A SHORT DEMONSTRATION OF LIOUVILLE'S THEOREM*

M. Weiss

CERN, Geneva, Switzerland

ABSTRACT

A brief demonstration of Liouville's Theorem is given by applying the Hamiltonian.

An ensemble of particles evolving in a system of external forces (space and velocity dependent) and self forces (space charge) is described by two families of canonically conjugated variables (coordinates) q and p. The equations of motion form a system of first-order differential equations of the coordinates

$$q$$
 and p ,

where the dot indicates derivatives with respect to time.

If the system is non-dissipative, one can obtain the equations of motion from a function called Hamiltonian:

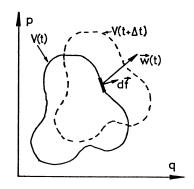
$$\dot{q} = \frac{\partial H}{\partial p}$$

$$\dot{p} = -\frac{\partial H}{\partial q}.$$

The Hamiltonian is in general also a function of time:

$$H(q,p,t)$$
.

An ensemble of particles, at a given moment t, occupies a volume V(t) in the (q,p) space called the phase space.



df ... vector of surface element

 $\vec{w}(t)$... phase space velocity of surface element:

$$\overrightarrow{w} = \begin{pmatrix} \cdot \\ q \\ p \end{pmatrix}$$

^{*} Derivation shown at a discussion session

At the time t + Δt , the particles occupy another volume V(t+ Δt). It can easily be shown that these volumes are the same:

$$\frac{dV(t)}{dt} = \int \overrightarrow{w} \cdot d\overrightarrow{f} = \int (\overrightarrow{v} \cdot \overrightarrow{w}) dv = \int (\frac{\partial}{\partial q} \overrightarrow{q} + \frac{\partial}{\partial p} \overrightarrow{p}) dv = 0$$

$$\begin{array}{c} \text{surface} \\ \text{integral} \\ \end{array} \begin{array}{c} \text{volume} \\ \text{integral} \\ \end{array} \begin{array}{c} (\frac{\partial^2 H}{\partial q \partial p} - \frac{\partial^2 H}{\partial p \partial q}) = 0 \end{array}$$

$$(Gauss Theorem) \qquad (Hamilton)$$

The volume V(t) remains constant, if the motion can be represented by a Hamiltonian. This is true also when H is an explicit function of time. We conclude:

In non-dissipative systems, the particles move like an incompressible fluid in $\underline{\text{phase}}$ $\underline{\text{space}}$. This is Liouville's Theorem.