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1. INTRODUCTION

The purpose of this paper is to introduce the reader to single particle dynamics in circular
accelerators with an emphasis on nonlinear resonances. In several sections we follow Ref. 1
closely although the treatment given here is in some cases more general.

We begin with the Hamiltonian and the equations of motion in the neighborhood of the
design orbit. In the linear theory this yields linear betatron oscillations about a closed orbit. It
is useful then to introduce the action-angle variables of the linear problem.

Next we discuss the nonlinear terms which are present in an actual accelerator, and in par-
ticular, we motivate the inclusion of sextupoles to cure chromatic effects. To study the effects of
the nonlinear terms, we next discuss canonical perturbation theory which leads us to nonlinear
resonances. After showing a few examples of perturbation theory, we abandon it when very close
to a resonance.

This leads to the study of an isolated resonance in one degree of freedom with a ‘time’-
dependent Hamiltonian. We see the familiar resonance structure in phase space which is simply
closed islands when the nonlinear amplitude dependence of the frequency or ‘tune’ is included.
To show the limits of the validity of the isolated resonance approximation, we discuss two criteria
for the onset of chaotic motion.

Finally, we study an isolated coupling resonance in two degrees of freedom with a ‘time’-
dependent Hamiltonian and calculate the two invariants in this case. This leads to a surface
of section which is a 2-torus in 4-dimensional phase space. However, we show that it remains
a 2-torus when projected into particular 3-dimensional subspaces and thus can be viewed in
perspective.

2. THE MOTION OF A PARTICLE IN AN ACCELERATOR
2.1 THE HAMILTONIAN AND THE EQUATIONS OF MOTION

The motion of a particle in a circular accelerator is governed by the Lorentz force equation,

%=c(E+—xB) (2.1)

where P is the relativistic kinetic momentum and v is the velocity. It is convenient to cast these
equations in Hamiltonian form. If we introduce the vector and scalar potentials,
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then the Hamiltonian is given by

= c¢-+c [m? c + (p c.Al/t:)z}lfz , ' (2.3)
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where pis is the ca.nomca.l momentum. In terms of the klnetlc momentum and the vector potential

jp=P+ EA(XJ) (2.4)

The equations of motion can then be written in terms of Hamilton’s equations,

d_p__ég i’i—g (25)
d¢ ax ' dt ép ‘

It is useful to use a coordinate system based on a closed planar reference curve as shown in
Fig. 1.1. This reference curve is taken to be the closed trajectory of a particle with some reference
~ momentum pg in the guiding magnetic field. The
y coordinate system (z, 8,y) is similar to a cylindrical
system, however, Eﬁ—}a.dxus of curvature may vary
along the curve. If r is s the coordinate of a particle
mispa_ce and 1o is the point on the reference curve
closest to r, then

s = distance along the curve to the point rg
from a fixed origin somewhere on the curve,

z = horizontal projection of the vector r — ry,

y = vertical projection of the vector r — rp,

11-84
4319A1 p = local radius of curvature.

Fig. 1.1. The coordinate system.
The Hamiltonian written in terms of these coordinates is”
o 2 2 ' 271/2
X H= ed +c|mie? + ---—--—---——( ‘) + (P: - zAz) + (Py - ;Ay) ] (2.6)
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where Pz and py are pro_}ections of p onto the zandy d1rec.t19n nd
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We will call the vector potential used in Eq. (2.6) the canonical vector potential since A,, A;,
and A, are defined analogously to the canonical momenta. In particular note that

x | A, =(A-3) (1 + %) ; (2.8)

Instead of using the Hamiltonian above, it is ugseful to cha.nge the independent variable to
_s rather than t. This can be done provided that s is monotonic in ¢. This is a standard
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transformation and can be aécomplished by defining another Hamiltonian,

- N— p.(z,pz,v,py,, H) (2.9)

That is, we solve Eq. (2.6) for p,. With this new Hamiltonian and new independent variable,
Hamilton’s equations become

or O dps _ _9X
ds dp;’ ds Oz
dy _ X dpy _ BX
ds = dpy B b {210}
dt X d(—H) X
7S pe) ds ~ 8(-H)’ ds = at
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Note that (¢,—H) now play the role of the third coordinate and conjugate momentum.

To be specific we will specialize to,the case of no electr:c field and a constant magnetic field

given by j T f\
j By = —Bo(s) + Bi(s) z+---
_B= :'_Bl(,g)y + ee

(2.11)

The main bending field By(s) is chosen so that a particle at the reference momentum pgy will
bend with a local radius of curvature p(s). Thus, we set

o(s) = B¢

= o) (2.12)

Bi(s) in Eq. (2.11) is simply the gradient of the magnetic field. It is conventional and useful to
scale the gradient to obtain the focusing function,

eBy (s)

Kl(s) = Poc

(2.13)

Using Egs. (2.12) and (2.13) the canonical vector potential which yields the above magnetic field

is
A, =-2E [f + (piz—Kl) 2 B0 ]+ -/ (2.14)

e |p 2 2
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The new Hamiltonian from Eq. (2.9) is fﬂrl':,- % ﬁ z0 $pzo jl

- 1/2
= (-p) = :A (1 + - ) [— —m?c? - pl - pf,] ; (2.15)

Since there is no time dependence, H is a constant of the motion Whlch we call E ( the energy)
In an actual accelerator the magnetic fields do change in time, and there are longltudmal electric
fields to accelerate the particles. However, the acceleration process is slow and can be consid-
ered adiabatic for our purposes. In addition, the longitudinal electric fields cause longitudinal
oscillations which are omitted here. These are discussed in Ref. 3 in these proceedings.
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To continue we expand the square root in Eq. (2.15) and substitute the vector potential from
Eq. (2.14) to obtain

- ST I (£ S R T
X = (po P)"+Po[(p3 _K,l)?+K12]_+ZP+2P+ it (2.16)
where p is the total kinetic momentum of the particle,
v p=][E%c? —micd/?, (2.17)

which may be somewhat different from the reference momentum. The expan.s:on of the square
_root is a good approximation provided tha.t - -

1_’.=_-1

f

( < 1, (2.18)

which is typically the case. From Ha.xmlton s equa.tlons and the Hamiltonian in Eq. (2.16) we

find
ds p ' ds p? p (2.19)
v_ry '
ds =y = —-poK1y .
In terms of z and y Egs. (2. 19) become
| zu_'_PO (%—K;).-"‘..: P—pol,
p \»p P p (2.20)

K
v+ 22y =0,
where prime denotes differentiation with respect to s. Equations (2.20) yield the motion of
pa.rtlcles near the reference orbit. Beca.use Kl and p are penod:cally dependent on s with penod

2.2 BETATRON OSCILLATIONS

Before proceeding to discuss the nonlinear terms which have so far been neglected, it is useful
to discuss the linear equations of motion. Since Egs. (2.20) are inhomogeneous, we construct a
general solution by a linear combination of a particular solution of the inhomogeneous equation
and the general solution of the homogeneous equation. It is conventional and useful to take the
particular solution to be the periodic solution or closed orbit.

Let us assume that we have this periodic solution to Eq. (2.20), and let us denote it by
[ze(s),pe(s)]. The periodic solution in the y direction is simply y = 0. (In the presence
of errors the vertical closed orbit is nonzero and must also be calculated.) Now perform a
canonical transformation which shifts the origin of phase space to (z¢,p:). The transformation
(z,p) — (zp,pp) can be performed with the generating function

Fy(z,pp) = (2 — z(s)) (pp + pe(s)) (2.21)
which yields the transformation equations

T =z + z(Ss)
= pg + pe(s) (2.22)
Nﬁ =} +3F2/as 3

where the identity transformation for y and p, has been suppressed. Substituting into X, the
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new Hamiltonian is given by-

2 2 2
1 zg v, P p
; Hg = —=-K ) £+ K = 2 ;
/) P"[(pz 1) =+ 12]+2P+2p+ (2.23)

Thus, we are left a Hamiltonian with terms which are quadratic and higher order. In the nonlinear
case a similar transformation can be performed; however, in this case we must use the periodic
solutions to the full nonlinear equations.

The linear differential equations which are obtained from the Hamiltonian in Eq. (2.23) are
of the form

2"+ K(s)z=0, (2.24)
with
K(s)=K(s+C), (2.25)
where z stands for either z5 or y, and C is the circumference. The periodicity of K is that of
the closed orbit; however, there may also be stronger periodicity imposed by design.

Equation (2.24) is Hill’s equation and has a solution of the form

z = AB % cos(y(s) + 6) , (2.26)
where
8 o
ds'
== 2.27
o= 16) S
0
and f(s), the Courant-Snyder amplitude fum:i;iu:m,2 is the periodic solution of
f" +4Kp' +2K'8 =0, (2.28)
with the a.ddi.tiona.l condition
BB"/2—(B)/4+Kp*=1. (2.29)

Beth A é.nd d are constants.

This solution is well known and constitutes a pseudo-harmonic oscillation with a periodically
varying amplitude and wavelength. This motion is called betatron oseillations after the early
betatron accelerators although in that case the transverse equations of motion reduced to two
simple harmonic oscillator equations.

For stability, the tune v,

=— | — (2.30)

must be non-integer. In the case of piecewise constant K, it is useful to use a matrix mapping
technique to calculate both v and ;3(.'3).2 This technique is used extensively in the design of
magnetic lattices for circular accelerators.



