

#### LONGI TUDI NAL BEAM DYNAMI CS

R. Corsini

AB Division – CERN

The present transparencies are based on the ones written by Louis Rinolfi (CERN-AB) who held the course at JUAS from 1994 to 2002 (see CERN/PS 2000-008 (LP).

Material from Joel LeDuff's Course at the CERN Accelerator School held at Jyvaskyla, Finland the 7-18 September 1992 (CERN 94-01) has been used as well.



#### LESSON I

<u>Introduction</u>

Fields & forces

Acceleration by time-varying fields

**Relativistic equations** 

JUAS - 10/1/2003 - R. Corsini



# Fields and force

#### Equation of motion for a particle of charge q

$$\frac{\mathrm{d}\vec{p}}{\mathrm{dt}} = q\left(\vec{E} + \vec{v} \wedge \vec{B}\right)$$

| $\vec{p} = m \vec{v}$ | Momentum       |
|-----------------------|----------------|
| $\vec{\mathcal{V}}$   | Velocity       |
| $ec{E}$               | Electric field |
| $ec{B}$               | Magnetic field |



## The fields must satisfy *Maxwell's equations*

The integral forms, in vacuum, are recalled below:

| 1. Gauss's law<br>(electrostatic)                        | $\int_{S} \vec{E} \cdot d\vec{s} = \frac{1}{\boldsymbol{e}_{o}} \int_{V} \boldsymbol{r}  dV$                                                               |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. No free magnetic poles                                | $\int \vec{B} \cdot d\vec{s} = 0$                                                                                                                          |
| (magnetostatic)                                          | J D US C                                                                                                                                                   |
| <ol> <li>Ampere's law<br/>(modified by Gauss)</li> </ol> | $\int \vec{B} \cdot d\vec{l} = \boldsymbol{m}_{0} \int \vec{j} \cdot d\vec{s} + \frac{1}{2} \int \frac{\partial \vec{E}}{\partial \vec{E}} \cdot d\vec{s}$ |
| (electric varying)                                       | $\int_{L} \int_{S} \int_{S} \int_{S} \int_{S} \partial t$                                                                                                  |
| 4. Faraday's law                                         | $\int \vec{E} \cdot d\vec{l} = -\int \frac{\partial \vec{B}}{\partial \vec{B}} \cdot d\vec{s}$                                                             |
| (magnetic varying)                                       | $\int_{L} \int_{S} \partial t$                                                                                                                             |



#### Maxwell's equations

The differential forms, in vacuum, are recalled below:

|  | 1. Gauss's | law | $\nabla \cdot \vec{E} = \frac{1}{\boldsymbol{e}_{\circ}} \boldsymbol{r}(\vec{r}, t)$ |
|--|------------|-----|--------------------------------------------------------------------------------------|
|--|------------|-----|--------------------------------------------------------------------------------------|

| 2. | No free magnetic poles | $\nabla \cdot \vec{B} = 0$ |
|----|------------------------|----------------------------|
|----|------------------------|----------------------------|

3. Ampere's law (modified by Gauss)  $\nabla \times \vec{B} = \mathbf{m}_{\circ} \vec{j}(\vec{r},t) + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$ 

4. Faraday's law  $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ 



## Constant electric field



- 1. Direction of the force always parallel to the field
- 2. Trajectory can be modified, velocity also **P** momentum and energy can be modified

This force can be used to accelerate and decelerate particles



# Constant magnetic field



$$\frac{\mathrm{d}\vec{p}}{\mathrm{dt}} = \vec{F} = -e\left(\vec{v}\wedge\vec{B}\right)$$

- Direction always perpendicular to the velocity
- 2. Trajectory can be modified, but not the velocity

This force cannot modify the energy
$$e \ v \ B = \frac{m \ v^2}{r}$$
rigidity $B \ r = \frac{p}{e}$ angular frequency $W = \frac{e}{m} B$ 



## **Application:** spectrometer





# Larmor formula

An accelerating charge radiates a power *P* given by:



Energy lost on a trajectory L

"Synchrotron radiation"

For electrons in a constant magnetic field:

$$W \left[ \text{eV/turn} \right] = 88 \cdot 10^3 \frac{E^2 \text{[GeV]}}{r[\text{m}]}$$



Comparison of magnetic and electric forces

$$|\vec{B}| = 1 \mathrm{T}$$
  
 $|\vec{E}| = 10 \mathrm{MV/m}$ 

$$\underbrace{\frac{F_{MAGN}}{F_{ELEC}}} = \frac{e \, v \, B}{e \, E} = \mathbf{b} \, c \, \frac{B}{E} \cong 3 \cdot 10^8 \, \frac{1}{10^7} \, \mathbf{b} = 30 \, \mathbf{b}$$



## Acceleration by time-varying magnetic field

A variable magnetic field produces an electric field (Faraday's Law):

$$\int_{L} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{s} = -\frac{d\Phi}{dt}$$



#### It is the Betatron concept

The varying magnetic field is used to guide particles on a circular trajectory as well as for acceleration







# Acceleration by time-varying electric field



- Let  $V_{RF}$  be the amplitude of the RF voltage
- The particle crosses the gap at a distance r
- The energy gain is:



In the cavity gap, the electric field is supposed to be:

$$E(s, r, t) = E_1(s, r) \cdot E_2(t)$$

In general,  $E_2(t)$  is a sinusoidal time variation with angular frequency  $\omega_{\rm RE}$ 

$$E_2(t) = E_{\circ} \sin \Phi(t)$$
 where  $\Phi(t) = \int_{t_0}^t W_{RF} dt + \Phi_0$ 



## **Convention**

- 1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
- 2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time t= 0 chosen such that:









# First derivatives

$$d\boldsymbol{b} = \boldsymbol{b}^{-1} \boldsymbol{g}^{-1} d\boldsymbol{g}$$
$$d(cp) = E_0 \boldsymbol{g}^3 d\boldsymbol{b}$$
$$d\boldsymbol{g} = \beta (1 - \beta^2)^{-3/2} d\boldsymbol{b}$$

## Logarithmic derivatives

$$\frac{\mathrm{d}\boldsymbol{b}}{\boldsymbol{b}} = (\boldsymbol{b} \ \boldsymbol{g})^{-2} \frac{\mathrm{d}\boldsymbol{g}}{\boldsymbol{g}}$$
$$\frac{\mathrm{d}\boldsymbol{p}}{\boldsymbol{p}} = \frac{\boldsymbol{g}^2}{\boldsymbol{g}^2 - 1} \frac{\mathrm{d}\boldsymbol{E}}{\boldsymbol{E}} = \frac{\boldsymbol{g}}{\boldsymbol{g} + 1} \frac{\mathrm{d}\boldsymbol{E}_{kin}}{\boldsymbol{E}_{kin}}$$
$$\frac{\mathrm{d}\boldsymbol{g}}{\boldsymbol{g}} = (\boldsymbol{g}^2 - 1) \frac{\mathrm{d}\boldsymbol{b}}{\beta}$$



#### LESSON II

An overview of particle acceleration

Transit time factor

Main RF parameters

Momentum compaction

Transition energy

JUAS – 10/1/2003 – R. Corsini





#### vacuum envelope



# Electrostatic accelerators

- The potential difference between two electrodes is used to accelerate particles
- Limited in energy by the maximum high voltage (~ 10 MV)
- Present applications: x-ray tubes, low energy ions, electron sources (thermionic guns)

Electric field potential and beam trajectories inside an electron gun (LEP I njector Linac at CERN), computed with the code E-GUN



### Alvarez structure



Synchronism condition

$$L = v_s T_{RF} = \boldsymbol{b}_s \boldsymbol{l}_{RF} \boldsymbol{w}_{RF} = 2\boldsymbol{p} \frac{v_s}{L}$$



# Electron Linac



 $E(z,t) = E_0 e^{i(wt-kz)}$  Electric field

Wave number  $k = \frac{2p}{l_{\text{pr}}}$ 

Phase velocity  $v_{ph} = \frac{W}{L}$ 

d **w** Group velocity

Synchronism condition

$$v_{el} = \frac{\mathbf{W}}{k} = v_{ph}$$







# **Synchrocyclotron**

#### Same as cyclotron, except a modulation of $\omega_{\text{RF}}$

The condition:

$$\boldsymbol{w}_{s}(t) = \boldsymbol{w}_{RF}(t) = \frac{q B}{m_0 g(t)}$$

Allows to go beyond the non-relativistic energies





- 1.  $\omega_{RF}$  and  $\omega$  increase with energy
- 2. To keep particles on the closed orbit, B should increase with time





## **Synchrotron**

- In reality, the orbit in a synchrotron is not a circle, straight sections are added for RF cavities, injection and extraction, etc..
- Usually the beam is pre-accelerated in a linac (or a smaller synchrotron) before injection
- The bending radius **r** does not coincide to the machine radius  $R = L/2\pi$



# Parameters for circular accelerators

The basic principles, for the common circular accelerators, are based on the two relations:

1. The Lorentz equation: the orbit radius can be espressed as:

$$R = \frac{\mathbf{g} \ v \ m_0}{eB}$$

2. The synchronicity condition: The revolution frequency can be expressed as:

$$f = \frac{e B}{2p g m_0}$$

According to the parameter we want to keep constant or let vary, one has different acceleration principles. They are summarized in the table below:

| Machine                | Energy (g) | <b>Velocity</b> | <b>Field</b> | Orbit | Frequency |
|------------------------|------------|-----------------|--------------|-------|-----------|
|                        |            |                 |              |       |           |
| Cyclotron              | ~ 1        | var.            | const.       | ~ V   | const.    |
| Synchrocyclotron       | var.       | var.            | B(r)         | ~ p   | B(r)/γ(t) |
| Proton/Ion synchrotron | var.       | var.            | ~ p          | R     | ~ V       |
| Electron synchrotron   | var.       | const.          | ~ p          | R     | const.    |



### Transit time factor

RF acceleration in a gap *g* 

 $E(s, r, t) = E_1(s, r) \cdot E_2(t)$ 

Simplified model

$$E_1(s,r) = \frac{V_{RF}}{g} = \text{const.}$$
$$E_2(t) = \sin(\mathbf{w}_{RF} t + \mathbf{f}_0)$$

At t = 0, s = 0 and v  $\neq$  0, parallel to the electric field Energy gain: g/2

$$\Delta E = e \int_{-g/2}^{g/2} E(s, r, t) \, \mathrm{d}s \quad \Longrightarrow \quad \Delta E = e \, V_{RF} \, T_a \, \sin \mathbf{f}_0$$

•*T*<sub>a</sub> < 1

 $T_a$  is called transit time factor

• $T_a \rightarrow 1$  if  $g \rightarrow 0$ 

where

$$T_a = \frac{\sin \frac{\mathbf{W}_{RF}g}{2v}}{\frac{\mathbf{W}_{RF}g}{2v}}$$



## Transit time factor II

In the general case, the transit time factor is given by:

$$T_{a} = \frac{\int_{-\infty}^{+\infty} E_{1}(s,r) \cos\left(\mathbf{W}_{RF} \frac{s}{v}\right) ds}{\int_{-\infty}^{+\infty} E_{1}(s,r) ds}$$

It is the ratio of the peak energy gained by a particle with velocity *v* to the peak energy gained by a particle with infinite velocity.



### Main RF parameters

#### I. Voltage, phase, frequency

In order to accelerate particles, longitudinal fields must be generated in the direction of the desired acceleration

$$E(s,t) = E_1(s) \cdot E_2(t) \qquad E_2(t) = E_0 \sin\left[\int_{t_0}^t \boldsymbol{w}_{RF} \, \mathrm{d}t + \boldsymbol{f}_0\right]$$
$$\boldsymbol{w}_{RF} = 2\boldsymbol{p} \, f_{rev} \qquad \Delta E = e \, V_{RF} \, T_a \, \sin \boldsymbol{f}_0$$

Such electric fields are generated in RF cavities characterized by the voltage amplitude, the frequency and the phase

#### II. Harmonic number

$$T_{rev} = h T_{RF} \implies f_{RF} = h f_{rev}$$

$$f_{rev}$$
 = revolution frequency  
 $f_{RF}$  = frequency of the RF

*h* = harmonic number

harmonic number in different machines:

| AA | EPA | PS | SPS  |
|----|-----|----|------|
| 1  | 8   | 20 | 4620 |



JUAS - 10/1/2003 - R. Corsini



## Momentum compaction factor in a transport system

In a particle transport system, a nominal trajectory is defined for the nominal momentum *p*.

For a particle with a momentum  $p + \Delta p$  the trajectory length can be different from the length *L* of the nominal trajectory.

The momentum compaction factor is defined by the ratio:

$$a_p = \frac{dL}{dp}$$

Therefore, for small momentum deviation, to first order it is:

$$\frac{\Delta L}{L} = \boldsymbol{a}_p \frac{\Delta p}{p}$$



### Example: costant magnetic field



To first order, only the bending magnets contribute to a change of the trajectory length (r =  $\infty$  in the straight sections)



## Longitudinal phase space





The particle trajectory in the phase space  $(\Delta p/p, \phi)$  describes its longitudinal motion.

Emittance: phase space area including all the particles

NB: if the emittance contour correspond to a possible orbit in phase space, its shape does not change with time (matched beam)



### Bunch compressor



$$\Delta L = \left[ 4 \, \boldsymbol{r} \frac{\tan \boldsymbol{q} - \boldsymbol{q}}{\sin \boldsymbol{q}} + 2 \, l \, \tan^2 \boldsymbol{q} \right] \frac{\Delta p}{p} \qquad L = 4 \, \boldsymbol{r} \, \boldsymbol{q} + 2 \frac{l}{\cos \boldsymbol{q}}$$



JUAS - 10/1/2003 - R. Corsini



## **Bunch compression**



Longitudinal phase space evolution for a bunch compressor (PARMELA code simulations)



### Momentum compaction in a ring

In a circular accelerator, a nominal closed orbit is defined for the nominal momentum p. For a particle with a momentum deviation  $\Delta p$  produces an orbit length variation  $\Delta C$  with:

$$\frac{\Delta C}{C} = \boldsymbol{a}_p \frac{\Delta p}{p}$$



The momentum compaction factor is defined by the ratio:

$$\boldsymbol{a}_{p} = \frac{dC/C}{dp/P} = \frac{dR/R}{dp/P} \quad \text{and} \quad \boldsymbol{a}_{p} = \frac{1}{C} \int_{C} \frac{D_{x}(s)}{\boldsymbol{r}(s)} \, \mathrm{d}s$$

N.B.: in most circular machines,  $\mathbf{a}_{p}$  is positive  $\Rightarrow$  higher momentum means longer circumference



Momentum Compaction as a function of energy

$$E = \frac{p c}{\boldsymbol{b}} \qquad \Longrightarrow \qquad \frac{\mathrm{d}E}{E} = \boldsymbol{b}^2 \frac{dp}{p}$$

$$\boldsymbol{a}_p = \boldsymbol{b}^2 \frac{E}{R} \frac{\mathrm{d}R}{\mathrm{d}E}$$


Momentum Compaction as a function of magnetic field

Definition of average magnetic field

$$\langle B \rangle = \frac{1}{2\mathbf{p}} R \int_{C}^{C} B_{f} \, \mathrm{d}s = \frac{1}{2\mathbf{p}} \left( \int_{straights}^{B_{f}} \mathrm{d}s + \int_{magnets}^{B_{f}} \mathrm{d}s \right)$$
$$\langle B \rangle = \frac{B_{f} \mathbf{r}}{R} = 0 \qquad 2\mathbf{p} \mathbf{r} B_{f}$$

$$B_{f} \mathbf{r} = \frac{p}{e}$$

$$< B > R = \frac{p}{e} \qquad \longrightarrow \qquad \frac{d < B >}{< B >} + \frac{dR}{R} = \frac{dp}{p}$$

$$\mathbf{a}_{p} = 1 - \frac{d < B >}{< B >} / \frac{dp}{p}$$

~



Proton (ion) circular machine with **a**<sub>p</sub> positive

- 1. Momentum larger than the nominal  $(p + \Delta p)$  **D** longer orbit  $(C + \Delta C)$
- 2. Momentum larger than the nominal  $(p + \Delta p)$  **b** higher velocity  $(v + \Delta v)$

What happens to the revolution frequency f = v/C?

- At low energy, *v* increases faster than *C* with momentum
- At high energy  $v \leq c$  and remains almost constant



There is an energy for which the velocity variation is compensated by the trajectory variation  $\mathbf{P}$  <u>transition energy</u>

Below transition:higher energy **P**higher revolution frequencyAbove transition:higher energy **P**lower revolution frequency



## <u> Transition energy – quantitative approach</u>

We define a parameter **h** (revolution frequency spread per unit of momentum spread):





## <u> Transition energy – quantitative approach</u>



The transition energy is the energy that corresponds to  $\mathbf{h} = 0$  ( $\mathbf{a}_{p}$  is fixed, and g variable )

$$\boldsymbol{g}_{tr} = \sqrt{\frac{1}{\boldsymbol{a}_p}}$$

The parameter **h** can also be written as

$$\boldsymbol{h} = \frac{1}{\boldsymbol{g}^2} - \frac{1}{\boldsymbol{g}_{tr}^2} \qquad \cdot \text{ At low energy} \qquad \boldsymbol{h} > 0$$
$$\cdot \text{ At high energy} \qquad \boldsymbol{h} < 0$$

N.B.: for electrons,  $g \gg g_r \Rightarrow h < 0$ for linacs  $\mathbf{a}_p = 0 \Rightarrow h > 0$ 



### LESSON III

Equations related to synchrotrons

Synchronous particle

Synchrotron oscillations

Principle of phase stability

JUAS – 10/1/2003 – R. Corsini



# Equations related to synchrotrons

$$\frac{\mathrm{d}p}{p} = \mathbf{g}_{tr}^{2} \frac{\mathrm{d}R}{R} + \frac{\mathrm{d}B}{B}$$
$$\frac{\mathrm{d}p}{p} = \mathbf{g}^{2} \frac{\mathrm{d}f}{f} + \mathbf{g}^{2} \frac{\mathrm{d}R}{R}$$
$$\frac{\mathrm{d}B}{B} = \mathbf{g}_{tr}^{2} \frac{\mathrm{d}f}{f} + \left[1 - \left(\frac{\mathbf{g}_{tr}}{\mathbf{g}}\right)^{2}\right] \frac{\mathrm{d}q}{p}$$
$$\frac{\mathrm{d}B}{B} = \mathbf{g}^{2} \frac{\mathrm{d}f}{f} + \left(\mathbf{g}^{2} - \mathbf{g}_{tr}^{2}\right) \frac{\mathrm{d}R}{R}$$

| p [MeV/c]         | momentum          |
|-------------------|-------------------|
| <i>R</i> [m]      | orbit radius      |
| <i>B</i> [T]      | magnetic field    |
| f [Hz]            | frequency         |
| $\mathbf{g}_{tr}$ | transition energy |



$$\mathrm{d}R = 0$$

## Beam maintained on the same orbit when energy varies

$$\frac{\mathrm{d}p}{p} = \frac{\mathrm{d}B}{B}$$
$$\frac{\mathrm{d}p}{p} = \mathbf{g}^2 \frac{\mathrm{d}f}{f}$$
If

*p* increases



$$dp = 0$$

 $V_{RF} = 0$ 

Beam debunches

$$\frac{\mathrm{d}p}{p} = 0 = \boldsymbol{g}_{tr}^{2} \frac{\mathrm{d}R}{R} + \frac{\mathrm{d}B}{B}$$

$$\frac{\mathrm{d}p}{p} = 0 = \boldsymbol{g}^2 \frac{\mathrm{d}f}{f} + \boldsymbol{g}^2 \frac{\mathrm{d}R}{R}$$

If *B* increases *R* decreases *f* increases

#### Beam bunched with constant magnetic field





# Four conditions - resume

| Beam                | Parameter      | Variations                                                                                          |   |                |
|---------------------|----------------|-----------------------------------------------------------------------------------------------------|---|----------------|
| Debunched           | $\Delta p = 0$ | $B \Uparrow, R \Downarrow, f \Uparrow$                                                              | р | momentum       |
| Fixed orbit         | $\Delta R = 0$ | $B \Uparrow, p \Uparrow, f \Uparrow$                                                                | R | orbit radius   |
| Magnetic flat-top   | $\Delta B = 0$ | $p \Uparrow, R \Uparrow, f \Uparrow (\boldsymbol{h} > 0)$<br>$f \Downarrow (\boldsymbol{h} < 0)$    | В | magnetic field |
| External oscillator | $\Delta f = 0$ | $B \Uparrow, p \Downarrow, R \Downarrow (\mathbf{h} > 0)$ $p \Uparrow, R \Uparrow (\mathbf{h} < 0)$ | f | frequency      |



Simple case (no accel.): B = const.  $g < g_{tr}$ 

Synchronous particle

Synchronous particle: particle that sees always the same phase (at each turn) in the RF cavity



In order to keep the resonant condition, the particle must keep a constant energy The phase of the synchronous particle must therefore be  $\mathbf{f}_0 = 0$  (circular machines convention) Let's see what happens for a particle with the same energy and a different phase (e.g.,  $\mathbf{f}_1$ )



**f**<sub>1</sub>

**f**<sub>2</sub>

# Synchrotron oscillations

- The particle is accelerated
  - Below transition, an increase in energy means an increase in revolution frequency
  - The particle arrives earlier tends toward  $\mathbf{f}_0$



- The particle is decelerated
  - decrease in energy decrease in revolution frequency
  - The particle arrives later tends toward  $f_0$



JUAS - 10/1/2003 - R. Corsini



The phase of the synchronous particle is now  $f_s > 0$  (circular machines convention)

The synchronous particle accelerates, and the magnetic field is increased accordingly to keep the constant radius R.

$$R = \frac{\mathbf{g} \ v \ m_0}{eB}$$

The RF frequency is increased as well is increased accordingly in order to keep the resonant condition

$$\boldsymbol{w} = \frac{e B}{\boldsymbol{g} m_0} = \frac{\boldsymbol{w}_{RF}}{h}$$



# Phase stability







### LESSON I V

#### **RF** acceleration for synchronous particle

RF acceleration for non-synchronous particle

Small amplitude oscillations

Large amplitude oscillations – the RF bucket

JUAS – 10/1/2003 – R. Corsini

RF acceleration for synchronous particle - energy gain

Let's assume a synchronous particle with a given  $\mathbf{f}_s > 0$ 

We want to calculate its rate of acceleration, and the related rate of increase of B, f.

$$p = e B r$$

Want to keep **r** = const

$$\Rightarrow \frac{\mathrm{d}p}{\mathrm{d}t} = e \mathbf{r} \frac{\mathrm{d}B}{\mathrm{d}t} = e \mathbf{r} \dot{B}$$
Over one turn: 
$$(\Delta p)_{turn} = e \mathbf{r} \dot{B} T_{rev} = e \mathbf{r} \dot{B} \frac{2\mathbf{p} R}{\mathbf{b} c}$$

We know that (relativistic equations) :  $\Delta p = \frac{\Delta E}{bc}$ 

$$(\Delta E)_{turn} = e \mathbf{r} \dot{B} 2\mathbf{p} R$$



**RF** acceleration for synchronous particle - phase

$$(\Delta E)_{turn} = e \mathbf{r} \dot{B} \ 2\mathbf{p} R$$

On the other hand, for the synchronous particle:

$$(\Delta E)_{turn} = e \hat{V}_{RF} \sin \boldsymbol{f}_{s}$$

$$e \mathbf{r} \dot{B} 2\mathbf{p} R = e \hat{V}_{RF} \sin \mathbf{f}_s$$

Therefore:

1. Knowing  $f_s$ , one can calculate the increase rate of the magnetic field needed for a given RF voltage:

$$\Rightarrow \qquad \dot{B} = \frac{\hat{V}_{RF}}{2\mathbf{p} \mathbf{r} R} \sin \mathbf{f}_s$$

2. Knowing the magnetic field variation and the RF voltage, one can calculate the value of the synchronous phase:

$$\sin \mathbf{f}_{s} = 2\mathbf{p} \, \mathbf{r} \, R \, \frac{\dot{B}}{\hat{V}_{RF}} \quad \Longrightarrow \quad \mathbf{f}_{s} = \arcsin\left(2\mathbf{p} \, \mathbf{r} \, R \, \frac{\dot{B}}{\hat{V}_{RF}}\right)$$



<u>RF acceleration for synchronous particle - frequency</u>

$$\mathbf{w}_{RF} = h \, \mathbf{w}_s = h \frac{e}{m} < B > \qquad \left( v = \frac{e}{m} B \mathbf{r} \right)$$

$$\mathbf{W}_{RF} = h \frac{e}{m} \frac{\mathbf{I}}{R} B$$

From relativistic equations:

$$\boldsymbol{w}_{RF} = \frac{hc}{R} \sqrt{\frac{B^2}{B^2 + (E_0/ec\boldsymbol{r})^2}}$$

Let

$$B_0 \equiv \frac{E_0}{ecr} \qquad \Longrightarrow \qquad f_{RF} = \frac{hc}{2\mathbf{p} R} \left(\frac{B}{B_0}\right) \frac{1}{\sqrt{1 + (B/B_0)^2}}$$



## Example: PS

At the CERN Proton Synchrotron machine, one has:

R = 100 m $\dot{B} = 2.4 \text{ T/m}$ 

100 dipoles with  $I_{eff}$  = 4.398 m. The harmonic number is 20

Calculate:

- 1. The energy gain per turn
- 2. The minimum RF voltage needed
- 3. The RF frequency when B = 1.23 (at extraction)



## **RF** acceleration for non synchronous particle

Parameter definition (subscript "s" stands for synchronous particle):

| $f = f_s + \Delta f$                                        | revolution frequency |
|-------------------------------------------------------------|----------------------|
| $\boldsymbol{f} = \boldsymbol{f}_s + \Delta \boldsymbol{f}$ | RF phase             |
| $p = p_s + \Delta p$                                        | Momentum             |
| $E = E_s + \Delta E$                                        | Energy               |
| $\boldsymbol{q} = \boldsymbol{q}_s + \Delta \boldsymbol{q}$ | Azimuth angle        |

$$ds = R dq$$
$$q(t) = \int_{t}^{t_0} w(t) dt$$





#### 1. Angular frequency

$$q(t) = \int_{t}^{t_{0}} w(t) dt \qquad \Delta w = \frac{d}{dt} (\Delta q)$$

$$= -\frac{1}{h} \frac{d}{dt} (\Delta f)$$

$$= -\frac{1}{h} \frac{d}{dt} (f - f_{s}) \qquad \frac{df_{s}}{dt} = 0 \text{ by definition}$$

$$= -\frac{1}{h} \frac{df}{dt}$$

$$\Longrightarrow \qquad \Delta w = -\frac{1}{h} \frac{df}{dt}$$

<u>Parameters versus  $\dot{f}$ </u>



Parameters versus  $\dot{f}$ 

2. Momentum



JUAS - 10/1/2003 - R. Corsini



# **Derivation of equations of motion**

Energy gain after the RF cavity

$$(\Delta E)_{turn} = e \hat{V}_{RF} \sin f$$

$$(\Delta p)_{turn} = \frac{e}{\mathbf{w}R} \hat{V}_{RF} \sin \mathbf{f}$$

Average increase per time unit

$$\frac{(\Delta p)_{turn}}{T_{rev}} = \frac{e}{2\mathbf{p} R} \hat{V}_{RF} \sin \mathbf{f} \qquad 2\mathbf{p} R \dot{p} = e \hat{V}_{RF} \sin \mathbf{f} \qquad \text{valid for any particle !}$$

$$\Rightarrow \qquad 2\mathbf{p} \left(R \dot{p} - R_s \dot{p}_s\right) = e \hat{V}_{RF} \left(\sin \mathbf{f} - \sin \mathbf{f}_s\right)$$



# **Derivation of equations of motion**

After some development (see J. Le Duff, in Proceedings CAS 1992, CERN 94-01)

$$2\boldsymbol{p}\,\frac{d}{dt}\left(\frac{\Delta E}{\boldsymbol{w}_s}\right) = e\,\hat{V}_{RF}\left(\sin\boldsymbol{f} - \sin\boldsymbol{f}_s\right)$$

An approximated version of the above is

$$\frac{\mathrm{d}(\Delta p)}{\mathrm{d}t} = \frac{e\,\hat{V}_{RF}}{2\boldsymbol{p}\,R_s} (\sin\boldsymbol{f} - \sin\boldsymbol{f}_s)$$

Which, together with the previously found equation

$$\frac{\mathrm{d}\boldsymbol{f}}{\mathrm{d}t} = -\frac{\boldsymbol{w}_s \boldsymbol{h} h}{p_s} \Delta p$$

Describes the motion of the non-synchronous particle in the longitudinal phase space  $(\mathbf{D}p, \mathbf{f})$ 



# Equations of motion I

$$\begin{cases} \frac{d(\Delta p)}{dt} = A\left(\sin f - \sin f_{s}\right) \\ \frac{df}{dt} = B \Delta p \end{cases}$$

with

 $A = \frac{e \, \hat{V}_{RF}}{2 \boldsymbol{p} \, R_s}$ 

$$B = -\frac{\mathbf{h}h}{p_s} \frac{\mathbf{b}_s c}{R_s}$$



# Equations of motion II

1. First approximation – combining the two equations:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{1}{B} \frac{\mathrm{d}\mathbf{f}}{\mathrm{d}t} \right) - A\left( \sin\mathbf{f} - \sin\mathbf{f}_s \right) = 0$$

We assume that A and B change very slowly compared to the variable  $Df = f - f_s$ 

with 
$$\frac{\Omega_s^2}{\cos f_s} = -AB$$
 We can also define:  $\Omega_0^2 = \frac{\Omega_s^2}{\cos f_s} = \frac{e \hat{V}_{RF} h h c^2}{2p R_s^2 E_s}$ 



2. Second approximation

$$\sin \mathbf{f} = \sin(\mathbf{f}_s + \Delta \mathbf{f})$$
$$= \sin \mathbf{f}_s \cos \Delta \mathbf{f} + \cos \mathbf{f}_s \sin \Delta \mathbf{f}$$

$$\Delta \boldsymbol{f} \text{ small} \implies \sin \boldsymbol{f} \cong \sin \boldsymbol{f}_s + \cos \boldsymbol{f}_s \Delta \boldsymbol{f}$$

$$\frac{\mathrm{d}\boldsymbol{f}_s}{\mathrm{d}t} = 0 \quad \Rightarrow \quad$$

$$\frac{\mathrm{d}^2 \boldsymbol{f}}{\mathrm{d}t^2} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} (\boldsymbol{f}_s + \Delta \boldsymbol{f}) = \frac{\mathrm{d}^2 \Delta \boldsymbol{f}}{\mathrm{d}t^2}$$

by definition

$$\frac{\mathrm{d}^2 \Delta \boldsymbol{f}}{\mathrm{d}t^2} + \boldsymbol{\Omega}_s^2 \Delta \boldsymbol{f} = 0$$

Harmonic oscillator !



# Stability condition for $f_s$

Stability is obtained when the angular frequency of the oscillator,  $\Omega_s^2$  is real positive:



JUAS - 10/1/2003 - R. Corsini



# Small amplitude oscillations - orbits

For  $h\cos f_s > 0$  the motion around the synchronous particle is a stable oscillation:

$$\begin{cases} \Delta \boldsymbol{f} = \Delta \boldsymbol{f}_{\max} \sin(\boldsymbol{\Omega}_s t + \boldsymbol{f}_0) \\ \Delta p = \Delta p_{\max} \cos(\boldsymbol{\Omega}_s t + \boldsymbol{f}_0) \end{cases}$$

with 
$$\Delta p_{\text{max}} = \frac{\Omega_s}{B} \Delta f_{\text{max}}$$



# Lepton machines e+, e-

$$\boldsymbol{b} \cong 1$$
 ,  $\boldsymbol{g}$  large ,  $\boldsymbol{h} \cong -\boldsymbol{a}_p$ 

$$\mathbf{W}_{s} \cong \frac{c}{R_{s}} \quad , \quad p_{s} \cong \frac{E_{s}}{c} \quad \Longrightarrow \quad \left[ \Omega_{s} = \frac{c}{R_{s}} \left\{ -\frac{e \, \hat{V}_{RF} \, \mathbf{a}_{p} \, h}{2 \mathbf{p} \, E_{s}} \cos \mathbf{f}_{s} \right\}^{1/2} \right]$$

Number of synchrotron oscillations per turn:

$$Q_{s} = \frac{\Omega_{s}}{W_{s}} = \left\{ -\frac{e \, \hat{V}_{RF} \boldsymbol{a}_{p} \, h}{2\boldsymbol{p} \, E_{s}} \cos \boldsymbol{f}_{s} \right\}^{1/2} \quad \text{"synchrotron tune"}$$

N.B: in these machines, the RF frequency does not change



# Large amplitude oscillations









## Phase space trajectories



Phase space trajectories for different synchronous phases