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The present transparencies are based on the ones written by Louis Rinolfi (CERN-AB) 
who held the course at JUAS from 1994 to 2002 (see CERN/PS 2000-008 (LP). 

Material from Joel LeDuff’s Course at the CERN Accelerator School held at
Jyvaskyla, Finland the 7-18 September 1992 (CERN 94-01) has been used as well.
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LESSON I

Introduction

Fields & forces

Acceleration by time-varying fields

Relativistic equations
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Fields and force

Equation of motion for a particle of charge q
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The fields must satisfy Maxwell’s equations
The integral forms, in vacuum, are recalled below:
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1. Gauss’s law

2. No free magnetic poles

3. Ampere’s law     
(modified by Gauss)

4. Faraday’s law

(electrostatic)

(magnetostatic)

(electric varying)

(magnetic varying)
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Maxwell’s equations
The differential forms, in vacuum, are recalled below:
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1. Gauss’s law

2. No free magnetic poles

3. Ampere’s law 
(modified by Gauss)

4. Faraday’s law
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Constant electric field

+ -

F

E

e-

1. Direction of the force always parallel to the field

2. Trajectory can be modified, velocity also ⇒ momentum and energy can be modified

This force can be used to accelerate and 
decelerate particles
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Constant magnetic field
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1. Direction always perpendicular to the velocity

2. Trajectory can be modified, but not the velocity

This force cannot modify the energy ρ
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Application: spectrometer
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Larmor formula
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Acceleration in the direction 
of the particle motion

Acceleration perpendicular to 
the particle motion

An accelerating charge radiates a power P given by:

“Synchrotron radiation”
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Energy lost on a trajectory L
For electrons in a constant magnetic field:
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Comparison of magnetic and electric forces
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Acceleration by time-varying magnetic field

A variable magnetic field produces an electric field (Faraday’s Law):
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It is the Betatron concept 

The varying magnetic field is used to guide particles on a circular trajectory as well 
as for acceleration
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Acceleration by time-varying electric field

• Let VRF be the amplitude of the RF voltage 
across the gap g

• The particle crosses the gap at a distance r
• The energy gain is:
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In general, E2(t) is a sinusoidal time variation with angular frequency ωRF

In the cavity gap, the electric field is supposed to be:

( )tEtE Φ= sin)(2 o where 0
0

d)( Φ+=Φ ∫
t

t RF tt ω

r

s

g

E

r

[MeV]
[MV/m]



JUAS – 10/1/2003 – R. Corsini

Convention

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage 
with positive slope

2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

1 2

φ1 φ2

tRFωφ =tRFωφ =

( )tEtE RFωcos)(2 o=

Time t= 0 chosen such that: 

( )tEtE RFωsin)(2 o=

2E 2E
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Relativistic Equations 2cmE =
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First derivatives

Logarithmic derivatives
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LESSON II

An overview of particle acceleration

Transit time factor

Main RF parameters

Momentum compaction

Transition energy
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Electrostatic accelerators

E

∆V

vacuum envelope

source
• The potential difference between 

two electrodes is used to accelerate 
particles

• Limited in energy by the maximum 
high voltage (~ 10 MV)

• Present applications: x-ray tubes, 
low energy ions, electron sources 
(thermionic guns)

Electric field potential and beam 
trajectories inside an electron gun 
(LEP Injector Linac at CERN), 
computed with the code E-GUN

cathode

anode
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Alvarez structure

Synchronism condition

RFsRFs TvL λβ==
L
vs

RF πω 2=

Lg <<

g

L1 L2 L3 L4 L5

RF generator

Used for protons, ions (50 – 200 MeV, f ~ 200 MHz)



JUAS – 10/1/2003 – R. Corsini

Electron Linac

Uniform disk-loaded waveguide, travelling wave
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(up to 50 GeV, f ~ 3 GHz - S-band)

Electrons are light ⇒ fast acceleration
⇒ β ≅ 1 already at an energy of a few MeV

Electric field

Synchronism condition
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k
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Phase velocity Group velocity
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B

Cyclotron

RF generator, ωRF

B = constant
ωRF = constant

g

Synchronism condition

RFs

RFs

Tv=
=

ρπ
ωω

2

Cyclotron frequency

γ
ω

0m
Bq

=

1. γ increases with the energy 
⇒ no exact synchronism

2. if  v << c ⇒ γ ≅ 1

Ion source

Extraction 
electrode

Ions trajectory

Used for protons, ions
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Synchrocyclotron

Same as cyclotron, except a modulation of ωRF

B = constant
γ ωRF = constant

The condition:

ωRF decreases with time

)(
)()(

0 tm
Bq

tt RFs γ
ωω ==

Allows to go beyond the non-relativistic energies



JUAS – 10/1/2003 – R. Corsini

E

Synchronism condition

RF
s

RFs

Th
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ThT
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1. ωRF and ω increase with energy

2. To keep particles on the closed orbit, B should increase with time

Synchrotron

R

RF generator

B

RF cavity

h integer,
harmonic number
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Synchrotron

E

B

injection extraction

ρ

R

E

• In reality, the orbit in a synchrotron is not a 
circle, straight sections are added for RF 
cavities, injection and extraction, etc..

• Usually the beam is pre-accelerated in a linac 
(or a smaller synchrotron) before injection

• The bending radius ρ does not coincide to the 
machine radius R = L/2π

Bending 
magnet
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Parameters for circular accelerators
The basic principles, for the common circular accelerators, are based on the two relations:

1. The Lorentz equation: the orbit radius can be espressed as:

2. The synchronicity condition: The revolution frequency can be expressed as:

According to the parameter we want to keep constant or let vary, one has different acceleration
principles. They are summarized in the table below: 

const.R~ pconst.var.Electron synchrotron
~ vR~ pvar.var.Proton/Ion synchrotron

B(r)/γ(t)~ pB(r)var.var.Synchrocyclotron
const.~ vconst.var.~ 1Cyclotron

FrequencyOrbitFieldVelocityEnergy (γ)Machine

eB
mv

R 0γ
=

02 m
Be

f
γπ

=
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Transit time factor

Simplified model

At t = 0, s = 0 and v ≠ 0, parallel to the electric field
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Ta is called transit time factor

•Ta < 1

•Ta → 1  if g → 0

where

RF acceleration in a gap g
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Transit time factor II

In the general case, the transit time factor is given by:
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It is the ratio of the peak energy gained by a particle with velocity v
to the peak energy gained by a particle with infinite velocity.
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Main RF parameters
I. Voltage, phase, frequency

II. Harmonic number

In order to accelerate particles, longitudinal fields must be generated in the direction of the desired acceleration

Such electric fields are generated in RF cavities characterized by the voltage amplitude, the frequency and the 
phase

revRFRFrev fhfThT =⇒=

frev = revolution frequency
fRF = frequency of the RF
h = harmonic number

harmonic number in different machines:

AA EPA PS SPS

1 8 20 4620

)()(),( 21 tEsEtsE ⋅=

0sin φaRF TVeE =∆
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B

Dispersion

nominal trajectory

reference = design = nominal trajectory
= closed orbit (circular machine)
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Momentum compaction  factor in a transport system

In a particle transport system, a nominal trajectory is defined for the nominal momentum p.

For a particle with a momentum p + ∆p the trajectory length can be different from the length 
L of the nominal trajectory.

The momentum compaction factor is defined by the ratio:

p
dp

L
dL

p =α

Therefore, for small momentum deviation, to first order it is:

p
p

L
L

p
∆

=
∆

α
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Example: costant magnetic field

θρ d=ds

By definition of dispersion Dx
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To first order, only the bending magnets contribute to a change of the trajectory length 
(r = ∞ in the straight sections) 
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Longitudinal phase space

∆p/p

φ

∆p/p

φ

acceleration

deceleration

move 
backward

move 
forward

Emittance: phase space area including 
all the particles 

The particle trajectory in the 
phase space (∆p/p, φ) describes its 
longitudinal motion.

NB: if the emittance contour correspond to 
a possible orbit in phase space, its shape 
does not change with time (matched beam) 

reference
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Bunch compressor
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Bunch compression

Longitudinal phase space evolution for a bunch compressor (PARMELA code simulations)

before after
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Momentum compaction in a ring

In a circular accelerator, a nominal closed orbit is defined for the nominal momentum p.

For a particle with a momentum deviation ∆p produces an orbit length variation ∆C with:

p
dp

R
dR

p
dp

C
dC

p ==α

p
p

C
C

p
∆

=
∆

α RC π2=

circumference
(average) radius of 

the closed orbit

The momentum compaction factor is defined by the ratio:

∫=
C

x
p s

s
sD

C
d

)(
)(1

ρ
α

N.B.: in most circular machines, αp is positive ⇒ higher momentum means longer circumference

and
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Momentum Compaction as a function of energy
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Momentum Compaction as a function of magnetic field
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Transition energy
Proton (ion) circular machine with αp positive 

1. Momentum larger than the nominal ( p + ∆p ) ⇒ longer orbit ( C+∆C )

2. Momentum larger than the nominal ( p + ∆p ) ⇒ higher velocity ( v + ∆v )

• At low energy, v increases faster than C  with momentum

• At high energy v   c  and remains almost constant

There is an energy for which the velocity variation is compensated by the 
trajectory variation ⇒ transition energy

What happens to the revolution frequency f = v/C ?

Below transition: higher energy ⇒ higher revolution frequency
Above transition: higher energy ⇒ lower revolution frequency
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Transition energy – quantitative approach

We define a parameter η (revolution frequency spread per unit of momentum spread):
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pα
γ

η −= 2

1

Transition energy – quantitative approach

The transition energy is the energy that corresponds to η = 0 
( αp is fixed, and γ variable )

p
tr α

γ
1

=

22

11

trγγ
η −=

The parameter η can also be written as

• At low energy η >  0 

• At high energy η <  0 

N.B.: for electrons, γ >> γtr ⇒ η <  0  
for linacs αp = 0 ⇒ η >  0
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LESSON III

Equations related to synchrotrons

Synchronous particle

Synchrotron oscillations

Principle of phase stability
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Equations related to synchrotrons
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I - Constant radius

Beam maintained on the same orbit when energy varies

0d =R

f
f

p
p dd 2γ=

B
B

p
p dd

=

If p increases
B increases
f increases
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II - Constant energy

Beam debunches
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p
p dd

0
d 22 γγ +==

0=RFV
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R
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d 2 +== γ

If B increases
R decreases
f increases
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III – Magnetic flat-top

Beam bunched with constant magnetic field

0d =B

R
R

p
p

tr
dd 2γ=

If p increases
R increases
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Four conditions - resume

p

R

B

f

momentum

orbit radius

magnetic field

frequencyB ⇑ , p ⇓ , R ⇓ (η > 0)
p ⇑ , R ⇑ (η < 0)

∆f = 0External oscillator

p ⇑ , R ⇑ , f ⇑ (η > 0)
f ⇓ (η < 0)

∆B = 0Magnetic flat-top

B ⇑ , p ⇑ , f ⇑∆R = 0Fixed orbit

B ⇑ , R ⇓ , f ⇑∆p = 0Debunched

VariationsParameterBeam
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Synchronous particle

φ1

φ0

RFV

tRFωφ =

Simple case (no accel.): B = const. trγγ <

Synchronous particle: particle that sees always the same phase (at each turn) in the RF cavity 

hm
Be RFω

γ
ω ==

0

In order to keep the resonant condition, the particle must keep a constant energy
The phase of the synchronous particle must therefore be φ0 = 0 (circular machines convention)
Let’s see what happens for a particle with the same energy and a different phase (e.g., φ1)

φsinR̂FVE =∆
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φ1

φ0

RFV

tRFωφ =
φ2

φ1 - The particle is accelerated
- Below transition, an increase in energy means an increase in revolution frequency
- The particle arrives earlier – tends toward φ0

φ2 - The particle is decelerated
- decrease in energy - decrease in revolution frequency
- The particle arrives later – tends toward φ0

Synchrotron oscillations
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φ1

φ0

RFV

tφφ2

Synchrotron oscillations

p
p∆

φ

Phase space picture
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Synchronous particle

φs

RFV

tRFωφ =

Case with acceleration B increasing trγγ <

hm
Be RFω

γ
ω ==

0

The synchronous particle accelerates, and the magnetic field is increased accordingly to 
keep the constant radius R.

φsinR̂FVeE =∆

eB
mv

R 0γ
=

The phase of the synchronous particle is now φs > 0 (circular machines convention)

The RF frequency is increased as well is increased accordingly in order to keep the 
resonant condition
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φs tRFωφ =

RFV

Phase stability

2

1
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φs

RFV

tRFωφ =

φ

Phase stability

p
p∆

φ

ss φπφφ −<<

stable region

unstable region

separatrix

The simmetry of the case 
with B = const. is lost
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LESSON IV

RF acceleration for synchronous particle

RF acceleration for non-synchronous particle

Small amplitude oscillations

Large amplitude oscillations – the RF bucket



JUAS – 10/1/2003 – R. Corsini

RF acceleration for synchronous particle - energy gain

Let’s assume a synchronous particle with a given  φs > 0
We want to calculate its rate of acceleration, and the related rate of increase of B, f.

ρBep =

Be
t
B

e
t
p &ρρ ==

d
d

d
d

Want to keep ρ = const

Over one turn: ( )
c
R

BeTBep revturn β
π

ρρ
2&& ==∆

We know that (relativistic equations)  :
c
E

p
β
∆

=∆

( ) RBeE turn πρ 2&=∆
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( ) sRFturn VeE φsinˆ=∆On the other hand, 
for the synchronous particle:( ) RBeE turn πρ 2&=∆

Therefore: 1. Knowing φs, one can calculate the increase rate of the 
magnetic field needed for a given RF voltage:

s
RF

R
V

B φ
ρπ

sin
2

ˆ
=&

2. Knowing the magnetic field variation and the RF voltage, 
one can calculate the value of the synchronous phase:

RF
s V

B
R ˆ2sin

&
ρπφ = 








=

RF
s V

B
R ˆ2arcsin

&
ρπφ

sRFVeRBe φπρ sinˆ2 =&

RF acceleration for synchronous particle - phase
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RF acceleration for synchronous particle - frequency
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From relativistic equations:
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Example: PS

At the CERN Proton Synchrotron machine, one has:

m100=R

T/m4.2=B&

100 dipoles with leff = 4.398 m. The harmonic number is 20

Calculate:
1. The energy gain per turn
2. The minimum RF voltage needed
3. The RF frequency when B = 1.23 (at extraction)
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RF acceleration for non synchronous particle

Parameter definition (subscript “s” stands for synchronous particle):

angle Azimuth

Energy

Momentum

phase

frequencyrevolution

RF

θθθ

φφφ

∆+=
∆+=
∆+=
∆+=
∆+=

s

s

s

s

s

EEE

ppp

fff

θdd Rs =

( ) ( ) ττωθ d
0

∫=
t

t
t
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θs

∆θ

R

v

Since

θφ ∆−=∆ h

00 <∆⇒>∆ φθ

revRF fhf =

Over one turn θ varies by 2 π
φ varies by 2 π h

φs

RFV

tRFωφ =

RFV̂

φ

∆φ
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Parameters versus φ
1. Angular frequency

( ) ( ) ττωθ d
0
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th d
d1 φ
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d
d
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d
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t
sφ

by definition
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2. Momentum
Parameters versus φ

3. Energy
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Derivation of equations of motion
Energy gain after the RF cavity

( ) φsinR̂Fturn VeE =∆

( ) φ
ω

sinR̂Fturn V
R

e
p =∆

Average increase per time unit

( )
φ

π
sinˆ

2 RF
rev

turn V
R

e
T
p

=
∆

φπ sinˆ2 RFVepR =& valid for any particle !

( ) ( )sRFss VepRpR φφπ sinsinˆ2 −=− &&
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( )sRF
s

Ve
E

dt
d

φφ
ω

π sinsinˆ2 −=






 ∆

After some development (see J. Le Duff, in Proceedings CAS 1992, CERN 94-01)

( ) ( )s
s

RF

R
Ve

t
p

φφ
π

sinsin
2

ˆ

d
d

−=
∆

An approximated version of the above is

Which, together with the previously found equation 

p
p

h
t s

s ∆−=
ηωφ

d
d

Describes the motion of the non-synchronous particle in the longitudinal phase space ( ∆p,φ ) 

Derivation of equations of motion



JUAS – 10/1/2003 – R. Corsini

( ) ( )
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Equations of motion I
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1. First approximation – combining the two equations:

We assume that A and B change very slowly compared to the variable ∆φ = φ - φs

( ) 0sinsin
d
d1

d
d

=−−







sA
tBt

φφ
φ

( ) 0sinsin
cosd

d 2

2

2

=−
Ω

+ s
s
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t
φφ

φ
φ

with BA
s

s −=
Ω

φcos

2

We can also define: 
ss

RF

s

s

ER
chVe

2

22
2

0 2

ˆ

cos π
η

φ
=

Ω
=Ω

Equations of motion II
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Small amplitude oscillations

2. Second approximation

( )
φφφφ

φφφ
∆+∆=

∆+=
sincoscossin

sinsin

ss

s

φφφφ ∆+≅ ss cossinsin⇒∆ smallφ
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by definition

0
d

d 2
2

2

=∆Ω+
∆

φ
φ

st

Harmonic oscillator !
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Stability condition for φs

Stability is obtained when the angular frequency of the oscillator, is real positive: 2
sΩ

0cos0cos
2

ˆ
2

2

2
2 >⇔>Ω⇒=Ω sss

ss

RF
s ER

chVe
φηφ

π
η

φ
2
π

π
2
3π

VRF
cos (φs)

acceleration deceleration

0>η 0>η0<η 0<ηStable in the region if
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Small amplitude oscillations - orbits

For 0cos >sφη the motion around the synchronous particle is a stable oscillation:

( )
( )




+Ω∆=∆
+Ω∆=∆

0max

0max
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φφφ

tpp
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Lepton machines e+, e-

pαηγβ −≅≅ ,,1 large

c
E

p
R
c s

s
s

s ≅≅ ,ω
21
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ˆ













−=Ω s
s

pRF

s
s E

hVe

R
c

φ
π
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Number of synchrotron oscillations per turn:
21

cos
2

ˆ













−=
Ω

= s
s

pRF

s

s
s E

hVe
Q φ

π

α

ω
“synchrotron tune”

N.B: in these machines, the RF frequency does not change
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Large amplitude oscillations

Multiplying by
and integrating

Constant of motion

Equation of the separatrix
Synchronous phase 150°

here 0=φ&

sφπφ −=
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Energy diagram

“kinetic energy” “potential energy U ”

If the total energy is above this limit, 
the motion is unbounded

“total energy”

stable equilibrium 
point

unstable equilibrium 
point
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Phase space trajectories

Phase space trajectories for different synchronous phases


