HAMILTONIAN
| DYNAMICS

2.1 LAGRANGIAN FORMULATION OF MECHANICS

In this section we discuss some of the basic principles of the Lagrangian
formulation of classical mechanics. This provides the necessary background
to learn about the Hamiltoman formulation, which, in turn, provides ire
natural framework in which to investigate the ideas of integrability and
nonintegrability in a wide class of mechanical systems. Many of the
differential equations discussed in Chapter 1 describe the motion of a
particle moving in some force field (represented as the gradient of a
potential energy function) and, as ‘such, they are examples of Newtonian
equations of motion.T Since Newton’s pioneering work, the “laws” of
mechanics have been the subject of ever more general and elegant for-
mulations. General equations of motion can be seductively derived by
invoking such fundamental principles as the homogeneity of space and time
and the use of an almost magical variational principle (“Hamilton’s
principle”) to the extent that the resulting “laws” would appear to have
been determined from purely deductive (““absolute”) principles. Nonethe-
less, it should always be remembered that all these results are at some point
based on experimental facts and human experience—they have just stood
the test of time remarkably well. (For example, there was no reason Or
evidence to doubt that Newton’s laws could describe microscopic systems
until spectroscopic evidence came along to indicate the need for quantum

mechanics.)

tThe reader is assumed to be familiar with the basics of Newtonian mechanics and such
concepts as constraints and generalized coordinates (see, for example, Chapter I of Goldstein

(1980)).

42




LAGRANGIAN FORMUILATION OF MECHANICS / 43

2.1.a The Lagrangian Function and Hamilton’s Principle

If one considers a mechanical system consisting of a collection of parti-
cles—interacting amﬁmﬁﬁﬁher according to well-defined force
laws—then experience has shown that the “state of ‘the system” is com-
pletely described by the set of all the positions and velocities of the
particles. The coordinate frame need not be cartesian, as was the case in
Newton’s work, and the description can be effected by means of some set of
“generalized coordinates” ¢; (i=1,..., n) and “generalized velocities” qgi
(i=1,...,n). (The use of generalized coordinates relieves a system from
the explicit presence of holonomic constraints.)

If a system moves from a position at some time t,, labelled by the
coordinate set g = g4(1)), ..., g.(#), to a position 99 = qi(t), .. ., gu(12) at

another time 1, then the actual motion can be determined from Hamilton’s /cav aciia

principle of least action. This requires that the integral of the so—ca_l}&i_
Lagrangian function takes the minimum possible value between the initial
and final times. For the moment, we (reat the Lagrangian as a “black box”,
merely stating that it can only be some function of those variables on which
the state of a system can depend (i.e.:the_g{ep_e;aliﬁze_(_j, coordinates, velo-
cities, and time), namely,

x L:L(qla--'yqn: 4’1,---:ij t) (211)

The famous ““principle of least action,” or “Hamilton’s principle,” requires
that the action integral '

_W=sz(q, q, 1) di (2.1.2)

- be a minimum. For the moment, we drop the subscript on the g;’s and g:’s
~ and assume a single degree of freedom. The positions g™ and g at the
“initial and final times #, and ¢, are assumed fixed. (Allowing the end points
to also vary with time has other important consequences.) There can be
- many different paths q(r) connecting ¢® and ¢®, and the aim is to find
- those that extremize (which usually means minimize but can, in fact, also
- fesult in a maximum) the action (2.1.2). This is done by looking at the effect
- of a “first variation,” that is, adding small excursions along the path which
anish at either end (i.e., 8q(1; ) = 8q(t,) = 0). A remarkable feature of this
Procedure is that we are considering the effect of these variations about a

— oW Lg+dg,q+6.0di— | Lg.god (213
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By expanding the first integrand to first order, one obtains the variation
5W—F(—a + 2 54) d (2.1.4)

Using 8¢ = dég/dt and integrating the second term by parts yields

aL _|= (2oL d(dL
w=l2Esql T | (=-S5 )sq dt 2.1.5
0 ‘-aq 5‘1\;1 .[ (aq d:(aq)) d 2130

By the end-point condition, the first term on the right-hand side vanishes. It
the variation is to be an extremum, then W = 0; this can only occur if the
integrand vanishes, that is,

oL d (oL
iL_d(iL)_ 216
. aq dt\dq
For n degrees of freedom qi,. .-, gn, the variation must be effected for

each variable independently, that is, gi(t) + 84i(¢). The net result is the set of
equations

7 d /o oL - |
= =) —=—=4] 1.7
\ dt(aéi) ag; @ )

which are the celebrated Lagrange’s equations. If the (correct!) form of the
Lagrangian is known for the given mechanical system, then the set of
second-order equations (2.1.7) are the equations of motion for the system
and, given the initial data g; (0), ¢:(0) (i=1,...,n) will determine the entire
history of the system.f

In determining the correct form for the Lagrangian function it is interes-
ting to see how far one can go in making this choice by invoking only the
most basic principles. In their brilliant text on mechanics, Landau and
Lifshitz (1960) persuasively argue that, for a free particle at least, the
principles of homogeneity of time and isotropy of space} determine that the
Lagrangian can only be proportional o the square of the (generalized)
velocities. If the constant of proportionality is taken to be half the particle
mass, then the Lagrangian for a system of noninteracting particles is just
their total kinetic energy in rectilinear coordinates, that is,

So powerful did this Jeterministic framework appear that Laplace was led to say “We ought
then to regard the present state of the universe as the effect of its preceeding state and as the
cause of its succeeding state.” .

#These two properties ensure that the motion can be considered in the context of an *“inertial
frame,” that is, independent of its “absolute” position in space and time.
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Beyond this, “‘experimental” facts have to be invoked in that if the particles
interact amongst each other according to some force law contained in a
“potential energy function” V(qi,...,gq,), then, to quote Landau and
Lifshitz (1960), “experience has shown that” the correct form of the
Lagrangian is

[L=T-V=Y3md V(g....,q) (2.1.8)
i=1 {

The potential energy function is such that the force acting on each particle
is determined by — el shionlh

a ]
| F=—— yee s Gn 2.1.9
| " Vs« on il (2.1.9)

(This provides a definition of the potential energy, since it ensures that the
net work done by a system in traversing a closed path in the configuration
(i.e., coordinate) space is zero.) For velocity-independent potentials,
Lagrange’s equations (Eqgs. (2.1.7)) become

_a¥

—_—f m",':
. =5

(2.1.10)
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which, in the case of cartesian coordinates, are just Newton’s equations.

- 2.1.b Properties of the Lagrangian

" Given the Lagrangian for a system of (interacting) particles, a number of
(interesting properties of that system can be deduced. First we consider the
total time derivative of the Lagrangian, that is,

al: oL . 4L
2.

d

—L -)t = = i+ el i+__-1

dt 4,4, 1) ;aq,-q iaqiq at
T dt q’aq,. at

d (o . oL oL |
dz(zi:q"aqi L)__E (2.1.11)
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For a closed syst_er_h_ (i.e., one which does not interact with any external
forces), the homogeneity of time ensures that L does not depend explicitly
on time, and thus the “energy” '

oL . |
Ll

wnae L Ay i |
94 ,1 (2.1.12)

| E=24

is a constant of the motion; that is, the system considered is conservative

(see Chapter 1). Furthermore, using the definition of L in (2.1.8), it is easily
deduced that
I E=T+V| (2.1.13)

Using L, one may define the generalized forces

' oL
5 (2.1.14)
qu
and, most importantly, the generalized momenita
i _aL|
L. 94|

' where only for cartesian coordinates do we "gp_t_fc_liq,___p,-' = mq;.)With these two
definitions, Lagrange’s equations can then be cast in the form

p=F i=1,...,n - (2.1.16)

Clearly, if any one of the generalized coordinates, say g, is missing from
the Lagrangian, we obtain the associated generalized force Fi=0 and
hence (from (2.1.6)) the corresponding generalized momentum pj =cons-
tant. Missing coordinates are sometimes referred to as cyclic—clearly, cyclic
coordinates simplify 'the integration of the equations of motion. With the
above definition of the p;, the energy of the system (2.1.12) can then be
written as -

_» E=)Ypa-L (2.1.17)
i=1

If a system is closed and space is homogeneous, then the net effect of all
the particle forces must be zero, thatis, Y. /-1 ;=0 (in Newton’s third law
this is stated, for two bodies, as “action and reaction are equal and
opposite”). In this case we may deduce from (2.1.16) that Yi-1pi=
constant; that is, the overall translation of a system of particles is constant.-
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Thus we see that by invoking such fundamental principles as homogeneity
of time and space (for closed systems), one may deduce basic conservation
laws such as the conservation of energy and total momentum. These results
are examples of a deep and general result known as Noether’s theorem,
which states that for every group of transformations that leaves._ the
Lagrangian function invariant, there is an associated conserved quantity;
for example, invariaiicé undetr franslation in time and space leads to
conservation of energy ‘and (hnear) momentum reSpectweTy “Another sim-
ple example is a system invariant under rotation—here angular momentum

will be conserved. =

2.1.c Properties of the Generalized Momenta

In the Lagrangian picture of mechanics, the generalized coordinates and
velocities are considered as independent variables. Now we have also
defined another set of variables, the generalized momenta p; (Eq. (2.1.15)).
The simple connection between the generalized momenta and velocities in
the cartesian coordinate system is deceptive in that the - pi are truly a
completely mdependent (from the g; and ¢;) set of variables. The
differences are deep and are most clearly seen when viewed from a more
geometric point of view.T So deep and elegant is this structure that Arnold
(1978) has described Hamiltonian mechanics (i.e., the description of
mechanics in terms of the p; and ¢;) as “geometry in phase space.”
In a more traditional framework, an important property of the p, that
distinguishes them fl‘OI_I] the g; is that they are expressible as the gradient of
a scalar ﬁeld—this is a simple wayuof demonstratlng their covariant proper-
. ties. To see this, we return to the action integral (2.1.2). For a given
- extremal path, that is, a path satisfying Eqs. (2.1.7), this is just a definite
- integral, that is, the value of the action along the path connecting g(t;) and
- q(t,). A variational principle can still be applied to (2.1.2)—but this time to
see how the action varies between neighboring extremal paths with the
same initial point but different final points. So now one looks at the
variation of W for q = q() + 8q, where q(¢) is an actual extremal path with
- qW =gq(t) fixed and q® = q(t,) + 8q(1,) as the varying end point. The

The velocities are examples of tangent vectors and transform as contravariant variables. The
mbined set of variables ¢;, §; (i=1,..., n) forms a 2n-dimensional manifold known as a
tangent bundle (TM), and the Lagranglan then becomes the mapping of the tangent-bundle
pace to a scalar field, namely, L: TM— R (i.e., it converts the set gi, g; to a real number).
domenta have completely different geometric properhes They transform as covariant vari-
bles, and the phase space made up of the set g, p, (i= ,n) is a 2n-dimensional
ymplectic manifold with very different geometric properties from the tangent bundle space of

wonderful book Mathematical Methods of Classical Mechanics. An introductory account of
concepts is given in Appendix 2.2.

grangian mechanics. For a full account, the reader is referred to V. I. Arnold’s (1978)
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variation leads to the same result as (2.1.5), that is,

5 (9L d (oL
+| (E-=(55))8qd 1.
RN e 1 L

oL
oW = l—‘ Bq‘

dq
but since the path is assumed to be extremal, the integral vanishes and one
is left with just the end-point contributions. Since the initial point is fixed,
we have 3q() = 0; and denoting 8q(t) as just g and using p = alL/daq, one
has 8W = p éq or

{ N n ’ i E

| sW =Y. p bqi (2.1.19)
: i=1 |

for a system of n degrees of freedom. From this result follows the property
that the p; are _gradienfs of the action, that is,

L

W
a4 (2.1.20)

—l 3qi
at a given time along a given extremal path. By contrast, note that it is not

possible to express ¢ as the gradient of a scalar field.

2.9 HAMILTONIAN FORMULATION OF MECHANICS

| ' Hamiltonian mechanics is the description of a mechanical system in terms

of generalized coordinates ¢g; and generalized momenta p;. Although the
Hamiltonian formulation of classical mechanics contains the same physical
information as the Lagrangian picture, it is far better suited for the
formulation of quantum mechanics, statistical mechanics, and perturbation
theory. In particular, the use of Hamiltonian phase space provides the ideal
framework for a discussion of the concepts of integrability and nonin-
tegrability and the description of the chaotic phenomena that can be
exhibited by nonintegrable systems.

2.2.a Transformation to the Hamillpnian Picture

To effect the transformation from the Lagrangian description involving the
g; and the ¢; to the Hamiltonian description, one uses the standard tech-
nique of Legendre’s transformation (see Appendix 2.1). The Legendre
transform of L = L(q, §, t) with respect to q to a new function in which q is
expressed in terms of pis o i T

!:. H(p, q, t) :‘ -Zl pl-q!. — L(q’ q’ r) : (221)
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where p, q, and ¢ are the“ fi-Component vectors p=(p1,..., p,), q=
(91, Gn)s 4= (41, - - ., §) and the new function H is the Hamiltonian of
the system. The crucial relationship is that which defines p; in terms of the g,
and ¢;, namely, ~— ) .

p—— N e e

e oL j
[ i i t = — .
] pi(q,q, 1) 94, (q,q, r)ta (2.2.2)
which, providing
, a2L
¥ det|——— | #0 (2.2.3)
9q; 94;

can be inverted to express the ¢; in terms of the p: with (at this stage) ¢; and
¢ treated as parameters. As a simple example of this transformation,
consider the Lagrangian

n 1 - L
* L:_Zlim,-q?—‘/(q,,...,qn) (2.2.4)

From this we determine

_9L _

—aqi mq; (2.2.5)

Di

and since condition (2.2.3) is satisfied, the inverse is (trivially in this case)

: Di .
= 2.2.
gi it (2.2,6)

and thus the Hamiltonian is

H(p,q) = Z p,-(%)—{gl %mi(%)zi Vi - v q,,)}

i=1 i
< |
f - ; z—n;P:?‘+ Vi(gs,. .., qn) (2.2.7)

though the Lagrangian (2.2.4) describes an important class of mechanical
tem, the simplicity of the relationship between the pi and g; is such that
> of the subtlety is lost. A standard example of a less trivial trans-
Mmation is provided by the case of a particle moving under gravity but
ined to a smooth wire frame of specified shape.t

1S an example of an holonomic constraint.

|
|
|
!
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Consider a bead of mass m sliding smoothly on a wire of shape z = f(x)
in the vertical (z, x)-plane. To begin with, think of unconstrained motion
in this plane. This will require, in the Lagrangian description, two cO-
ordinates and velocities (i.e., X, z and x, Z); thus the kinetic energy 1is
T =1 m(x*+ z?). Now introduce the relationship between x and z, that is,
z = f(x), from which one obtains z = %(dffdx) = xf'(x). Thus one finds

T =4im(x*+ 52) = i 2(1+ (f'(x)?) (2.2.8)

The potential energy is just that due to gravity (i.e., V=mgz = mgf (x)),
and so the Lagrangian is

L =imi[1+ (f'(x))*]1— mgf(x) (2.2.9)
From Eq. (2.1.5) the generalized momentum 18

=5 = miCi + (/) (22.10)

and hence

. p
@ (D 2L

Thus from (2.2.1) the Hamiltonian is

m

_ A 4
H(p, ) =P a5 (7)) {(2) m?(1+ (f'(x))*)°

(1 + (PP — mef ()

_ p
= (i + (f'(x))2)+ mgf(x) 2.2.12)

2.2.b Hamilton’s Equations

" Given the Lagrangian for a system, Lagrange’s equations of motion were
derived from Hamilton’s principle. Clearly, we now want to derive equa-
tions of motion for the Hamiltonian formulations of the problem. These can
also be derived on the basis of a variational principle (see Section 2.3.c for 2

discussion of this) but are more directly seen as follows. The differential of
H, defined by (2.2.1), is '

aL

— dg; -5 g (2.2.13)
aqi at

L
AH = poddi+ iy dp 5 44
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The first and third terms on the right-hand side cancel by the definition
p: = 3L/dq,; and using the relation pi =9dL/dq; (Eq. (2.1.6)), one obtains

. oL
dH =), g1 dpi— pr dg,— == dt (2.2.14)

Thus one obtains the famous “canonical” or Hamiltonian equations of
motion, namely, o

Jrr—— : aH =)
i " 4 .,' g we——— 2 s 2
| %=, dp » (2.2.15)
plus the additional relationshipt (for explicitly time-dependent systems)

FoH oL |
o ot (2.2.16)

The system of equations (2.2.15) form a set of 2n first-order equations in
contrast to the set of n second-order equations obtained in the Lagrangian
description, Although in Chapter 1 we saw that a second-order equation,
say of the form % = f(x), could be written as a pair of first-order equations
by introducing a new variable y = %, it should be clear that they are not
necessarily in Hamiltonian form. Consider the sliding-bead problem.

Hamilton’s equations are

. _0H p
B ’ (2.2.17a)
op  m(l+(f'(x)))
. oH 2f'(x) f"(x ,
PG = i (e e ) (2:2.170)
- ' On the other hand, Lagrange’s equation is
| . _ PO (0)+g)
X =— , 2.2.18
() B0
Introducing the variable y = %, one obtains the pair
i=y . (2.2.19a)
- fr(y2f.'r+ g)
=———2 2.2.19b
Ty 22150

Which are clearly quite different from the pair (2.2.17a) and (2.2.17b).

addition, one may easily demonstrate that dH/dt=8H/dt. Comparison with the canonical
ations (2.2.15) suggests that, formally, one could also consider — | and ¢ to be a pair of
onical variables. This concept is especially valuable for time-dependent Hamiltonians
T€ onme often considers the (2n+ 2)-dimensional “extended” phase space of
“2Pns q15. .., q,; —H, 1. (See the later discussion of the Poincaré~Cartan invariant.)
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Hamilton’s equations (2.2.15) have a number of important properties; for
the momeént, we discuss them in the context of a time-independent Hamil-
tonian. First of all, the set of 2n variables qi, - > qns P15 - -> —often

called the “canonical” or “‘canonically conjugate” variables (e.g., “pi is the

momentum conjugate to q;")—define a 5 n-dimensional phase space (cf. the

2 p-dmmen e
discussion of phase space in Chapter 1). The solution to Hamilton’s equa-
tions

qi(t) = qi(go, Pos 1), pi(t) = pi(go; Pos ) (2.2.20)

where qo=(q:1(0), .- > g.(0)), Po= (pel0)y - « » p.(0)) are the set of initial
conditions, define the mechanical state of the system at time t. As time
evolves, g(f), p(t) map out a phase-space trajectory which explores certain
regions of the phase space. Precisely what regions these are is the fun-
damental issue—which we shall soon discuss.
It is easy to see that Egs. (2.2.15)_}@:3_‘[:1}116 ‘finc_ompressibility” con-
dition T e
Z(%+-a—f’i):o (2.2.21)
i=1\8q; 9P

Imagine a blob of p}lasefspaceV“ﬂuid”qu. (2.2.21) is just a statement that
this blob has zero divergence. Thus a volume element in phase space is
preserved under the amiltonian flow—this is Liouville’s theorem and is one
of the most fundamental properties of Hamiltonian systems.{ In the sliding-
bead problem, for example, it is easily seen from Egs. (2.2.17) that the
phase-space flow is indeed divergenceless. Notice on the other hand that
the pair (2.2.19) deduced from the Lagrangian does not preserve volume
(area, to be more precise, in this case) in the (x,y) “phase space.”
So symmetric are Hamilton’s equation in p and g that it seems natural to
consider the variables p; and g; on very much of an equal footing. Often it is
convenient to introduce a single «get” of 2n coordinates Zi, where z =
(Gir---sGns Pire -5 pn). Thus for a given Hamiltonian H = H(4q, p) = H(@),

Hamilton’s equations can be written in the concise form

i1=1J-VH(z) 22.22)
where V = (821, - - - » 0Z2n) and the 2n X 2n matrix J is termed the symplectic
matrix

0 ‘ﬂ) |
= 2.2.23

where 4 is the n X n unit matrix.

A more geometric account of Liouville’s theorem is given in Appendix 2.2.
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2.2.c Poisson Brackets* -

Of particular importance is our ability to integrate Hamilton’s equations.
For systems with just one degree of freedom (i.e., just a single pair of
canonical variables (p, q)), we can integrate the pair of first-order equations
in the ways discussed in Chapter 1. However, whether it be one or many
degrees of freedom, the crucial step is to identify the integrals of motion. In
the Hamiltonian picture, the time dependence of dynamical quantities can
be formulated very elegantly. Consider some function f = f(p, g, t); then

o5 (4l dn oty

=1 dt aql dt ap; ot
2, (0H 9 oH o
-3 ( i__l)+alc (2.2.24)
=1 \dp; 9q; 0G; Ip; at
of
=L Pl
LR J1 -

where [H, f] is the Poisson bracket of f with H. There is a close analogy
between the Poisson brackets of classical mechanics and the commutator
brackets of quantum mechanics. In fact, one can write the Poisson bracket
for any pair of dynamical quantities, for example,

_ < (98 3f 98 of
[g, f] a igl (apf 0q;i  94; BP;-) . (2:2.25)

If a quantity is explicitly time independent (i.e., f=f(p, q) and its Poisson
bracket with H vanishes), then it is clear from (2.2.24) that f is a constant
of motion. Obviously, since the Poisson bracket of H with itself is zero, the
energy of a time-independent system (i.e., H = E) is a constant of motion.

Following from its definition (Eq. (2.2.25)), the Poisson bracket may be
shown to have a variety of properties. For the three given functions f, g h,

one finds

[f. g]l=—Lgf] (2.2.26a)
[f+g, hl=[f, h]+[g, K] (2.2.26b)
[fg, h]=flg, h1+glf, h] (2.2.26¢)

[f.[g hll+[g [h, fII+[h[f gl]=0 (2.2.26d)

;)the last of which, with its characteristic cyclic structure, is known as
. Jacobi’s identity. The set of properties (2.2.26) shows that the Poisson
- brackets satisfy what is known as a Lie algebra. There is nothing to stop one
;:_rom choosing the various functions f, g, h to be just individual canonical
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yariables, in which caée one obtains relations of the form
[q:': gl = 0, Lpi Pj] =0, Lpis q;il = 6 (2.2.27)

which are ciosely‘ analogous to those obtained in quantum mechanics (e-g-,
the third relation becomes [Bis §i]=— in6y). It f and g are both constants of
motion (i.e., [ H, f1=[H, g]=0), then it follows by Poisson’s theorem that
the bracket between f and g is also a constant of motion, that is, [, gl=
constant. This 18 easily seen from the Jacobi identity (2.2.26d), that s,
[ ELe, HT+[g [H, fII+[H,Lf, g]]= 0. Since the first two brackets vanish
(because f and g are constants), we are immediately left with the desired
result [H, [f, g1 =0, which indicates that [ f, g] is also a constant. However,
Poisson’s theorem may not always be very useful in practice (i.e., for
constructing new integrals of motion), since the bracket [ f, g] may just be a
simple constant (e.g., zero) or just a function of the original integrals f
and g.

In Chapter 1 we saw that, in general, a system of n first-order equations
requires n—1 integrals (these include both the nontrivial “integrals of
motion” and the trivial “constants of integration”) in order to effect a
complete “integration.” Does this mean, then, that for the system of 2n
equations of a Hamiltonian system wWe require 2n—1 integrals of motion to
solve the problem? Fortunately, as already mentioned, it turns out that,
owing to the special symplectic structure of Hamilton’s equations, one only
requires n integrals of motion. However, to see how this miracle occurs, it
is useful to first of all learn about what are termed canonical trans-

formations. These are the transformations of variables for which the Hamil-

tonian structure of the system is still preserved.

2.3 CANONICAL TRANSFORMATIONS

In the Lagrangian description of a system (i.e., the description in terms of
generalized coordinates and velocities qi, 4i), it is sometimes cpnvenient to

transform to some new set of _g_eneralized coordinates, that is,
Q= Qg - Gn) (2.3.1)

to simplify the integration of the equations of motion (e.g., @ transformation
from cartesian to polar coordinates). In the Hamiltonian description, there
are now two sets of independent variables, the p; and g i=1..., n),
which, as we have discussed, are very much on an equal footing. Thus we
now have to consider the possibility of transformations from one set of

phase-space variables (pi, gi) to some new set (P;, Q;), that is,
P,=P(qi,.-->qn: P1s---> pn) 252
= Qi(grs--->Gn> Py - - - :Pn)

t L T T LM
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Notice that the new P; and ‘Q; can be, in general, functions of both the old
p: and g;. Those cases in which the transformations just involve making the
new P; and Q; functions of only the old p; and g;, respectively (i.e., as in Eq.
(2.3.1)), are referred to as point transformations. Transformations _of the
form (2.3.2) are referred to as canonical transformations if the symplectic

structure of the system is still preserved. Loosely speaking (a more precise,
geometric definition will be given later), this ~means that the canonical form
of Hamilton’s equations are still preserved, that is, T

!}Oi—“ﬁH(Q,P),_ _Pi——a_Q:H(Q,P) | (2.3.3)

where H' = H'(Q(q, p), P(q, p)) is the transformed Hamiltonian. (The trans-

formation of H(p, q) to H'(P, Q) is not always just a simple substitution of
variables—see later.)

2.3.a The Preservation of Phase Volume

A fundamental property of canonical transformations is that phase volume
is preserved.t If [[}= dp; dg; represents a volume element in the “old” phase
space and []/=; dP; dQ; represents a volume element in the “new” phase

space, then we require that

Ve —n —
| _[ [T dpidg; = | I] aP.d0, | (2.3.4)
! = i=1 ] f

where the integral sign represents a 2n-dimensional integration over a

TIn fact, the preservation of phase volume is just one of a hierarchy of quantities, preserved

under canonical transformation, known as the Poincaré invariants. The first of these is the

- invariant

J' J Y dpdg, = ” Y dPdO, }
Ml o e SR

which represents tl}_g_'_s,g.rgﬂpf_ areas (of a phase-space element) projected onto the set of (pi,q:)
planes. In geometric language this is expressed in terms of the “differential 2-form,” that is,

P

=

dPiAdqi= Z de/\dQ,‘
i=1

i=1

: \?_here A denotes the so called wedge product. This result provides a rigorous, geometric
:d'e.ﬁnition of canonical transformations. All other invariances, including (2.3.4), follow from
. this (see Appendix 2.2).

-
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prescribed volume in phase space. The two integrals are related by the
Jacobian of transformation, that'is, '

— e

. a(Pl, PH,OIy---sQn) B
£ I I dP; d tzj , dp: dg; e
Jl:l Q a(pi’ AE :p”’ ql’ e qﬂ) IE[i p dq (2 3 5)

Thus a volume preserving transformation must have unit Jacobian, namely,

8 PR Pn, PEEEEER n g 8 % ns L | n .
(Pis-.r Pny Q1 Q) _ 3(p P, 41 ) _ 4 (2.3.6)
a(pla---apn7q17'°-3qn) a(Pla'-'OPnaQ!)--'agn)

Consider the very simple example

Then ¢
0P 20
a(P, Q) ap dp ‘0 41‘
OV =0 _ _1
ap,q) |oP 9Q| 1 0 (2.3.8)
aq 99

which therefore shows that (2.3.7) is a volume-preserving (canonical)
transformation, The transformation (2.3.7) demonstrates on just how equal
a footing the p and g are; that is, they can be interchanged—but with a sign
change. Notice that if we did not make that sign change (e.g., Q=p,
P = q), the Jacobian would be —1. In fact, this need for the sign change
should not be surprising since it is required to preserve the form of
Hamilton’s equations (2.3.3) under interchange of P and Q.

An example of a noncanonical transformation is that from polar to
cartesian coordinates, that is,

g=PcosQ, p=PsinQ (2.3.9)

since

a(q,p) |~ PsinQ “Pcos Q| _

3a(Q,P) | cosQ sin O —’R (2.3.10)

which indicates that phase volume is not preserved.
Liouville’s theorem is the statement ‘that phase volume is preserved

under the Hamiltonian flow—we saw this in Section 2.2.b as an almost

obvious “incompressibility condition” that follows from the form of Hamil-
ton’s equations. In fact, we can couch Liouville’s theorem in the language
of canonical transformations as follows. Consider some phase-space tra-




CANONICAL TRANSFORMATIONS / 57

jectory along which some initiat g, Po at time f evolve to some g, p; at a
(short) time ¢ later, that is,

\ dq
( =qt+d)=qgo+6t—| + >
X g1 = q(t + 8t) = g, atl,. O(81%)
| 9 5
% = qot 8t — H(qo, po, t) + O(6?) |
| oo :
| dp 5 ' '; :
; Pi=plt+8n=po+8t—| +0O(sp)
f dt =1,
E

d
= Po— 8t — H(qq po, 1) + O(812)
dqo

If the transformations from 9o, Po 1O q1, py is, in fact, a canonical trans-
formation from one set of variables to the other, then the Jacobian
3(q1, p1)/3(qo, po) must be unity. We find

3 ad FH 2
[ =1 OBl |y — g I;I
| 5(611,171): dqo0  dqo - 940 dpo 9q6
3 go, d 3 *H P*H
(40, po) (391 3py S = 1-s
apo apo apo aqo Bpg
=1+ O(8F)
" =1 in lim §t—0

Note that the vanishing term is O(8¢°) rather than O(61). Because this
change is proportional to O(87%), it follows that over any finite period of
time (i.e., any multiple of 81), the total change of area goes as O(6t)—which
vanishes in the limit 8/— 0. Thus the “infinitesimal transformation”’
. generated by the Hamiltonian itself is a canonical transformation. The
- phase volume in the variables qo, Po is preserved under transformation (due
¢ to the Hamiltonian flow) to the “new” variables 41, pi—which is, of course,
. just a statement of Liouville’s Theorem.

3.b The Optimal Transformation

ilhe practical use of canonical transformations (although they certainly
ave an elegant structure in their own right) is to find those transformations
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that make the integration of Hamilton’s equations as simple as possible. The
optimal case is the one in which all the Q; are cyclic; that is, the trans-
formed Hamiltonian depends only on the new momenta P;:

s, . v s @i » o QI H'(Py, ..., P (2.3.11)

Hamilton’s equation then becomes very simple since

; H'

P,-=“%—d=0, ie., P.=const, i=1,...,n (2.3.12a)
. - oH

,=——=fi(Pi,..., Pn 2.3.12b
b= 5= ) (23.12b)

where the f; are some time-independent function of the P;. The equation for
Q; can then be immediately integrated, that is,

Q; = fit+ &, i=1,...,n (2.3.12c)

where 8 = Q;(0) are a set of arbitrary constants determined by the initial
conditions. Clearly, the new set of “momenta’” P, are constants of the
motion. Thus if we can find them we are able to effect a complete
integration of the equations of motion. The P; and & constitute a set of 2n
integrals. The n P; are the set of nontrivial constants of motion (or first
integrals) that enable one to “perform” the integration, and the n &; are the
set of trivial constants of integration that enable one to ‘“complete” the
integration. (If need be, these solutions can then be transformed back, in
principle at least, to the original representation in terms of “old” p;’s and
gi's.) Of course we have to be able to do two things: (1) find these magical
new variables and (2) know how to correctly transform the Hamiltonian into
its new representation.

2.3.c Generating Functions

Canonical transformations are effected by means of so-called generating
functions.t One way 1o introduce them .is through a variational principle.
! Although formally elegant, it is perhaps easier, at least for time-in-
Wl dependent problems, t0 proceed via a simpler route that only involves the
principle of phase-volume preservation. (Here we follow the presentation of

+1t is important to emphasize that generating functions are more than formalism—as sometimes
appears on a first reading. They are extremely useful. They enable one to find, directly, both

the “new” canonical P and Q and their relationship o the “old” p and g. This is, in effect,
“two for the price of one.” If one did not use a generating function but just-started off with
some Q= Q(g, p), one would probably have to work quite hard to find the corresponding

canonical P = P(q, p).




