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What we Learned in the Previous Lecture

In the previous lecture, we derived a Hamiltonian for the
motion of a particle through an electromagnetic field, with
dynamical variables appropriate for a particle accelerator. For
particles close to the reference trajectory, and with energy close
to the reference energy, the values of the dynamical variables
are expected to remain small as the particle moves through the
accelerator.

Since the dynamical variables take small values, we can make
approximations to the Hamiltonian to construct linear maps.

We saw how this could be applied to the map for a field-free
region (a drift space).

So far we have assumed that the reference trajectory is a
straight line.
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Course Qutline

Part I (Lectures 1 — 5): Dynamics of a relativistic charged
particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate
system

3. The Hamiltonian for a relativistic particle in. a general
electromagnetic field using accelerator coordinates

4. Dynamical maps for linear elements

5. Three loose ends: edge focusing; chlromaticity; beam
rigidity.
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Goals of This Lecture

In this lecture, we shall see how to modify the Hamiltonian to
deal with cases where the reference trajectory is curved. This
will allow us to deal with dipole magnets, where all particles
follow curved paths. '

Using a curved reference trajectory in dipole magnets allows us
to maintain small values for the dynamical variables, even
where the deflection from the dipole is large. This means we
can continue to use series expansion approximations for the
Hamiltonian in such cases.

Ultimately, we shall derive the' linear transfer map (transfer
matrix) for a dipole.

Linear Dynamics, Lecture 3 3 : Curved Coordinate Systems




Curved Reference Trajectories
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Old coordinates are (z,y, z); new coordinates are (X,Y,S):

S
x = (p+X)cosz—p (1)
yi=2% 4 (2)
z = (p+X)sin— (3)
P
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Curved Reference Trajectories

We can construct a generating function to find the conjugate
momenta in the new coordinate system:

S ol
F3(X,pz,Y,py, S, pz) = — |(p+ X) COS; = p] Pz—Y py— [(p + X)) sin ﬂ Pz
(4)
The old and new coordinates and momenta are related by:
0F3 OF3
Tp— — 5 = — (5)
Op; 0X;
The coordinates transform as required:
S
2 = (p+X)cos=—p (6)
y = Y ¢ (7)
z = (p+X)sin> (8)
P
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Curved Reference Trajectories

The new transverse momenta are given by:

S s
Py = pgzcos—+ p,sin— (9)
P p
Py = py (10)
Linear Dynamics, Lecture 3 9] Curved Coordinate Systems

Curved Reference Trajectories

The curvature of the trajectory has a surprising effect on the
longitudinal component of the momentum: Pg is not just the
tangential component of the momentum in Cartesian
coordinates!

Pg = p, (1+£)COS§—-p$ (1+£) sinig- (11)
p P P p

To complete the transformation, we also need to express the
components of the vector potential in the new coordinate
system:

Ax = Amcosg—Azsing (12)
P P
S oS

Ag = A cos— + Azsin— (14)
p p
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The Hamiltonian in a Curved Reference Trajectory

Recall the general form for the Hamiltonian for a relativistic
particle in Cartesian coordinates, in an electromagnetic field:

H=1/(p-qA)2c2 +m2c* + q¢ (15)

The transformation into *“accelerator variables” in a curvilinear
coordinate system follows exactly the same lines as the
transformations in a straight coordinate system. The only
difference is that when we change the independent variable
from ¢ to s (and switch the Hamiltonian from H to —Pg), we
pick up a factor 1 4 z/p from equation (11).
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The Hamiltonian in a Curved Reference Trajectory

The result — our final "Accelerator Hamiltonian” — is:
' 2
1 q¢ 2 2 1
H = —<1+hx)d (ot -2 - e 0 - - ) -
Bo Poc 8576
o)
— (1 + ha)as + — (16)
Bo
where we have (as usual) renamed our variables so as to tidy
up the notation; and we have defined the 'curvature’:
1
h=— (A7)
0 ,

Note that, from the figures shown in the previous slides, the
curvature h is positive for a bend moving towards the negative
z direction. This is simply a convention.

We are now in a position to write down the equations of
motion, with a curved reference trajectory, for a relativistic
particle moving through any field for which we know the
potentials ¢ and a.
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Electromagnetic Fields

Before writing down and solving the equations of motion for a
particle travelling through various kinds of magnet, RF cavity
etc., we should know something about the fields generated by
these devices.

Recall that the fields are the derivatives of the potentials:

E

el o (18)

B = -VxA (19)

Allowed physical fields must be solutions of Maxwell’'s
equations...
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Electromagnetic Fields

James Clerk Maxwell, 1831-1879

oD oB
VxH—-—=J VxE4+—=0 20
x ot g oE =y
D —ckh B= uH
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Magnetic Multipole Fields

Finding solutions to Maxwell's equations for a given set of
boundary conditions is in general no easy task. Significant
effort has been devoted to developing computer codes to solve
this problem accurately and efficiently. Such codes have many
important applications in accelerator physics.

Fortunately, for linear beam dynamics, we are interested in a
few simple cases. In particular, we note that we can write the
field in a “long straight multipole” magnet as:

o0 3 . n—1
By+iBa— Y (b ion) (m I zy) (21)

n=1 To
where b, and an are arbitrary coefficients (chosen to give the
correct field map), and rg is an arbitrary “reference radius”. It
is readily shown that the field of (21) satisfies Maxwell's
equations (20).

Linear Dynamics, Lecture 3 12 Curved Coordinate Systems

Magnetic Multipole Fields

The magnetic multipole field expansion is:

00 .y n—1
By+iBy= Y (bn+ian) (x + Zy) (22)

n=1 0

The “multipole components” are indexed by the value of n: so
n=1is a dipole; n = 2 is a quadrupole; n = 3 is a sextupole,
etc.

An ideal multipole has coefficients a,, and b,, equal to zero, for
all except one value of n.

A “normal multipole”" has a, = 0 for all values of n; a ‘‘skew"
multipole has b, = 0 for all values of n.
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Normal and Skew Dipole Fields

y y
A
X o X
Normal dipole Skew dipole
Bx=0, By=b. Bi:— a4, By =0:
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Normal and Skew Dipole Fields
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Normal and Skew Quadrupole Fields

Normal quadrupole Skew quadrupole
— { — €T fia—s £ —
B-T Ty bQ%: : By ik bQE Bﬂ: — GQE, By — —(12;%.
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Normal and Skew Quadrupole Fields

wiif

Quadrupole magnets (from IHEP, Beijing, China) awaiting
installation in ATF2 (KEK, Tsukuba, Japan).
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Normal and Skew Sextupole Fields

Normal sextupole Skew sextupole
T w?_ 2 m2_ 2 T
By = 2b3—g, By = b3—zL. By (1;3—2'L, By = —2a,3—g.
o : To o iy
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Normal and Skew Sextupole Fields

Sextupole magnet from the ATF (KEK, Tsukuba, Japan).
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-Magnetic Vector Potential for Multipole Fields

Let us write down the magnetic vector potential:

(ﬂc + zy)”’

'TL’T'
0
We find from the standard relation between the magnetic field
and the vector potential:

Az =0, Ay= 0, = —R Z (bn + (23)

B'=V x A (24)
that the potential (23) gives the magnetic multipole field (22):
! 0A g La\
By—|—zBm=— z+z = Z (bn + ian) T (25)
3y n=1 T0

Although there are many possible vector potentials that give
the same field (25) (and all give the same equations of
motion!) the particular choice (23), is convenient, because the
transverse components are zero, and there is no dependence on
the longitudinal coordinate.
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Magnetic Vector Potential for a Dipole Field

Let's consider first the dipole field. This should be easy: it's
Just a uniform field perpendicular to the reference trajectory.
But there's a catch...

. a dipole field will lead to a curved trajectory for the
reference particle. In other words, we will need to use a curved
reference trajectory, so when writing down the magnetic vector
potential A, we have to take into account the fact we are using
curvilinear coordinates.

Our vector potential should satisfy:
B=VxA (26)
with |
B =0, By = By, B, =0 (27)
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Vector Calculus in Orthogonal Curvilinear Coordinates

In general curvilinear coordinates (g1, g2,93), the curl of a vector
field can be written:

VXAl = 5o (-Quda - peQadz)  (28)
[VxA], = Q31Q1 (8q3Q1Al = —QsAa) (29)
VXAl = oo (Qade - -Quds)  (30)
where
2 2 2
#=(5) + () + () e
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Magnetic Vector Potential for a Dipole Field

In our coordinates (1), (2), (3), we find that the curl is given
by:
8As 1.8,

Il Oy 2 (14 hz) 9s (32)

¥ sl — (1 + hx) Os TG has)As Oz S
_ o4y _ ok,

[V x A]l, = 5 oy (34)

Using these expressions we find that the vector potential in our
curvilinear coordinates:

Ae=0 Ay=0  As=-Bgl= ho? (35)
R i AR 2(1 + hz)
gives the magnetic field:

as desired.
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Hamiltonian for a Dipole Field

Using the vector potential (35), and the general accelerator -
Hamiltonian (16) we construct the Hamiltonian for a dipole:

5 1 2 e et 5
H-= (4 S e e

0 B2~

+ (1 + ha) k e, (37)
X e e
0 2(1 + hz)

Note that the normalised dipole field strength is given by:
q
ko =—B 38
0= p-Bo (38)

where g is the charge of the reference particle, and Py is the
reference momentum.
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Hamiltonian for a Dipole Field

The full Hamiltonian for a dipole (37) looks rather intimidating.
We shall resort to the same technique we used to get a Iinear
map for a drift space, and expand the Hamiltonian to
second-order in the dynamical variables. As before, this is valid
as long as the dynamical variables remain small.

The second-order Hamiltonian is:

1 1 1 h 62
Hy = =p2 4+ =p2 + (ko — h)z + Ehkomg — — 26+

_— 39
2 z Bo 26833 (39)

We can tell a good deal already just by looking at this
Hamiltonian...
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Hamiltonian for a Dipole Field

The second-order Hamiltonian is (39):

135 h 52
H —pz + =p5 + (kg — h)z + hk ——z0 + —=—= 40
g = Py (ko — h)z 0z” T 22 (40)

Note the term (kg — h)z. A term in the Hamiltonian that is first
order in one of the variables results in a zeroth-order term in
the map for the conjugate variable. In this case, we expect to
see a horizontal deflection — a change in py. This happens if
the curvature of the reference trajectory is not matched to the
magnetic field of the dipole. If kg = h, then the curvature is
properly matched, and this term vanishes: a particle initially on
the reference trajectory and having the reference energy stays
on the reference trajectory through the dipole.
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Hamiltonian for a Dipole Field

The second-order Hamiltonian is (39):

175 62
H»> = 5P + —py + (kg — h)z + hkoac v— 6—03:5 +—— 2[))070 (41)

Next, note the term Zhkgz?. This looks like a “focusing term”
— recall the potential energy term in the Hamiltonian for an
harmonic oscillator. It appears that in moving through the
dipole, particles will oscillate about the reference trajectory.
This is perhaps unexpected. How do we understand this effect?
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Weak Focusing in a Dipole Field

Reference trajectory

In a uniform magnetic field, the trajectories of two particles
with some small initial offset will “oscillate” around each other.
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Dispersion in a Dipole Field

The second-order Hamiltonian is (39):

1o, 52
Hy == “p2 4 (kg — h)z + hk::r 2 Mg ony (42)
2193: py (ko 0 Bo 2,30‘70

Finally, note the term B’%xé. This contains the product of two
dynamical variables, the horizontal coordinate z, and the energy
deviation §. The result of this term will be a coupling of the
horizontal and longitudinal motion. For example, there will be a
horizontal deflection depending on the particle's energy. This is
called “dispersion”, and is a consequence of the fact that for
relativistic particles, the higher the particle’s energy, the higher
its mass, and the less effect there is on its trajectory from the
Lorentz force.
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Dynamical Map for a Dipole

Now we have the Hamiltonian for a dipole, and have considered
some of the dynamics we are likely to expect from it. What are
the solutions to the equations of motion?

Hamilton’s equations following from the Hamiltonian (39) are
essentially those for an harmonic oscillator. In the horizontal
plane, the solutions are:

(43)

(44)

sin h 1 — cos
2(s) = 2(0)cosws + p(0)m— + (5(0)ﬁ— R ko) ( . %)
0 w
h sin
po(s) = —z(0)wsinws + pz(0) cosws + (5(0)[3— AL v ko) e
0
where: :
w = 4/hkg (45)
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Dynamical Map for a Dipole

In the vertical plane, the solutions are:

y(s) = y(0) + py(0)s (46)

py(s) = py(0) (47)

which is the same as for a drift space: there is no weak
focusing in the vertical plane.

In the longitudinal plane, the solutions are:

h sinws r (1 — COSwS)

z(s) = 2(0)— a:(O)— - Pw(o)— + 0(0)
Bo w? o
e h b h (ws — sinws)
(5(0)60 +h ko) f S (48)
§(s) = 6(0) (49)
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Transfer Matrix for a Dipole

Equations (43)—(49) constitute the dynamical map for a dipole.
Since the equations are linear, we can write them in the form
of a transfer matrix, R. Let us consider the case that the
reference trajectory is matched to the dipole strength, i.e.

w = h = kg: this is the situation that we normally design in an
accelerator. In this case, the transfer matrix for a dipole of
length L is:

[ Eeser. & INES DG g s e
“eosinel | coswl - 0D 0 S‘”‘;L
o 0 0 i B 0
"= 0 0 010 0 (5
_sinwL _1-coswL § g 1 _L__ wL-sinwL
Bo who B33 wpE
R 0 000 1 /

Note that we have not yet included end effects - the edges of
the dipole have their own dynamical effects on the beam!

Linear Dynamics, Lecture 3 32 Curved Coordinate Systems

Summary

To keep the values of the dynamical variables small in dipole
magnets, we use a curved reference trajectory. Generally, we
choose a reference trajectory that follows the path of a particle
having the reference momentum. We need to define the
variables in the curved coordinate system carefully: this can be
achieved using a canonical transformation.

The dynamics in dipoles displays some interesting features.
These include dispersion (variation in trajectory with energy)
and weak focusing. The effect of weak focusing in a horizontal
bending magnet is to keep the horizontal coordinate of a
particle close to the reference trajectory: in the horizontal
plane, particles oscillate around the reference trajectory with
period equal to the period of the circular motion in the field of
the magnet.

Linear Dynamics, Lecture 3 33 Curved Coordinate Systems




.1.

'm' ‘G‘&’::—».-e.&n'-z e Lde
A e

Hﬂ:f! ey f% IJ,]E"[-:)

; ‘Y,.-@fik\#‘\r‘b‘w 1,

i

.f"{.‘?l;.

‘%ﬁ

!il ﬂ%lju J{"

vlieg R AT

g

b

igh ?-:uh'j;g P
S

43 S

TP
:,\li‘

.}
ﬁ'ﬂ,\

"LI-.“'?*’ ”‘" = r"TL
oy s

o RO S
I TR

il
R -§L=- &-:-;,

s | ‘!;;-"{?ﬁ_';'_-l"i ‘ 3 _%g-"'q

) e

11§

Z Y

kf;%fa,&m
‘ ?

o

e

g

s ics

3 \‘2‘ L*




Linear Dynamics, Lecture 4

Dynamical Maps for “Linear” Elements

Andy Wolski
University of Liverpool, and the Cockcroft Institute, Daresbury, UK.

November, 2012

. s

The Cockeroft instilute
of Aot yar Soence at Techn gy

What we Learned in the Previous Lecture

In the previous lecture, we derived a Hamiltonian for the motion
of a particle through an accelerator. This Hamiltonian included
a general electromagnetic field, allowed a curved reference
trajectory, and used dynamical variables that remain small for
particles following a trajectory close to the reference trajectory.

We applied this Hamiltonian to the case of a dipole (bending
magnet). To obtain a linear dynamical map, we made an
approximation by making a series expansion of the Hamiltonian
to second order in the dynamical variables.

There were several interesting effects that we saw arising from
the Hamiltonian: these included dispersion (variation of the
bending angle with the energy of the particle) and weak
focusing.
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Course Outline

Part I (Lectures 1 — 5): Dynamics of a relativistic charged
particle in the electromagnetic field of an accelerator beamline.

1. Review of Hamiltonian mechanics

2. The accelerator Hamiltonian in a straight coordinate system -

3. The Hamiltonian for a relativistic particle in a general
electromagnetic field using accelerator coordinates

4. Dynamical maps for linear elements

5. Three loose ends: edge focusing; chromaticity; beam
rigidity.
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Goals of This Lecture.

In this lecture, we shall continue our derivation of dynamical
maps for “linear” beamline elements. To the drift space and
dipole, we shall add the quadrupole, the RF cavity, and the
solenoid.

Note that all elements are in fact nonlinear. By “linear”
elements, we refer to those whose principle effects on the beam
may be obtained by expanding the Hamiltonian to second order
in the dynamical variables. We shall make extensive use of this
approximation - usually called the paraxial approximation.
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Magnetic Field Inside a Quadrupole

Recall the magnetic field inside a normal quadrupole magnet:

Normal quadrupole
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Magnetic Field Inside a Quadrupole

‘The field inside a normal quadrupole magnet in Cartesian
coordinates may be written:

B, = byl (1)
T0 .

By = by— (2)
T0

Note that on the axis of the quadrupole, the field strength is
zero. Therefore, we can choose the reference trajectory to lie
along the axis, in which case there is no curvature: we can
work in a straight coordinate system.

The above field may be derived from the potential:

Ay = 0 (4)
Agi=00 (5)

1b :
As = —5;3 (=* - %) (6)
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Hamiltonian Inside a Quadrupole

The Hamiltonian describing the motion inside a quadrupole,
using the usual accelerator variables, is:

2
) 1 1
H=_—-— —+g-§1 — as 7
\J( p Py — ﬁ%'}’g (7)

where the longitudinal component ag of the normalised vector
potential is:

%=@§=—Li®@—wﬂ @)

where ¢ is the charge on the particle, and Fy is the reference
momentum. For convenience, we define the normalised
quadrupole gradient:

b
ky = g2 (9)
PO T’O
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Hamiltonian Inside a Quadrupole

In terms of the normalised quadrupole gradient (9) the
Hamiltonian can be written:

5 2 1
H= — — 5 el i S i k’, . 10
= J(ﬁﬁ) vt mats 1 (22 —4%)  (10)

Expanding the Hamiltonian (10) to second order in the
dynamical variables (making the paraxial approximation) we
construct the Hamiltonian: '
;PE STy % s l"ﬂ1ﬂ?2 — %klyz i 2ﬁi
Note that this looks very much Iike the harmonic oscillator
equation; for k1 > 0 we have a “focusing” potential in z, and a
“defocusing” potential in y. In z there is no focusing of any
kind.

H» 52 (11)
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Transfer Matrix for a Quadrupole

Solving the equations of motion for the Hamiltonian (11) we
find the transfer matrix for a quadrupole of length L (k1 > 0):

(\ coswL = SDuL 0 Dhds 40 e
—wSinwL coswlL 0 0 0y 120
0 0 cosh wL W il 0
R= 0 0 weinhwk. coshwh O 0 (12)
L
O A 0 0 1 55
e LoD 0 0 @i

where

w= k1 (13)

Note that the field, if focusing in x is defocusing in y, and
vice-versa. This is a direct consequence of the constraints on
the magnetic field from Maxwell’s equations: it is not possible
to build a quadrupole that focuses or defocuses in both
transverse planes simultaneously.
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Magnetic Field in a Skew Quadrupole

A skew quadrupole is obtained from a normal quadrupole by
rotating the magnet 90° about the magnetic axis. The skew
multipole field components are given by the ¢, coefficients in
the multipole expansion:

o0 &k iy n—1
n=1 70 ;
For a skew quadrupole, all coefficients are zero except for a»:
T T

The magnetic vector potential is given by:

Aw =10 Ay=0 As = arzy (16)
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Hamiltonian for a Skew Quadrupole

If we define:
q a2
ki = ———= 7
1ls PO o ( )
where P, is the reference momentum, and rg is the reference
radius of the magnet, then the normalised vector potential is:

s — _—klsmy (18)
and the Hamiltonian for a skew quadrupole is:

5 1 ; i
H=———J( +6) —ps —p2 - 622+k15$y (19)

Making the paraxial approximation, we find the second-order
Hamiltonian:

1o vl 52 |
2?2: S py +k1szy+ —5—>5 BO (20)

Note the term in zy: this leads to coupling of the horizontal
and vertical motion. The skew quadrupole gives a horizontal
kick proportional to the vertical offset of the particle, and
vice-versa.
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Hs

Transfer Matrix for a Skew Quadrupole

Hamilton's equations with the second-order skew quadrupole
Hamiltonian (20) may be solved as for the normal quadrupole.
The resulting map is linear, and so it may be written as a
transfer matrix, R (for k15 > 0):

(cos:uL +coshwL) = (sinwL+sinhwL) L(coswL-—coshwl) == (sinwL —sinhwl) O
_5“" (sinwL — sinhwl) E(c:os:glt+cosh_..:L) —--u.? (sinwL + sinhwL) %(COS&JL —coshwl) O
1 5 (coswL — coshwl) s (sinwL —sinhwlL) (coswL + coshwl) o= (sinwL+sinhwL) O
—;—'(sinuL+ sinhwl) 5(coswl —coshwl) sinwl —sinhwl) -z-(COSwL+ coshwl) 0O
0 0 0 0 1
0] 0 0 0 0

(21)

where

w= k15 (22)
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Electromagnetic Fields in an RF Cavity

Now we know how to focus the beam horizontally (dipole, or
quadrupole with k1 > 0 and vertically (quadrupole with k1 <0).
But nothing we have seen so far produces any longitudinal
focusing. If we want to control the bunch size in all three
dimensions, some kind of longitudinal focusing will be
necessary. This can be provided by an RF cavity.

An RF cavity contains an electromagnetic field that has a
sinusoidal dependence on time. The dependence of the field
strength on the spatial coordinates (z,y,s) is in general quite
complicated; but in simple cases it can be broken down into a
set of modes — just like the magnetic field in a multipole
magnet can be broken down into a set of multipoles.

For the simplest RF cavity, we only need consider a single
mode — the TMgig mode.
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Electromagnetic Fields in an RF Cavity

RF cavity.
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Electromagnetic Fields in an RF Cavity

Linear Dynamics, Lecture 4 14 Dynamical Maps

- The TMgig Mode in an RF Cavity

In the TMg1g9 mode in an RF cavity, the electric field has
components in cylindrical coordinates:

E, 0
E, 0 (23)
Es = EJo(kp)sin (wret + ¢0)

(where p = /22 + 32) and the magnetic field is:

I

B, = 0

ki
By = —EsJ1(kp) cos (wrrt + ¢o) (24)
Bs — 20

where J, are Bessel functions of the first kind, wrpg is the RF
frequency, and ¢g is an arbitrary phase. It can be shown that
for wre/k = ¢, the above fields satisfy Maxwell’s equations, so
they are valid electromagnetic fields.
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The TMg1g Mode in an RF Cavity

Jo(€)
05+ |
iy J(€)
&
£
Fﬁ
0 1
1.841
05, -

Bessel functions are solutions of the differential equation:

d2J, dJ
2 n e
& a2 +£d€

for real n. Note that Jg(&) = 0 for £ = 2.4065.

+ (52 = n2)Jn =0 (25)
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The TMg1o Mode in an RF Cavity

If the cavity consists of a conducting cylinder of radius pg with
axis along the reference trajectory, then the boundary
conditions require the longitudinal component Es to vanish at

p = po-

Hence, the frequency of the electromagnetic field in the cavity
is determined by the cavity radius:

kpo ~ 2.405 (26)

Since the function Jg(&) has multiple zeroes, there are
(infinitely) many other modes that may exist in the cavity.
These higher-order modes have undesired effects, and are a
general problem in cavity design. Significant efforts are made in
the design and construction of RF cavities in accelerators to
suppress or ‘“‘damp” higher-order modes.
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The TMgig Mode in an RF Cavity

Note that if a particle is inside the cavity at ¢t = 0 and the RF
phase is ¢g = 0, then the particle is accelerated by the
longitudinal electric field Es. Therefore, the TMg1g mode is
som{etimes called the accelerating mode.

Note also that only the magnetic field has a transverse
component; and that the magnetic field has no longitudinal
component. Hence the name “TM" (for “transverse
magnetic" ). The mode numbers (0,1,0) refer to the
azimuthal, radial, and longitudinal directions, respectively.
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The Hamiltonian in a TMgig RF Cavity

The TMgi1g mode fields may be derived from the
time-dependent magnetic vector potential:

Ay =0 (28)
Es
As = :JO(kP)COS(WRFt’l' ¢0) (29)

Now, in the accelerator Hamiltonian, we use the path length s
as the independent variable, rather than the time t. The
relationship between the two involves the dynamical variable z:
S
ct=——2z (30)
Bo
Therefore, we can write the Hamiltonian in the TMgig fields:

) 1 2 1 QES k

= e e L Jo(k cos(— —kz+ )
B0 J(ﬁo ) E2with v pm a0 g e L

- (31)

where (for the fields to satisfy Maxwell's equations) wrg/k = c.
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The Hamiltonian in a TMg19 RF Cavity

The Hamiltonian (31) has an unpleasant feature that we have
so far managed to avoid: it has an explicit dependence on the
independent variable s. This is allowed, but in this case makes
the equations of motion very difficult to solve, and the paraxial
approximation does not get us out of trouble.

To simplify the problem, we therefore average the Hamiltonian
in s over the length of the cavity:

1 (L/2

(H) = —/ Hds (32)

Li—r/2
where L is the length of the cavity. The fields we have written
down in (23) and (24) have no dependence on s, SO we can in
principle make the cavity any length we like; however, for
technical reasons, it is usual to make the cavity length L = n/k,
i.e. half the wavelength of radiation of frequency wrp.
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The Hamiltonian in a TMg1g RF Cavity

Using L = n/k, we can perform the integral in (32) and we find:

2
(Hy = \J(iw) — 12— B — =5 — ZJo(kp) O (g — k=)

B \\Bo B33
(33)
where
E FE
a=nl 2t =227 (34)
FPowrE Pyc
and the transit time factor, T is given by:
2
P 2P0 T (35)
T 280p
Normally, we define the cavity voltage, V such that:
| Pt ]
— =BT | (36)
SO:
1%
a=L1_ (37)
Py
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The Hamiltonian in a TMg1g RF Cavity

Making the paraxial approximation, we find the Hamiltonian:

b elns s il o B 7 i up
(Hp) = Pz + 5Py -+ EC-OS(GbO)k (33 += 9 )2_
)

e s 22 lucs
e sin(¢g)kz + = cos(¢o)k z -+ 2ﬁ578 (38)

Note first the transverse focusing term: it is focusing in both
the horizontal plane and the vertical plane simultaneously. This
is something we could not achieve by the use of static
magnetic fields. In this case, it arises from the azimuthal
component of the magnetic field in the TMgig mode. To make
use of it, we have to choose a phase ¢qg close to zero.
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The Hamiltonian in a TMg;g RF Cavity

For an RF cavity, we will use the Hamiltonian in the paraxial
approximation (38):

s ilin

(04
(Ha) = Zpz+50p+ o~ cos(¢o)k? (2% + v°) —
52

2 2
a . i 2.2
ﬂ_Sln(qu)kz 5 2m COS(%)IC e 26878

Note next the appearance of a term linear in z: this will result
in a change in the energy deviation independent of z, as long as
the phase ¢g # 0 (and ¢g # w). This is the term that describes
the acceleration of the particle. '

Finally, note the term quadratic in z: this is the longitudinal
focusing we were looking for.
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Dynamical Map for a TMg1g RF Cavity

Solving the equations of motion in the transverse plane, we find
that the solutions have zeroth-order as well as first-order terms:

(L) = R-z(0) + m (39)

The transfer matrix R is given by:

[ cosy, ﬁsinwl 0 0 0 0
—%ising,  cosiyy 0 0 0 0
o 0 0 cos v ﬁsinfm 0 0
7 0 0 —%sing;  cosyy 0 0
, LT
0 0 0 0 cos[.z,b” Fag, Sin Y
K 0 0 0 0 —B23 L siny Ccos ¥
' (40)
where:
T COS g v/ T COS ¢pg
A e D (41)
2 Y050
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Dynamical Map for a TM010 RF Cavity

The zeroth-order transverse terms in the solution-s to the
equations of motion are all identically zero. The zeroth-order
longitudinal terms are:

my = 2rii? (%) tan ¢ (42)
7]— A
o — QM sin ¢g : (43)
il

For small o (high energy particle in a cavity with a weak field),
the map for the energy error § becomes:

1%
A5~ L (sin ¢g — kzg cOs dg) (44)
Pyc

where zg = z(0).

Linear Dynamics, Lecture 4 25 Dynamical Maps




Vector Potential and Hamiltonian for a Solenoid

Solenoids are important components in accelerators. For
example, detectors in colliding beam machines usually sit inside
strong solenoids. A solenoid has a uniform magnetic field in the
longitudinal direction:

It is not possible to derive this field from a vector potential
having zero transverse components. A suitable potential is:

1 il
This leads to the Hamiltonian:
= (+6)2(+k)2( Fsa)e saos  (4T)
i — (Pz + ksy)” — (Py — ks2)” — 5>
Bo Bo A e B8
where the normalised solenoid field strength ks is given by:
1lg ‘
ks = ——B 48
2= 5Py 0 (48)
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Second-Order Hamiltonian for a Solenoid

The fact that the vector potential has non-zero transverse
components (unlike the other linear elements we have looked
at) means that we have to be particularly careful with the
meaning of the canonical momenta p; and py. But let us
proceed with solving the equations of motion in the Hamiltonian
(47), which we do by making the usual paraxial approximation:
2

Hy = %p§+%p§+;k2x2+ k2y° ;ks:cper SksPeyt 525 ;0 (49)
Note the terms in z2 and y2: a solenoid provides horizontal and
vertical focusing, rather than focusing in one plane and
defocusing in the other. Note also the coupling terms in zp,
and pgy: motion lying initially in just one plane becomes (at
least partially) transferred into the other plane.
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Transfer Matrix for a Solenoid

We can solve the equations of motion from the Hamiltonian
(49). The resulting map can be expressed as a transfer matrix:

([ cos?wL S %sin 2wl —Si”i“"L @t )
—Ysin2wLl cos?wl —wsin?wL lsin2wL 0 0O
2] . 2"
S —isin2wL —Stwlk - cog?,y  H02L g
wSi‘nzwL —%sin 2wl —4sin2wL cos?wLlL 0 O
0 0 0 0 i b
B376
\ G e 0 0 0 QL
(50)
where:
1lgq :
2P,
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Combined Function Magnets

Multipole fields can be superposed on each other. In the
multipole field expansion:

o0 - el =l
By+iBoe= Y (b + ian) (“” T "y) (52)

n=1 10
superposed fields are described by having more than one
non-zero coefficient b, and/or a,. A magnet with superposed
magnetic fields is generally called a “combined function”
magnet. Examples of combined function magnets widely used
in accelerators are dipoles (bending magnet) with superposed
quadrupole fields, and sextupoles with superposed skew
quadrupole fields. Generally, combined function magnets are
used to help reduce the length (and therefore the cost) of a
beamline, but they can also help to improve the dynamical
properties of a lattice.
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Combined Function Magnets

For linear dynamics, the most important combined function
magnets are dipoles with superposed quadrupole fields. In
Cartesian coordinates, the field is:
ia B.'I: = b2£1
T0 0
In bending magnets, we generally want to use a curved
reference trajectory; however, using curvilinear coordinates
complicates the description of the magnetic field in a combined
function bend.

By = by + bo B.=0. (53)
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Combined Function Magnets

The magnetic field in a combined function bend may be
derived from the vector potential:

A ' =0 (54)
Ay = 0 (55)
ha?
i (m—Q(l—I—hm))
i 2 h 3 h2 4 4
~Bl(5(:c2—y)—ga: + 55 (40 —y)+---) (56)

Note that the higher-order terms (z3, z#, y* etc.) arise from
the curvature of the reference trajectory. The higher-order
terms are important for nonlinear dynamics, but do not
contribute to the linear effects.
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Hamiltonian for a Combined Function Bend

Using the vector potential (55) in the Hamiltonian, and making
the paraxial approximation (expanding to second order) we
have:

Hp— 22t 2 g Lyt S e a2 Lpnad B 2
= — = =) T = T 0 e
2 2p.1: 2py 0 5 0 1 ) 1Y /80 2/88'}’3
(57)
where the normalised field strengths are defined as usual:
q q bo
kg = —=—bq, ki = —-= 58
0= oo L= e (58)

The effect of the superposed gradient k1 in the Hamiltonian is
as expected: it simply provides additional transverse focusing.
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Dynamical Map for a Combined Function Bend

Hamilton’s equations with the Hamiltonian (56) can be solved.
In the horizontal plane, the solutions are:

#(s) = 2(0)COSwas + pa(0) Tz 4 (5(0)i +h— ko) e
W Bo wx
(59)
pz(s) = —xz(0)wgSinwgzs + pz(0) cOswzs + (5(0)5 T g kO) Sin wys
0] Wy
(60)

where:

we = \/hkg + k1 (61)
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Dynamical Map for a Combined Function Bend

In the vertical plane, the map for the combined function bend
is:

sinh wys
y(s) = y(0)coshwys+ py(O)w—y (62)
Y
py(s) = y(0)wysinhwys 4 py(0) cosh wys (63)

where

.wy = \/a (64)

The map in the vertical plane for a combined function bend is
the same as for a quadrupole: the only focusing in the vertical
plane comes from the quadrupole gradient.
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Dynamical Map for a Combined Function Bend

In the longitudinal plane, the solutions are:

h sinwgs h (1 — coswgs)

z(s) = z(0) — -’E(O)B—O BT Prﬂ(o)% 2 it 5(0)%
%t h it h (wzs — sinwgs)

(5(0) i ko) oo S CS

§(s) = 4(0) . (66)
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A Word About Fringe Fields

So far, we have only considered the dynamics of a particle
within a given electromagnetic field: we have not thought
about how to get particles in and out of the fields. For
example, Maxwell's equations forbid us from moving abruptly
from a drift (field-free) region into a multipole or solenoid field.
There has to be some ‘transition region” within which there
are non-zero fields that are not described by the usual
multipole formulae. The transition regions at either end of a
magnet are usually called the "“fringe fields" .

Fringe fields have significant, and sometimes complicated,
effects. For linear dynamics, the most important fringe fields
are those at the ends of dipoles and solenoids. Fringe fields at
the ends of quadrupoles lead to (usually small) higher-order
effects.
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A Word About Fringe Fields

The precise effects of fringe fields depend on the design details
of the magnet, e.g. the gap between the poles in a dipole. To
do things properly, one should construct the dynamical map
from a detailed field description. This often requires significant
effort, and the techniques involved are beyond the scope of this
course. However, in many cases, we can make simple
approximations that provide a good description of the gross
effects. These approximations are one of the topics covered in
the next lecture.
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Summary

We have now derived linear dynamical maps for:

separated and combined function dipoles

solenoids

normal and skew quadrupoles

RF cavities

For each of these elements, we made the paraxial

approximation by expanding the Hamiltonian to second order in
the dynamical variables. This allowed us to find a linear map
for each element. The linear map may be expressed as a

transfer matrix.
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