sets of dipole wigglers are in routine operation in LEP [24].  One set is located in a
dispersion free region and is used at injection to increase the energy spread and bunch length by
5–6 times the normal value in order to improve beam stability.  A second set is in a finite
dispersion region and is used to increase the emittance in order to optimize the beam luminosity.
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