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P. 0 . Box 5000, Upton, New York 11973-5000 and 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94305 

Abstract 
Electromagnetic fields can be separated into near and far components. 
Near fields are extensions of static fields. They do not radiate, and they 
fall off more rapidly from a source than far fields. Near fields can accel­
erate particles, but the ratio of acceleration to source fields at a distance 
R, is always less than R/X or 1, whichever is smaller. Far fields can be 
represented as sums of plane parallel, transversely polarized waves that 
travel at the velocity of light. A single such wave in a vacuum cannot give 
continuous acceleration, and it is shown that no sum of such waves can 
give net first order acceleration. This theorem is proven in three different 
ways; each method showing a different aspect of the situation. 

INTRODUCTION 
In the quest to build higher energy accelerators that are both smaller and cheaper, 
we search for ways to increase the acceleration gradient. Acceleration is convention­
ally obtained in structures with dimensions comparable to the wavelength (cavities 
or linacs). Breakdown on the surfaces of the nearby structure limits the gradient at­
tainable. Acceleration is possible far from any structure in a gas (Inverse Cherenkov 
acceleration) but the gas can breakdown and Coulomb scattering blows up emittance. 
Acceleration is possible in vacuum, far from any structure if a fixed or wiggling mag­
netic field is present (Inverse FEL), but synchrotron radiation limits the energy at 
which this can be used. Acceleration is also possible in a plasma, but both plasma 
instabilities and Coulomb scattering blow up emittance, limiting its applications. 

If it were possible to get good acceleration, far from the source, in a vacuum, 
without magnetic fields, it would be very desirable. We note that the fields at a 
focus can be far higher than those at the aperture of the lens or mirror that produces 
it, and we wonder if such fields at a focus could not be used to accelerate. Several 
papers have been written that claim such acceleration. Unfortunately, we conclude 
that these claims cannot be correct. 

Fields can be divided into "near fields" whose strength at a distance are never 



greater than those at their source, and far fields whose fields can be focussed to 
values far higher than those at their source. Near fields can accelerate, but it has 
been shown1 that far fields, in vacuum, without magnetic bending, cannot accelerate. 
In this paper we expand the presentation of this theorem, and give three proofs of it. 

NEAR AND FAR FIELDS 
Fields generated by a moving charge 

Electromagnetic fields can be separated into two components: near fields and far 
fields. There are several ways of identifying these two different kinds. The simplest is 
to examine the fields generated by a moving charge. From almost any textbook 2 we 
find that from a charge e, moving with a velocity /? c, at a time t, the electric field 
vector S(x, t') at a location x relative to the charge, at a time t' = t + * , is given by: 

E( (g~g) \ e/gx(g-flx gx 
S 2 ( l - l - g ) 3 ; . eV (1-/7.3)3 I * ( * . * ) - — & + R 

where n is the unit vector in direction x, R is the absolute value of x, 7 is the electron 
energy divided by its mass, 0 is the time derivative of the vector 0, and c is the 
velocity of light. 

The expressions may be more familiar if we take the non-relativistic limit /? <^ 1: 

In either case, it is seen that the first term is inversely proportional to i2 2 , ie it falls 
like the static Coulomb field of the charge. This is the static or near field component. 

The second term falls only with the inverse of R. This is the dependence of a 
radiation field, whose energy falls with the area over which it is spread, ie whose 
energy falls as R~2 and thus whose fields fall as R~l. This is the far field. 

Electromagnetic Waves 
Another way of seeing the difference between near and far fields is by looking for 
solutions to Maxwell's equations. From these, in a vacuum, we can easily obtain the 
wave equation: 

c 2 

All solutions to this equation can be expressed as sums of waves of the form 

S{r,t) = £0 e^-"* 

where 



Far Fields 

If the vector k is real then these equations refer to plane parallel waves travelling in 
the direction k at the velocity of light c. They are the source of radiation and are 
thus far fields. If we apply the Maxwell's equation 

V>£ = 0 

then we obtain 
k • S = 0 

ie the electric fields are perpendicular to the direction of propagation: they are trans­
versely polarized. 

Since such far fields travel at the velocity of light (we are only considering waves in 
a vacuum), they can only remain in phase with a relativistic particle if the wave and 
particle are travelling in the same direction. If they are not travelling in the same 
direction then any interaction between them will be periodic and will add to nothing. 
But if they are travelling in the same direction, even though they remain in phase, 
the electric fields are perpendicular to the direction of propagation, and there is again 
no acceleration. 

Near Fields 

In the above we have taken the vector k to be real. But if we allow the vector k to 
be complex then the meaning of the equations is more complicated. Let 

k — kr + ig 

where kT and g are real vectors. Then the fields are given by 

5(r, t) = £0 e" ( ? • *> e'K*^-""] 

and propagate in the direction kT but fall exponentially in direction g. They are known 
as evanescent waves. Such waves are surface phenomena and cannot propagate out in 
3 dimensions. They are not conventional radiation fields, and fall more rapidly from 
their source than a true radiation field. They are near fields. 

The velocity of propagation of such a wave will be given by 

we obtain 

For this reason such fields are also known as "slow'* fields. We should note however 
that the velocity of such waves in a directions at an angle 8 to the vector k will have 



a velocity equal to v%/cos(9) which can be matched to that of any particle that we 
wish to accelerate. 

In order to find the polarization of such waves, we again apply the Maxwell's 
equation 

V • S = 0 

For a complex wave we obtain 

ikT • S — g . S 

ie the electric fields S are not necessarily perpendicular to the direction of propagation 
kr. This fact, together with the slow velocity of such near fields allow them to remain 
in phase with a particle, and to accelerate that particle if it is charged. 

Ratio of Surface to Acceleration Fields 
Any fields in a vacuum can be expressed as sums of waves travelling in various direc­
tions. Both real (far) and complex (near) waves must be included. In an accelerating 
structure, for instance, there are clearly both kinds of waves. There must be near 
waves or there would be no acceleration. But there must be other waves also since 
the near waves cannot usually be found that would satisfy the boundary conditions 
of the cavity. Simple modes in rectangular of cylindrical waveguides are composed of 
pure far fields, and they do not accelerate. When a periodicity, such as periodic irises 
are introduced then near fields are added and acceleration is achieved. 

If we wish to estimate the surface fields on the structure walls that are needed to 
achieve a certain acceleration, we must take into account both near and far fields. 
But a lower limit on the surface fields can be obtained from the near fields alone. The 
addition of "far" fields will only increase the surface fields, but will not add to the 
acceleration. 

Consider, for instance, the case of acceleration over a surface. The surface could 
be a dielectric or grating. In either case evanescent (near) fields can be established 
near the surface, falling exponentially from that surface. For this case we will take 
the direction <f, in which the fields are falling exponentially, to be perpendicular to 
the surface, and call this direction y. The direction of propagation we take to be 
within the surface, in directions x and z. The particle to be accelerated we take to 
be moving at velocity c in the z direction at a height y above the surface. 

In this case, for the accelerating near field, we can write: 

&(y) = £y(<>) n r e~ ( 8 y y ) 

with the periodic time dependence implied. If this field is to accelerate a relativistic 
particle travelling in the z direction, then its velocity of propagation in z must equal 
c; ie 



so for small gy when Sz « Sy then: 

AccFUU <. fiM _ . A to , - * „, 
Surface Field ~ Sy{0) 2n 

If we chose gv to maximize acceleration then 

dgy 

9V = i /y 
and provided now that y « X 

Ace Field £ (y) . 1 .A. _, 
Surface Field £ y(0) 27T y 

This inverse dependency of the ratio of accelerating to surface fields, with the distance 
to the source divided by the wavelength, is very general. The constant changes with 
the geometry, but the dependency remains the same. In the cylindrical case, as we 
will see below, the 2ir is replaced by a single 7r, but the ratio of axial acceleration to 
the surface fields at a radius r is proportional to A/r. 

Cylindrical Symmetry 
If we integrate the general wave solutions over the azimuthal angle about a given 
direction, then we obtain the cylindrically symmetric solutions: 

£ 2 (z,r, t) = £ 0J 0(k rr)e'( k ' I-'* t> 

£;( Z , r , t ) = - i ^ £ ' 0 J 1 ( k r r ) e i ^ - ^ 

where J0 and Ji are Bessel functions, and 

*? + V = ( y )2 

If kr is real and finite then these equations represent far fields. They are the waves 
that can propagate in a smooth cylindrical waveguide, and they are the waves in 
Cherenkov radiation. We note that kz < (27r/A), and thus the wave velocity in 
the z direction is greater than that of light. Thus such waves can not continuously 
accelerate any real charge. 

But if kr is zero or imaginary, then the equations represent near fields. Now kz > 
(2TT/A), the wave velocity is less than or equal to the velocity of light, and acceleration 
is possible. 

In the particular case of kT —• 0 (ie the solution that will accelerate a relativistic 
particle), then: 

£ z(z, r, t) = f 0 e i ( k , z ~ u * ) (independent of r) 



£(z,r,t) -+ - i ^ ^ I ) ^ ^ - 0 = - i ^ e ^ - ^ 

Ace Field ^ £ (o) . 1 ,A, 
< 1—L = — j — I — \ 

Surface Field £ ( r ) 7r r 
which is the same as the ratio in the plane case above, but for the factor 2, and the 
substitution of r for y. 

Acceleration Theorem 
We have concluded above that a single far field can not produce continuous acceler­
ation, but we can make a stronger statement: 

N o combination of far fields, in an otherwise field free vacuum, can 
produce first order net acceleration. 

As a consequence of this theorem, acceleration under these restricted circumstances 
can only come from near fields, and then 

In an otherwise field free vacuum, the ratio of the first order average 
accelerating gradient, to the maximum fields at a distance R, is always 
less than a factor of the order of A/R where A is the wavelength of the 
accelerating field. 

Let us consider the qualifiers in order: 

"otherwise field free" 

No static or dynamic fields, other than those of the accelerating fields, may be present. 
With a static field there can be inverse synchrotron radiation; with a wiggler field 
there can be inverse free electron laser acceleration; both can give net first order 
acceleration of a particle. 

"in a vacuum" 

There can be no other charges or electrically active material present. In the presence 
of a plasma, there can be accelerating fields due to waves in that plasma. In the 
presence of other charges, there can be collective acceleration. And in a dielectric 
medium inverse Cherenkov acceleration can occur. 

"first order" 

We are only considering acceleration in which the change in energy is linear with 
the amplitude of the accelerating fields. There can be second order effects due to 
Compton scattering. In classical terms, this requires the re-radiation of energy, and 
the acceleration is then proportional to square of the accelerating fields. 



"net acceleration" 

The acceleration we are discussing is the net change of energy from and to points 
that are free of the accelerating field. Far fields can and will produce local changes 
in energy, but these will be reversed before the particle has exited the field region. 

It is often objected that the field could be "cut off" after such local acceleration, and 
thus the acceleration produced by the far waves preserved. What the theorem says, 
is that no suitable cutoff can be achieved by remote focussing, holograms or phase 
manipulations; such attempts will always introduce deceleration that just cancels any 
acceleration previously given. The only way to "cut off" the radiation in such a way as 
to keep the acceleration, is to introduce a physical obstruction such as a foil, plasma 
or iris. The foil or plasma clearly violate our conditions. In the case of the iris, then 
the net acceleration obtained, relative to the fields on the iris, will now be found to be 
inversely proportional to i2/A, where R is now the radius of the iris. The acceleration 
is thus a near field effect of the iris. 

PROOFS 
Proof 1: Sums of Waves 
All far fields can be expressed as sums of plane, transversely polarized 
waves travelling at the velocity of light. The continuous acceleration of a 
relativistic particle by any one such wave, and thus'the net acceleration 
from —oo to + oo, is zero. Since the first order acceleration from the sum 
of such waves equals the sum of accelerations from the individual waves, 
so the net acceleration, from —oo to + oo for any system of far fields must 
be zero. Since fields separated by field free regions, are independent, so if 
the acceleration, from —oo to -f oo is zero, then the acceleration from and 
to any field free regions, must also be zero. Q.E.D. 

This proof applies only to the acceleration of relativistic particles. The later proofs 
will be seen to be more general. Let us now expand on each of the components of the 
proof: 

A single far field wave 

In a vacuum, at distances large compared with the wavelength of the radiation, all 
fields can be represented as sums (taken over frequency, phase, and direction) of waves 
that are 

a) plane 
b) transversely polarized 
.c) propagating at the velocity of light 
The net acceleration of a relativistic particle (taken from —oo to +00) by any one 

such wave is zero. If the particle and wave are travelling in the same direction then 
there is no acceleration because the electric field is perpendicular to the direction of 



motion. But if they are travelling in different directions then the wave and particle 
will not remain in phase and the acceleration will be periodic". Such acceleration when 
integrated from —oo to +00 will be zero. 

Sums of waves 

The first order acceleration of a relativistic particle by the sum of any number of 
fields is equal to the sum of accelerations from each of the component fields taken 
individually. This follows from the fact that the acceleration from one component 
will neither change the particle trajectory (which, for relativistic particles, is always 
essentially straight), nor its velocity (which is always c). Thus the acceleration from 
any one component will not affect that of any other component. 

Since we are restricting the discussion to first order (acceleration linear in the 
electric field) the contributions from all components are linear in the component 
fields. 

If the contributions are both independent and linear, then the consequence of all the 
contributions at the same time must be the same as the sum of the each contributions 
when taken alone. 

From and to field free regions 

If acceleration is zero from —00 to +00, then it is also zero from any field free region 
to any other field free region. The fields beyond any field free region are decoupled 
from the fields before it and can thus be arbitrarily chosen to be zero without affecting 
the generality of the discussion. We can thus chose the fields outside of two field free 
regions to be zero and the integral between those regions is equal to that from—00 to 
+00. 

Proof 2: Quantum Mechanics 
Far fields may be represented as a sum of on mass shell (ie zero mass) pho­
tons. Linear acceleration in a field free region can only be represented by 
the successive absorption of individual such photons with no simultaneous 
emission. The interaction of any such a single photon with a charged par­
ticle with finite mass is forbidden by energy and momentum conservation. 
Thus there can be no such acceleration by far fields. Q.E.D. 

This proof is both more general than the first, in that it covers particles of any 
initial velocity, but it is restricted to the acceleration of particles with finite mass 
(not that this is much of a restriction), and is even easier than the first. 

From the quantum point of view, far fields, in vacuum, are made up of massless 
(on mass shell) photons. Near fields are from photons that are off their mass shell 
and have mass. Such photons can, as a consequence, only exist over short distances. 
We will again consider the components of the proof in more detail: 



Energy and momentum conservation 

First order (acceleration proportional to the field amplitude) acceleration by an elec­
tromagnetic field can be represented as the successive, but separate, interactions of 
photons with the particle. Far from the source of the fields, the corresponding photons 
will be massless. But the interaction of a massless photon with a charged particle, 
without emission of a second photon, can not conserve energy and momentum, and 
thus there can be no such interaction and no such acceleration. 

The proof of this is simplest if we are in the rest frame of the initial charge whose 
energy is then equal to its mass m and whose momentum is zero. After the interaction 
its energy will be m + £ , and momentum p 7 . If the particle is to maintain its same 
mass then 

m* = (m + Ej-(PJ 
and 

py = Ey + 2mEy 

Thus we find that for any finite photon energy Ey and finite mass of particle to 
accelerate m, then p 7 > Ey. But for an on mass shell photon m~, = 0 and p-, = E^, 
so the above process cannot take place. 

Multiphoton effects 

The interaction cannot be represented by the absorption of two photons, since this is 
clearly a second order effect. Nor can the interaction cannot be represented by the 
interaction and emission of a photon (which could conserve energy and momentum), 
since this also is a second order process. The process is known as Compton scattering 
and is proportional to the flux of initial photons. It is thus proportional to the energy 
flow, or accelerating field squared. It is not proportional to the accelerating field as 
required. 

A first order acceleration could take place by the absorption of two photons if one 
of the photons represents the interaction with a fixed or wiggler field, but the presence 
of such fields is also excluded in the formulation of the theorem. 

Near fields 

A first order acceleration can take place if the momentum and energy of the photon 
are not equal, ie if it is off its mass shell. The allowed energy nonconservation AJB 
over a distance R is given by 

AE Rtahc 
and the on mass shell energy E 

E = hu 
so for a change of energy comparable with the on mass shell energy: 

„ he A Rta—- = — 
hv 27T 

which is the same condition we had above for comparable source and acceleration 
gradients. 



Proof 3: Energy Conservation 
Any first order acceleration of a charge by a field must be accompanied 
by a corresponding decrease in that field's energy that is proportional to 
the field's amplitude. In vacuum, this can only occur by the destructive 
interference of the accelerating field with a field radiated by the test charge. 
Iri a field free vacuum far from any material a moving charge does not lose 
energy to radiation, and thus cannot decrease the accelerating field. Thus 
it cannot be accelerated. Q.E.D 

This proof is valid for a test charge of any velocity or mass. It is thus the most 
general of our proofs. It is best understood by examining those cases that we know 
do accelerate. In every case, in the absence of an accelerating field, there is the 
emission of some form of radiation caused by something other than the vacuum. The 
accelerating field, when applied, interferes with the radiated field in such a way as to 
decrease the energy in the field. The accelerating mechanism is then often referred 
to as the "inverse" of the radiation mechanism. For instance: 

Cause Radiation Acceleration 
Irises Wake Fields Linac 
Gas Cherenkov Inverse Cherenkov 
Magnetic Field Synchrotron Inverse Synchrotron 
Wiggler Fields Free Electron Laser Inverse Free Electron Laser 

Acceleration in a vacuum, far from all sources, would be the inverse of nothing that 
exists. It cannot occur. 

Near to a structure particles do lose energy to wake fields, and acceleration does 
occur. But the energy given to such wake fields falls, at longer distances, as 1/i?2, 
and thus their field amplitudes fall as i ? - 1 . At large distances they become negligible, 
and no acceleration is possible. 

Inverse Cherenkov, Synchrotron, or FEL 

When there is a source of radiation from the particle, such as Cherenkov, synchrotron, 
or wiggler radiation, then we can take its amplitude to be €* and the amplitude of the 
accelerating field to be £ a . The accelerating field energy without the particle to be 
accelerated will be proportional to (£ a ) 2 . The final energy, if the particle is present, 
will be proportional to (£ a — £.) 2. Thus the change of field energy AE will be: 

AE oc (& - Er)2 - ( £ ) 2 = -2£A + £ 2 

Since the fields radiated will in general be far smaller than those used to accelerate: 

AE « K -2Es£r 

The energy gain, ie acceleration, of the particle must be equal and opposite to this. 
And we see that it is indeed proportional to the accelerating field as required for first 
order acceleration. 



Compton Scattering 

In contrast, one might consider radiation pressure, ie Compton scattering. This can 
occur in a vacuum far from all material. Classically, we consider an accelerating field 
which causes the particle to wiggle. This wiggling then radiates, and this radiation 
can interfere destructively with the initial accelerating field. But the radiated field is 
proportional to the applied accelerating field that generated it. ie 

ST OC €m 

so 
AE «oc 2 £ a £ oc (£ a ) 2 

We see again that this is second order in the accelerating field and not a violation of 
the theorem. 
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