

LONGITUDINAL BEAM DYNAMICS

R. Corsini

AB Division – CERN

The present transparencies are based on the ones written by Louis Rinolfi (CERN-AB) who held the course at JUAS from 1994 to 2002 (see CERN/PS 2000-008 (LP).

Material from Joel LeDuff's Course at the CERN Accelerator School held at Jyvaskyla, Finland the 7-18 September 1992 (CERN 94-01) has been used as well.

LESSON I

Introduction

Fields & forces

Acceleration by time-varying fields

Relativistic equations

JUAS – 10/1/2003 – R. Corsini

Fields and force

Equation of motion for a particle of charge *q*

$$
\frac{\mathrm{d}\vec{p}}{\mathrm{dt}} = q\left(\vec{E} + \vec{v} \wedge \vec{B}\right)
$$

The fields must satisfy *Maxwell's equations*

The integral forms, in vacuum, are recalled below:

Maxwell's equations

The differential forms, in vacuum, are recalled below:

 $(\vec r, t)$ *t E c* $\vec{B} = m$ ^{*j*} (\vec{r}, t) ∂ ∂ $\nabla \times \vec{B} = \mathbf{m} \ \vec{j}(\vec{r},t) +$ \rightarrow \vec{D} re \vec{f} \rightarrow $\begin{array}{c} \sqrt{2} \\ 2 \end{array}$ 1 m_{\circ} \vec{j} $(\vec{r},$ 3. Ampere's law (modified by Gauss)

 ∂t $\overline{\partial B}$ $\nabla \times \vec{E} = \rightarrow$ \rightarrow 4. Faraday's law

Constant electric field

- 1. Direction of the force always parallel to the field
- 2. Trajectory can be modified, velocity also **Þ** momentum and energy can be modified

This force can be used to accelerate and decelerate particles

Constant magnetic field

$$
\frac{\mathrm{d}\vec{p}}{\mathrm{dt}} = \vec{F} = -e\left(\vec{v} \wedge \vec{B}\right)
$$

- 1. Direction always perpendicular to the velocity
- 2. Trajectory can be modified, but not the velocity

This force cannot modify the energy
rigidity
$$
B \mathbf{r} = \frac{p}{e}
$$
 angular frequency
$$
\mathbf{w} = \frac{e}{m} B
$$

Application: spectrometer

Larmor formula

An accelerating charge radiates a power *P* given by:

Energy lost on a trajectory *L*

$$
W = \int_{L} \frac{P}{v} \, \mathrm{d}s \qquad \qquad W \left[\mathrm{eV/turn} \right]
$$

"Synchrotron radiation"

For electrons in a constant magnetic field:

$$
W \text{ [eV/turn]} = 88 \cdot 10^3 \frac{E^2 \text{[GeV]}}{r \text{[m]}}
$$

Comparison of magnetic and electric forces

$$
|\vec{B}| = 1 \text{ T}
$$

$$
|\vec{E}| = 10 \text{ MV/m}
$$

$$
\left(\frac{F_{MAGN}}{F_{E L E C}}\right) = \frac{e v B}{e E} = \mathbf{b} c \frac{B}{E} \approx 3.10^8 \frac{1}{10^7} \mathbf{b} = 30 \mathbf{b}
$$

Acceleration by time-varying magnetic field

A variable magnetic field produces an electric field (Faraday's Law):

$$
\int_{L} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} = -\frac{d\Phi}{dt}
$$

It is the Betatron concept

The varying magnetic field is used to guide particles on a circular trajectory as well as for acceleration

JUAS – 10/1/2003 – R. Corsini

Acceleration by time-varying electric field

In the cavity gap, the electric field is supposed to be:

$$
E(s,r,t) = E_1(s,r) \cdot E_2(t)
$$

In general, $E_2(t)$ is a sinusoidal time variation with angular frequency ω_{RF}

$$
E_2(t) = E_s \sin \Phi(t) \quad \text{where} \quad \Phi(t) = \int_{t_0}^t \mathbf{W}_{RF} dt + \Phi_0
$$

Convention

- 1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
- 2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time t= 0 chosen such that:

First derivatives

$$
d\boldsymbol{b} = \boldsymbol{b}^{-1} \boldsymbol{g}^{-1} d\boldsymbol{g}
$$

$$
d(cp) = E_0 \boldsymbol{g}^3 d\boldsymbol{b}
$$

$$
d\boldsymbol{g} = \beta (1 - \beta^2)^{-3/2} d\boldsymbol{b}
$$

Logarithmic derivatives

$$
\frac{d\mathbf{b}}{\mathbf{b}} = (\mathbf{b} \ \mathbf{g})^{-2} \ \frac{d\mathbf{g}}{\mathbf{g}}
$$

$$
\frac{dp}{p} = \frac{\mathbf{g}^2}{\mathbf{g}^2 - 1} \frac{dE}{E} = \frac{\mathbf{g}}{\mathbf{g} + 1} \frac{dE_{kin}}{E_{kin}}
$$

$$
\frac{d\mathbf{g}}{\mathbf{g}} = (\mathbf{g}^2 - 1) \frac{d\mathbf{b}}{\beta}
$$

LESSON II

An overview of particle acceleration

Transit time factor

Main RF parameters

Momentum compaction

Transition energy

vacuum envelope

Electrostatic accelerators

- The potential difference between two electrodes is used to accelerate particles
- Limited in energy by the maximum high voltage (~ 10 MV)
- Present applications: x-ray tubes, low energy ions, electron sources (thermionic guns)

Electric field potential and beam trajectories inside an electron gun (LEP Injector Linac at CERN), computed with the code E-GUN

Alvarez structure

Synchronism condition

$$
\left| L = v_s T_{RF} = b_s I_{RF} \right| \qquad \qquad \mathbf{w}_{RF} = 2\mathbf{p} \frac{v_s}{L}
$$

Electron Linac

 $(wt-k z)$ $E(z,t) = E_0 \; e^{i(\boldsymbol{w} t - k \, z)}$ Electric field

Wave number

Phase velocity $v_{ph} = \frac{W}{I}$ Group velocity

k v ph w

k v_g d d*w* =

Synchronism condition

RF

2*p*

l

k

=

$$
v_{el} = \frac{w}{k} = v_{ph}
$$

JUAS – 10/1/2003 – R. Corsini

Synchrocyclotron

Same as cyclotron, except a modulation of ω_{RF}

 $B = constant$ $\gamma \omega_{RF}$ = constant ω_{RF} decreases with time

The condition:

$$
\mathbf{W}_s(t) = \mathbf{W}_{RF}(t) = \frac{q \, B}{m_0 \, \mathbf{g}(t)}
$$

Allows to go beyond the non-relativistic energies

- 1. ω_{RF} and ω increase with energy
- 2. To keep particles on the closed orbit, B should increase with time

Synchrotron

- In reality, the orbit in a synchrotron is not a circle, straight sections are added for RF cavities, injection and extraction, etc..
- Usually the beam is pre-accelerated in a linac (or a smaller synchrotron) before injection
- The bending radius **r** does not coincide to the machine radius *R* = *L*/2π

Parameters for circular accelerators

The basic principles, for the common circular accelerators, are based on the two relations:

1. The Lorentz equation: the orbit radius can be espressed as:

$$
R = \frac{\mathbf{g} \vee m_0}{eB}
$$

2. The synchronicity condition: The revolution frequency can be expressed as:

$$
f = \frac{e B}{2 \mathbf{p} \mathbf{g} m_0}
$$

According to the parameter we want to keep constant or let vary, one has different acceleration principles. They are summarized in the table below:

Transit time factor

RF acceleration in a gap *g*

 $E(s, r, t) = E_1(s, r) \cdot E_2(t)$

Simplified model

$$
E_1(s, r) = \frac{V_{RF}}{g} = \text{const.}
$$

$$
E_2(t) = \sin(\mathbf{W}_{RF} t + \mathbf{f}_0)
$$

At $t = 0$, $s = 0$ and $v \neq 0$, parallel to the electric field Energy gain: $\sqrt{2}$ *g*

$$
\Delta E = e \int_{-g/2}^{g/2} E(s, r, t) \, ds \qquad \Delta E = e V_{RF} T_a \sin \mathbf{f}_0
$$

where

$$
T_a = \frac{\sin \frac{\mathbf{W}_{RF} g}{2\nu}}{\frac{\mathbf{W}_{RF} g}{2\nu}}
$$

Ta is called transit time factor

• T_a < 1

$$
\bullet T_a \to 1 \text{ if } g \to 0
$$

Transit time factor II

In the general case, the transit time factor is given by:

$$
T_a = \frac{\int_{-\infty}^{+\infty} E_1(s,r) \cos\left(\mathbf{W}_{RF} \frac{s}{v}\right) \mathrm{d}s}{\int_{-\infty}^{+\infty} E_1(s,r) \mathrm{d}s}
$$

It is the ratio of the peak energy gained by a particle with velocity *v* to the peak energy gained by a particle with infinite velocity.

Main RF parameters

I. Voltage, phase, frequency

In order to accelerate particles, longitudinal fields must be generated in the direction of the desired acceleration

$$
E(s,t) = E_1(s) \cdot E_2(t)
$$

\n
$$
E_2(t) = E_0 \sin \left[\int_{t_0}^t \mathbf{W}_{RF} dt + \mathbf{f}_0 \right]
$$

\n
$$
\Delta E = e V_{RF} T_a \sin \mathbf{f}_0
$$

Such electric fields are generated in RF cavities characterized by the voltage amplitude, the frequency and the phase

II. Harmonic number

$$
T_{rev} = h T_{RF} \implies f_{RF} = h f_{rev}
$$

$$
f_{rev} = \text{revolution frequency}
$$

$$
f_{RF} = \text{frequency of the RF}
$$

h = harmonic number

harmonic number in different machines:

Momentum compaction factor in a transport system

In a particle transport system, a nominal trajectory is defined for the nominal momentum *p*.

For a particle with a momentum *p* + Δ*p* the trajectory length can be different from the length *L* of the nominal trajectory.

The momentum compaction factor is defined by the ratio:

$$
a_p = \frac{dL}{dp}
$$

Therefore, for small momentum deviation, to first order it is:

$$
\frac{\Delta L}{L} = a_p \frac{\Delta p}{p}
$$

Example: costant magnetic field

To first order, only the bending magnets contribute to a change of the trajectory length $(r = \infty$ in the straight sections)

Longitudinal phase space

The particle trajectory in the phase space (Δ*p*/*p*, φ) describes its longitudinal motion.

Emittance: phase space area including all the particles

> NB: if the emittance contour correspond to a possible orbit in phase space, its shape does not change with time (matched beam)

Bunch compressor

$$
\Delta L = \left[4 r \frac{\tan q - q}{\sin q} + 2 l \tan^2 q \right] \frac{\Delta p}{p} \qquad L = 4 r q + 2 \frac{l}{\cos q}
$$

JUAS – 10/1/2003 – R. Corsini

Bunch compression

Longitudinal phase space evolution for a bunch compressor (PARMELA code simulations)

Momentum compaction in a ring

In a circular accelerator, a nominal closed orbit is defined for the nominal momentum *p*. For a particle with a momentum deviation Δ*p* produces an orbit length variation Δ*C* with:

$$
\frac{\Delta C}{C} = a_p \frac{\Delta p}{p}
$$

The momentum compaction factor is defined by the ratio:

$$
\begin{vmatrix}\n\mathbf{a}_p = \frac{dC}{dp} = \frac{dR}{dp} \\
p\n\end{vmatrix}
$$
 and
$$
\mathbf{a}_p = \frac{1}{C} \int_c \frac{D_x(s)}{r(s)} ds
$$

N.B.: in most circular machines, **a^p** is positive ⇒ higher momentum means longer circumference

Momentum Compaction as a function of energy

$$
E = \frac{p c}{b} \qquad \Longrightarrow \qquad \frac{dE}{E} = b^2 \frac{dp}{p}
$$

$$
a_p = b^2 \frac{E}{R} \frac{dR}{dE}
$$

Momentum Compaction as a function of magnetic field

Definition of average magnetic field

$$
\langle B \rangle = \frac{1}{2p R} \int_C B_f \, ds = \frac{1}{2p R} \left(\int_{straights} B_f \, ds + \int_{magnets} B_f \, ds \right)
$$

$$
\langle B \rangle = \frac{B_f \, \mathbf{r}}{R} = 0
$$
 2p r B_f

$$
B_{f} \t\mathbf{r} = \frac{p}{e}
$$

$$
R = \frac{p}{e}
$$

$$
\mathbf{a}_{p} = 1 - \frac{d < B>}{}\left(\frac{d < B>}{p}\right) + \frac{dR}{R} = \frac{dp}{p}
$$

Proton (ion) circular machine with **a^p** positive

- 1. Momentum larger than the nominal (*p* + Δ*p*) **Þ** longer orbit (*C*+Δ*C*)
- 2. Momentum larger than the nominal $(p + \Delta p)$ **Þ** higher velocity ($v + \Delta v$)

What happens to the revolution frequency *f* = *v*/*C* ?

- At low energy, *v* increases faster than *C* with momentum
- At high energy $v \leq c$ and remains almost constant

There is an energy for which the velocity variation is compensated by the trajectory variation **Þ** transition energy

Below transition: higher energy **Þ** higher revolution frequency Above transition: higher energy **Þ** lower revolution frequency

Transition energy – quantitative approach

We define a parameter **h** (revolution frequency spread per unit of momentum spread):

Transition energy – quantitative approach

The transition energy is the energy that corresponds to **h** = 0 (**a^p** is fixed, and *g* variable)

$$
\mathbf{g}_{tr} = \sqrt{\frac{1}{\mathbf{a}_p}}
$$

The parameter **h** can also be written as

$$
\mathbf{h} = \frac{1}{g^2} - \frac{1}{g_{tr}^2} \qquad \qquad \text{At low energy} \qquad \mathbf{h} > 0
$$
\nAt high energy

\n
$$
\mathbf{h} < 0
$$

N.B.: for electrons, $g \gg g_r \Rightarrow h < 0$ for linacs $\mathbf{a}_p = 0 \Rightarrow \mathbf{h} > 0$

LESSON III

Equations related to synchrotrons

Synchronous particle

Synchrotron oscillations

Principle of phase stability

Equations related to synchrotrons

$$
\frac{dp}{p} = g_r^2 \frac{dR}{R} + \frac{dB}{B}
$$
\n
$$
\frac{dp}{p} = g^2 \frac{df}{f} + g^2 \frac{dR}{R}
$$
\n
$$
\frac{dB}{B} = g_r^2 \frac{df}{f} + \left[1 - \left(\frac{g_{tr}}{g}\right)^2\right] \frac{dp}{p}
$$
\n
$$
\frac{dB}{B} = g^2 \frac{df}{f} + \left(g^2 - g_{tr}^2\right) \frac{dR}{R}
$$

I - Constant radius

$$
dR=0
$$

increases

Beam maintained on the same orbit when energy varies

$$
\frac{dp}{p} = \frac{dB}{B}
$$
\n
$$
\frac{dp}{p} = g^2 \frac{df}{f}
$$
\nIf *p* increases
\n*B* increases
\n
$$
f
$$
 increases

II - Constant energy

$$
dp = 0
$$

 $V_{RF} = 0$

Beam debunches

$$
\frac{\mathrm{d}p}{p} = 0 = g_{tr}^{2} \frac{\mathrm{d}R}{R} + \frac{\mathrm{d}B}{B}
$$

$$
\frac{\mathrm{d}p}{p} = 0 = \mathbf{g}^2 \frac{\mathrm{d}f}{f} + \mathbf{g}^2 \frac{\mathrm{d}R}{R}
$$

If *B* increases *R* decreases *f* increases

$$
\underbrace{\qquad \qquad }_{\text{joint} \quad \text{mixerities} \quad \text{ccelerator Shool}}
$$

$$
III - Magnetic flat-topdB = 0
$$

Beam bunched with constant magnetic field

Four conditions - resume

Simple case (no accel.): $B = \text{const.}$ $g < g_r$

Synchronous particle: particle that sees always the same phase (at each turn) in the RF cavity

In order to keep the resonant condition, the particle must keep a constant energy The phase of the synchronous particle must therefore be $\mathbf{f_0}$ = 0 (circular machines convention) Let's see what happens for a particle with the same energy and a different phase (e.g., **f¹**)

Synchronous particle

 f_1

Synchrotron oscillations

- The particle is accelerated
	- Below transition, an increase in energy means an increase in revolution frequency
	- The particle arrives earlier tends toward f_0

- **f2**
- The particle is decelerated
- decrease in energy decrease in revolution frequency
- The particle arrives later tends toward **f⁰**

The phase of the synchronous particle is now **f^s** > 0 (circular machines convention)

The synchronous particle accelerates, and the magnetic field is increased accordingly to keep the constant radius R.

$$
R = \frac{\mathbf{g} \vee m_0}{eB}
$$

The RF frequency is increased as well is increased accordingly in order to keep the resonant condition

$$
\mathbf{w} = \frac{eB}{g m_0} = \frac{\mathbf{w}_{RF}}{h}
$$

Phase stability

LESSON IV

RF acceleration for synchronous particle

RF acceleration for non-synchronous particle

Small amplitude oscillations

Large amplitude oscillations – the RF bucket

RF acceleration for synchronous particle - energy gain

ı

Let's assume a synchronous particle with a given **f^s** > 0

We want to calculate its rate of acceleration, and the related rate of increase of *B*, *f*.

$$
p = e B \mathbf{r}
$$

Want to keep **r** = const

$$
\frac{dp}{dt} = e \mathbf{r} \frac{dB}{dt} = e \mathbf{r} \dot{B}
$$

Over one turn: $(\Delta p)_{turn} = e \mathbf{r} \dot{B} T_{rev} = e \mathbf{r} \dot{B} \frac{2p R}{bc}$

We know that (relativistic equations) : *c E p b* Δ $\Delta p =$

$$
\left(\Delta E\right)_{turn} = e \mathbf{r} \dot{B} \ 2\mathbf{p} \, R
$$

RF acceleration for synchronous particle - phase

$$
(\Delta E)_{turn} = e \mathbf{r} \dot{B} \ 2\mathbf{p} R
$$
 On the other hand, $(\Delta E)_{turn} = e \hat{V}$

$$
(\Delta E)_{turn} = e\hat{V}_{RF} \sin \bm{f}_s
$$

$$
e \mathbf{r} \dot{B} 2\mathbf{p} R = e \hat{V}_{RF} \sin \mathbf{f}_{s}
$$

Therefore: \blacksquare 1. Knowing $\boldsymbol{f}_{s'}$ one can calculate the increase rate of the magnetic field needed for a given RF voltage:

$$
\vec{B} = \frac{\hat{V}_{RF}}{2p r R} \sin F_s
$$

2. Knowing the magnetic field variation and the RF voltage, one can calculate the value of the synchronous phase:

$$
\sin \mathbf{f}_s = 2\mathbf{p} \mathbf{r} R \frac{\dot{B}}{\hat{V}_{RF}} \qquad \qquad \mathbf{f}_s = \arcsin \left(2\mathbf{p} \mathbf{r} R \frac{\dot{B}}{\hat{V}_{RF}} \right)
$$

RF acceleration for synchronous particle - frequency

$$
w_{RF} = h w_s = h \frac{e}{m} < B > \qquad \left(v = \frac{e}{m} B r \right)
$$

$$
W_{RF} = h \frac{e}{m} \frac{I}{R} B
$$

From relativistic equations:

$$
W_{RF} = \frac{hc}{R} \sqrt{\frac{B^2}{B^2 + (E_0/ecr)^2}}
$$

Let

$$
B_0 \equiv \frac{E_0}{ec\mathbf{r}} \qquad \qquad f_{RF} = \frac{hc}{2\mathbf{p} R} \left(\frac{B}{B_0}\right) \frac{1}{\sqrt{1 + (B/B_0)^2}}
$$

Example: PS

At the CERN Proton Synchrotron machine, one has:

 $R = 100$ m $\dot{B} = 2.4$ T/m

100 dipoles with *leff* = 4.398 m. The harmonic number is 20

Calculate:

- 1. The energy gain per turn
- 2. The minimum RF voltage needed
- 3. The RF frequency when B = 1.23 (at extraction)

RF acceleration for non synchronous particle

Parameter definition (subscript "s" stands for synchronous particle):

$$
ds = R d\boldsymbol{q}
$$

$$
\boldsymbol{q}(t) = \int_{t}^{t_0} \boldsymbol{w}(t) dt
$$

1. Angular frequency

$$
q(t) = \int_{t}^{t_0} w(t) dt \qquad \Delta w = \frac{d}{dt} (\Delta q)
$$

$$
= -\frac{1}{h} \frac{d}{dt} (\Delta f)
$$

$$
= -\frac{1}{h} \frac{d}{dt} (f - f_s) \qquad \frac{d f_s}{dt} = 0 \text{ by definition}
$$

$$
= -\frac{1}{h} \frac{d f}{dt}
$$

$$
\Delta w = -\frac{1}{h} \frac{d f}{dt}
$$

Parameters versus f

Parameters versus f

2. Momentum

JUAS – 10/1/2003 – R. Corsini

Derivation of equations of motion

Energy gain after the RF cavity

$$
(\Delta E)_{_{turn}} = e\hat{V}_{_{RF}}\sin{\bm{f}}
$$

$$
(\Delta p)_{turn} = \frac{e}{w R} \hat{V}_{RF} \sin \bm{f}
$$

Average increase per time unit

$$
\frac{(\Delta p)_{turn}}{T_{rev}} = \frac{e}{2\boldsymbol{p} R} \hat{V}_{RF} \sin \boldsymbol{f}
$$
 2\boldsymbol{p} R \dot{\boldsymbol{p}} = e \hat{V}_{RF} \sin \boldsymbol{f} valid for any particle!
2\boldsymbol{p} (R \dot{\boldsymbol{p}} - R_s \dot{\boldsymbol{p}}_s) = e \hat{V}_{RF} (\sin \boldsymbol{f} - \sin \boldsymbol{f}_s)

Derivation of equations of motion

After some development (see J. Le Duff, in Proceedings CAS 1992, CERN 94-01)

$$
2\boldsymbol{p}\frac{d}{dt}\left(\frac{\Delta E}{\boldsymbol{w}_s}\right)=e\hat{V}_{RF}\left(\sin\boldsymbol{f}-\sin\boldsymbol{f}_s\right)
$$

An approximated version of the above is

$$
\frac{\mathrm{d}(\Delta p)}{\mathrm{d}t} = \frac{e\hat{V}_{RF}}{2p\,R_s}(\sin\mathbf{f} - \sin\mathbf{f}_s)
$$

Which, together with the previously found equation

$$
\frac{\mathrm{d}\boldsymbol{f}}{\mathrm{d}t} = -\frac{\boldsymbol{w}_s \boldsymbol{h} \, h}{p_s} \Delta p
$$

Describes the motion of the non-synchronous particle in the longitudinal phase space (**D***p***,***f*)

Equations of motion I

$$
\begin{cases}\n\frac{d(\Delta p)}{dt} = A \left(\sin \mathbf{f} - \sin \mathbf{f} \right) \\
\frac{d\mathbf{f}}{dt} = B \Delta p\n\end{cases}
$$

s RF R eV A 2*p* \hat{z} with $A=$

> *s s ^s R c p h B h b* = −

Equations of motion II

1. First approximation – combining the two equations:

$$
\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{B} \frac{\mathrm{d} \mathbf{f}}{\mathrm{d}t} \right) - A \left(\sin \mathbf{f} - \sin \mathbf{f}_s \right) = 0
$$

We assume that A and B change very slowly compared to the variable $\mathbf{D}f = f - f_s$

with
$$
\frac{d^2 f}{dt^2} + \frac{\Omega_s^2}{\cos f_s} (\sin f - \sin f_s) = 0
$$

with
$$
\frac{\Omega_s^2}{\cos f_s} = -AB
$$
 We can also define:
$$
\Omega_0^2 = \frac{\Omega_s^2}{\cos f_s} = \frac{e \hat{V}_{RF} h h c^2}{2p R_s^2 E_s}
$$

2. Second approximation

$$
\sin \mathbf{f} = \sin(\mathbf{f}_s + \Delta \mathbf{f})
$$

= $\sin \mathbf{f}_s \cos \Delta \mathbf{f} + \cos \mathbf{f}_s \sin \Delta \mathbf{f}$

 Δf small \Rightarrow $\sin f \approx \sin f_s + \cos f_s \Delta f$

$$
\frac{\mathrm{d}\boldsymbol{f}_s}{\mathrm{d}t}=0\quad\Rightarrow\quad
$$

$$
= 0 \Rightarrow \frac{d^2 \boldsymbol{f}}{dt^2} = \frac{d^2}{dt^2} (\boldsymbol{f}_s + \Delta \boldsymbol{f}) = \frac{d^2 \Delta \boldsymbol{f}}{dt^2}
$$

by definition

$$
\frac{d^2\Delta f}{dt^2} + \Omega_s^2 \Delta f = 0
$$

Harmonic oscillator !

Stability condition for f^s

Stability is obtained when the angular frequency of the oscillator, $\Omega_{\rm c}^{-2}$ is real positive:

Small amplitude oscillations - orbits

For $h \cos f_s > 0$ the motion around the synchronous particle is a stable oscillation:

$$
\begin{cases}\n\Delta \boldsymbol{f} = \Delta \boldsymbol{f}_{\text{max}} \sin(\boldsymbol{\Omega}_s t + \boldsymbol{f}_0) \\
\Delta p = \Delta p_{\text{max}} \cos(\boldsymbol{\Omega}_s t + \boldsymbol{f}_0)\n\end{cases}
$$

with
$$
\Delta p_{\text{max}} = \frac{\Omega_s}{B} \Delta f_{\text{max}}
$$

Lepton machines e+, e-

$$
\mathbf{b} \equiv 1 \quad , \quad \mathbf{g} \text{ large} \quad , \quad \mathbf{h} \equiv -\mathbf{a}_p
$$

$$
\mathbf{W}_s \cong \frac{c}{R_s} \quad , \quad p_s \cong \frac{E_s}{c} \qquad \qquad \Omega_s = \frac{c}{R_s} \left\{ -\frac{e \hat{V}_{RF} \mathbf{a}_p h}{2 \mathbf{p} E_s} \cos \mathbf{f}_s \right\}^{1/2}
$$

Number of synchrotron oscillations per turn:

$$
Q_s = \frac{\Omega_s}{\mathbf{W}_s} = \left\{ -\frac{e\hat{V}_{RF}\mathbf{a}_p h}{2\mathbf{p} E_s} \cos \mathbf{f}_s \right\}^{1/2}
$$
"synchronization tune"

N.B: in these machines, the RF frequency does not change

Large amplitude oscillations

Phase space trajectories

Phase space trajectories for different synchronous phases