Astrofisica Nucleare e Subnucleare Cosmic Ray Astrophysics

Gamma-Ray sky

GALPROP

					studies of cosmic ray	galpı ys and galactic diffuse	rop.stanford.ec gammarray emissi	lU on
	CODE	WEBRUN	FORUM	RESOURCES	PUBLICATIONS	CONTRCTS	BUGS?	
Search GALPROP web site	Search						Register Logi	in

The GALPROP code for cosmic-ray transport and diffuse emission production

GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation. The GALPROP code incorporates as much realistic astrophysical input as possible together with latest theoretical developments. The code calculates the propagation of cosmic-ray nuclei, antiprotons, electrons and positrons, and computes diffuse γ-rays and synchrotron emission in the same framework. Each run of the code is governed by a configuration file allowing the user to specify and control many details of the calculation. Thus, each run of the code corresponds to a potentially different ``model". The code itself continues to be developed and is available to the scientific community via this website.

MOTIVATION AND ACKNOWLEDGEMENTS

Discoveries and studies in cosmic-ray physics and, generally, in high-energy astrophysics are closely related to research in many areas of particle physics and cosmology: the search for dark matter, antimatter, new particles, and exotic physics; nucleosynthesis studies; the origin of the Galactic and extragalactic v-ray diffuse emission; the formation of the large scale structure of the Universe; heliospheric modulation, and so forth. In turn, the astrophysics of cosmic rays, v-rays, and other diffuse emissions, depends very much on the quality of the data and their proper interpretation. The quality of data from cosmic-ray experiments such as Ulysses, the Advanced Composition Explorer (ACE), the Voyagers, TIGER, the Fermi LAT (formerly GLAST), PAMELA, CREAM, BESS-Polar, AMS, and possibly ACCESS, far exceeds the accuracy of analytical propagation models, such as the "leaky-box" model that has remained one of the main research tools for the last 50 years. These missions are specifically designed to search for dark matter signals in cosmic rays and diffuse γ -rays, searches for antimatter, and to study the diffuse Galactic and extragalactic diffuse emission, over a wide energy range. Meanwhile, developments in astrophysics, such as detailed 3-dimensional maps of the Galactic gas distribution, detailed studies of composition of interstellar dust, grains, the Local Bubble, interstellar radiation and magnetic fields, and new classes of cosmic-ray sources, all have implications for the interpretation of data obtained from ballon-borne and space-based experiments. The same can be said for more accurate measurements of nuclear isotopic production cross sections and new particle data that become increasingly available. Having the latest results and theoretical knowledge distilled and easily accessible in a unified framework is advantageous for the scientific community, as well as for planning and setting the goals for new missions.

The first version of the GALPROP code was written in FORTRAN-90/77 in the mid-1990s by Andrew W. Strong and Igor V. Moskalenko and then rewritten in C++ (with the well-tested FORTRAN-77 routines remaining). Seth W. Digel and Troy A. Porter joined the project in the early 2000s with Gulli Johannesson, Elena Orlando, and Andrey Vladimirov as more recent additions to the team. Other people have contributed by providing libraries, expertise, and data sets over the years: Stepan G. Mashnik, Olaf Reimer, V. S. Barashenkov, A. Polanski, R. Silberberg, C. H. Tsao, and W. R. Webber. We remember our late colleague Patrick Nolan who has shared a great deal of his knowledge, time and humor with the GALPROP team.

GALPROP NEWS: << < 1 - 4 > >> June 2013: GALPROP WebRun now runs calculations on a new 500-core cluster at Stanford University. Issues due to migration? Please notify the admin! (address at the bottom of every page) March 2013: New GALPROP-related talks, papers posted; explanatory supplement updated. July 2012: The GALPROP WebRun project and its status described in a general audience paper for Colfax Research. June 2012: Dmitry Prokhorov's talk explains how to use WebRun to produce diffuse emission skymaps for Fermi ScienceTools (more GALPROP-related talks here).

We are grateful to Jeff Wade who provides valuable assistance with the system administration for the GALPROP web servers and computing cluster. We also thank Irina V. Malkova for her help in designing and supporting the first version of this website.

The GALPROP development team acknowledges the use of HEALPix http://healpix.jpl.nasa.gov/ described in: K.M. Gorski et al., 2005, Ap.J., 622, p.759

http://galprop.stanford.edu

GalProp: results

GalProp: results

GalProp

- Model to reproduce simultaneously observational data of many kinds related to cosmic-ray origin and propagation
 - Directly via measurements of nuclei, antiprotons, electrons and positrons
 - Indirectly via gamma rays and synchrotron radiation
- On the other hand, such a model provides a good basis for:
 - Studies of extragalactic gamma-ray emission
 - Dark matter (WIMP annihilation:gamma-rays, positrons, and antiprotons)
 - Cosmological isotope abundances
 - Particle acceleration in SNR ...
- GALPROP solves the transport equation in 2 or 3 spatial dimensions plus momentum with a given source distribution and boundary conditions for all cosmic-ray species.
 - Galactic wind (convection)
 - Diffusive reacceleration in the interstellar medium
 - Energy losses
 - Nuclear fragmentation and decay.
- The spatial boundary conditions assume free particle escape.

Charged Cosmic Ray Energy Spectrum

Cosa possiamo imparare dai RC?

Misure/Effe	tti sperimentali	Informazioni Fisiche		
Composizione:	p ≅ 85%	Sorgenti		
	He ≅ 12%	Meccanismi di accelerazione		
	$C,N,O \cong 10^{-2}$	Meccanismi di propagazione		
	$Fe \cong 10^{-4}$	Mezzo interstellare		
	e ⁻ ≅ 2%	Tempo di confinamento		
	$e^{+} \simeq 10^{-4}$	Nucleosintesi		
	$\overline{p} \simeq 10^{-4}$	Campi magnetici		
Spettri energetici	T = 10	Fisica del sole		
Composizione isot	opica	Geofisica		
Ricerche di antinu	clei	Simmetria materia/antimateria???		
Ricerche di nuove	particelle	Nuove particelle???		
	Addition and a second sec	Materia oscura???		
Modulazione solar	e	Nuove interazioni???		
Taglio geomagneti	co	Cosmologia???		
Fasce di radiazione	2			
Atmosfera (23 X ₀ ,	$11 \lambda_{I}$)			

Cosmic Ray Electrons

Indirect Measure

Direct Measure

Astrofisica Nucleare e Subnucleare L'origine dei Raggi Cosmici

The Origin of Cosmic Rays

• Galactic

- Ordinary stars (produce ~10²⁸ J/s)
- Magnetic stars (produce up to 10³² J/s)
- Supernovae (produce ~3x10³² J/s)
- Novae (produce $\sim 3x10^{32}$ J/s)

Origin of Galactic Cosmic Rays

- Energy output required: assume Galaxy is sphere radius 30kpc = 10²¹ m => volume = 10⁶³ m³
- Energy density CR $\sim 10^{-13}$ J m⁻³ (10⁻⁶ eV m⁻³) Thus total energy of CR in Galaxy $\sim 10^{50}$ J.
- <u>Age of Galaxy</u> ~10¹⁰ years, ~ 3x10¹⁷ sec hence av. CR production rate ~ 3x10³² J s⁻¹ Particles shortlived, => continuous acceltn.

Cosmic Rays from stars

- Ordinary stars Too low!!! Our Sun emits
 CR during flares but these have low-E
 ~10¹⁷ J/s, total 10²⁸ J/s (10¹¹ stars in Galaxy)
- Magnetic stars

Optimistic!!! Mag field about a million times higher than the Sun so output a million times higher, but only 1% magnetic (and low-E); $\sim 10^{32}$ J/s

Supernovae

• <u>Supernovae</u> - *a likely source!*

- Synchrotron radiation observed from SN so we know high energy particles are involved. Total particle energy estimated at $\sim 10^{42}$ J per SN
- Taking 1 SN every 100 years, => 3x10³² J/s. (also, SN produce heavies)

Galactic Sources

- Why SNR?
 - Energy argument
 - Fermi Acceleration Mechanism (1st order)
 - "elastic" collisions $\Delta E = \xi E e P_{esc} = cost$
 - Power Law Spectrum $\Gamma \sim 2$

$$P_{SNR} = \frac{10^{51} erg}{30 anni} = 10^{42} \frac{erg}{s}$$

Supernovae and Remnants

Supernova Remnants

Nearby molecular clouds can provide targets for ions accelerated at the SNR shock. Gamma-rays are then produced by neutral pion decay pointing out the production of hadronic cosmic rays

Spectrum

The bulk of CRs occurs with energies below the knee and are thought to ome from our own galaxy.

There was still no completely definite observational proof !

Supernovae and Cosmic Rays

- Most scientists believe that Galactic CR are accelerated in SNR shocks
- EGRET detected π^0 bump at 68 MeV \rightarrow direct evidence of nucleon-nucleon interactions
- EGRET detected γ -rays from LMC but not SMC \rightarrow CR production varies
- Some EGRET sources could be SNRs, but poor resolution prevented confirmation
- X-ray and TeV observations of SNR show shocked electrons accelerated to CR-energies

X-ray SNR

Because of the huge amount of mechanical energy released by SN explosions (~ 10⁵¹ ergs), it has long been thought that shock waves induced by supernova explosions are responsible for the acceleration of cosmic rays up to energies ~ 100 TeV. Observational clues?

Brightest X-ray zones of SN 1006 feature non-thermal spectra. Likely origin: synchrotron emission of relativistic e^{-} up to ~ 100 TeV in a ~ 10^{-5} G magnetic field. In agreement with TeV gamma-ray observations.

0.4-8 keV composite ASCA image

Primordial role of SNR observations in the hard X rays / soft gamma rays to characterize non-thermal emission.

π^0 decay spectrum

Cosmic rays propagation

A case by case analysis

- A case by case analysis is needed for each SNR-EGRET source coincident pair.
- There should be, nearby, enhancements of molecular material that could act as target for accelerated protons.
- This material, then, must be excited by the shock.
- Leptonic processes and other candidate sources must be discarded as the origin of the gamma-ray radiation.

Torres et al. **astro-ph/0209565**, Supernova Remnants and gamma-ray sources, Review for the Physics Reports (2002)

$GeV \; SNR \; \text{Detection strategy} \;$

- Hadronic channel increased
- $F_{SNR} \sim \rho_{ISM}$ $F_{nubi} \sim \varepsilon_{CR}$ = 1eV/cm³

- Molecular cloud near SNR $\rightarrow \epsilon_{\rm CR}$ >> 1eV/cm³
- R= CO(J=2->1)/CO(J=1->0)
- R~0.7, but R \rightarrow 2.5 for excited clouds

Supernovae

SNR and cosmic rays

• For SNR candidates, the LAT sensitivity and resolution will allow mapping to separate extended emission from the SNR from possible pulsar components.

• Energy spectra for the two emission components may also differ.

• Resolved images will allow observations at other wavelengths to concentrate on promising directions.

(*a*) Observed (EGRET) and (*b*) simulated LAT (1-yr sky survey) intensity in the vicinity of γ -Cygni for energies >1 GeV. The coordinates and scale are the same as in the images of γ -Cygni in the box at left. The dashed circle indicates the radio position of the shell and the asterisk the pulsar candidate proposed by Brazier et al. (1996).

Supernova Remnants

1st order Fermi mechanism

- Basic principles:
 - Strong shock
 - Scattering by irregularities

1st order :
 acceleration in strong shock waves
 (supernova ejecta, RG hot spots...)

shock frame

 $\left\langle \frac{\Delta E}{E} \right\rangle = \frac{4}{3} \left(\frac{v}{c} \right)$

 $\frac{\Delta \mathbf{E}}{\mathbf{E}} \sim \beta \qquad \beta = \frac{\mathbf{V}}{\mathbf{C}} \lesssim 10^{-1}$

Incremento di energia in urto con onda di shock

- Onda di shock= perturbazione che si propaga con velocità V> velocità del suono nel mezzo.
- Assumeremo l'approssimazione di onda piana e con massa M » massa particella
- L'urto è elastico nel SR di quiete di un osservatore sull'onda si shock (S').

Considereremo il processo nei due SR:

> **S** = Sistema di riferimento dell'osservatore

> S'= Sistema di riferimento dell'onda di shock

SR osservatore

SR onda shock

Quadrimpulso particella

$$(E, p_x)$$

$$(E', p'_x)$$

$$E' = \gamma (E + Vp_x)$$
$$p'_x = \gamma (p_x + \frac{V}{c^2}E)$$

Urto elastico:

$$E' \xrightarrow{} E'$$

$$p'_{x} \xrightarrow{} p'_{x}$$

$$p'_{x} \xrightarrow{} p'_{x}$$

Conseguenze dell'urto: $E = \gamma(E' - Vp'_x) \xrightarrow{}_{urto} \gamma(E' - V(-p'_x)) \equiv E^*$

dove $E^* =$ energia della particella dopo l'urto: $E^* = \gamma (E - V(-p'_x))$ $E^* = \gamma \left[\gamma (E + Vp_x) + V\gamma (p_x + \frac{V}{c^2}E) \right]$

Ricordando che:

$$p_{x} = mv\gamma\cos\theta$$

$$E = mc^{2}\gamma$$

$$\frac{p_{x}}{E} = \frac{mv\gamma\cos\theta}{mc^{2}\gamma} = \frac{v}{c^{2}}\cos\theta$$

$$E^* = \gamma \left[\gamma (E + Vp_x) + V\gamma (p_x + \frac{V}{c^2}E) \right] = \gamma^2 \left[(E + 2Vp_x + \frac{V^2}{c^2}E) \right] =$$

$$= \gamma^2 E \left[1 + 2V \frac{p_x}{E} + \frac{V^2}{c^2} \right] = \gamma^2 E \left[1 + 2V \frac{v \cos \theta}{c^2} + \frac{V^2}{c^2} \right]^{Taylow} \cong$$

$$= \left(1 + \frac{V^2}{c^2}\right) E\left[1 + 2V\frac{v\cos\theta}{c^2} + \frac{V^2}{c^2}\right]^{Taylor} \cong \left[1 + 2\frac{Vv\cos\theta}{c^2} + 2\frac{V^2}{c^2}\right]$$

L'energia guadagnata dalla particella nell'urto con l'onda di shock nel sistema S (Galassia):

$$\Delta E = E^* - E = \left[2\frac{Vv\cos\theta}{c^2} + 2\frac{V^2}{c^2}\right] \cdot E$$
$$\underset{v \approx c}{\cong} \left(2\frac{V\cos\theta}{c}\right) \cdot E$$

$$\frac{\Delta E}{E} = \frac{E^* - E}{E} = \left(2\frac{V\cos\theta}{c}\right)$$

 In altri termini, il rapporto tra energia finale e iniziale è >1 nel caso in cui la particella si diriga contro l'onda (cosθ>0) :

$$\frac{E^*}{E} = \left(1 + 2\frac{V}{c}\cos\theta\right)$$

■ Mediando (ossi, integrando) su tutti gli angoli per cui $\cos\theta > 0$:

$$\langle \cos \theta \rangle = \frac{\int_{0}^{1} \cos \theta \cdot \cos \theta d\theta}{\int_{0}^{1} \cos \theta d\theta} = \frac{1}{2}$$

$$\left\langle \frac{E^*}{E} \right\rangle = \left(1 + \frac{4}{3}\frac{V}{c}\right) = \mathbf{B}$$

$$\langle E^* \rangle = \mathbf{B} \langle E \rangle$$

81

eq. 4.1

Accelerazione ricorsiva

 Dalla eq. 4.1 abbiamo ottenuto che in ogni urto frontale, la particella guadagna energia:

$$E^f = \mathbf{B} \cdot E_o$$

- La particella inoltre rimane nella zona di accelerazione con una certa probabilità P
- **Dopo k collisioni:**
 - Energia in possesso della particella
 - Numero di particelle con energia E

$$E = E_o \mathbf{B}^k$$
$$N = N_o P^k$$

 \boldsymbol{P}

$$\ln(E/E_o) = k \ln B$$

$$\ln(N/N_o) = k \ln P$$

$$\ln(N/N_o) = k \ln P$$

$$\ln(N/N_o) = k \ln P$$

$$\ln(R/N_o) = \frac{\ln P}{\ln B} = \alpha$$
eq. 4.2
$$\frac{N}{N_o} = \left(\frac{E}{E_o}\right)^{\alpha}$$
eq. 4.3
La formula trovata si riferisce al numero N di particelle con energia >E, ossia N=N(>E) è la funzione integrale di:

$$\frac{dN(E)}{dE} \propto E^{\alpha - 1}$$

 La 4.4 rappresenta la distribuzione differenziale del numero di particelle in un certo intervallo di energia.

- La 4.4 ha la forma di uno spettro di potenza, con $\gamma = \alpha 1$.
- Questo è quanto cercavamo per lo spettro (osservato) dei RC.
 Il problema è ora determinare il valore di γ. Dalla 4.2:

$$\gamma = \alpha - 1 = \frac{\ln P}{\ln B} - 1$$
 eq. 4.5

Quindi, occorre determinare il valore del rapporto tra lnP/lnB

Stima del coefficiente α=lnP/lnB
Flusso di particelle relativistiche VERSO il fronte d'onda: F[s⁻¹] = ρ[cm⁻³] · c[cm/s] · A[cm²]
Le particelle nella regione *downstream* non vengono di nuovo accelerate. Il flusso di queste particelle verso sinistra è:

 $F' = \rho \cdot v_s \cdot A$

La probabilità che il RC oltrepassi il fronte d'onda e venga persa (ossia NON venga riaccelerato):

$$\overline{P} = \frac{F'}{F} = \frac{\rho \cdot v_s \cdot A}{\rho \cdot c \cdot A} = \frac{v_s}{c}$$

La probabilità che il RC rimanga nella regione di accelerazione:

$$P = 1 - \overline{P} = 1 - \frac{v_s}{c}$$

Il valore stimato di α $\gamma = \alpha - 1 = \frac{\ln P}{\ln B} - 1$ $\neg \gamma(\alpha)$ definito dalla eq. 4.5: $P = 1 - \overline{P} = 1 - \frac{v_s}{2}$ L'equazione 4.6 ■ B dalla eq. 4.1, con V=3/4v_s $\left\langle \frac{E^*}{E} \right\rangle = \left(1 + \frac{4}{3} \frac{V}{c}\right) = \left(1 + \frac{4}{3} \frac{(3/4)v_s}{c}\right)$ B

Quindi, se $(V/c) \ll 1$:

$$\alpha = \frac{\ln P}{\ln B} = \frac{\ln\left(1 - \frac{v_s}{c}\right)}{\ln\left(1 + \frac{v_s}{c}\right)} \stackrel{Taylor}{\cong} -\frac{\frac{v_s}{c}}{\frac{v_s}{c}} = -1.0$$
e quindi
$$\gamma = \alpha - 1 = -2$$
eq. 4.7

85

4.7

Spettro energetico alle sorgenti

 Il modello di Fermi <u>predice</u> quindi uno spettro energetico delle particelle in prossimità delle sorgenti (eq. 4.4) del tipo:

$$\frac{dN(E)}{dE} \propto E^{\alpha-1} = E^{-2}$$

- Si tratta di una predizione che si accorda coi dati sperimentali. La pagina seguente riporta una slide già vista:
- Occorre ora mostrare che:
 - L'energetica delle SN riesce a spiegare tutta l'energia associata ai RC
 - La velocità dell'onda di shock NON è relativistica
 - Come le particelle vengono fatte "rimbalzare" verso l'onda di shock
 - La massima energia cui si può giungere con questo modello

Spettro dei RC alle sorgenti

- Il risultato appena ottenuto è estremamente importante, perché permette di avere informazioni sullo spettro energetico dei RC alle sorgenti.
- Poiché il flusso dei RC sulla Terra è stazionario, vi deve essere equilibrio tra:
 - Spettro energetico misurato:
 - Spettro energetico alle Sorgenti: $Q(E) \propto E^{-?}(erg/s \cdot GeV)$
 - Probabilità di diffusione:

 $\tau(E) \propto E^{-0.6}(s)$

 $\Phi(E) \propto E^{-2.7} (erg / cm^3 \cdot GeV)$

Parametri caratteristici di un'onda di shock da Supernova

- Osservazioni di <u>Supernovae</u> (da altre Galassie): 1/τ= 1 SN/ 30 anni
- Energia emessa sotto forma di energia cinetica: K=10⁵¹ erg
- Massa caratteristica delle Supernovae: M=10 M_s (=10×2×10³³ g)
- "Potenza" alimentata dalle esplosioni di SN: $W=K/\tau = 10^{51} / 30(3 \times 10^7 \text{ s}) = 10^{42} \text{ erg/s}$
- Velocità di propagazione dell'onda di shock:

Massima energia per i RC da SN

• Incremento di energia in un singolo urto (eq.4.1):

$$\langle E \rangle = \mathbf{B} \langle E_o \rangle = \left(1 + \frac{4}{3} \frac{V}{c}\right) \langle E_o \rangle$$

$$\Delta E = \langle E \rangle - \langle E_o \rangle = \frac{4}{3} \frac{V}{c} \langle E_o \rangle = \eta \langle E_o \rangle; \quad \eta \approx 10^{-2}$$

- Tempo che intercorre tra due urti successivi: T_{ciclo};
- Numero massimo di urti possibili: $N_{cicli} = T_{OS}/T_{ciclo}$;
- La massima energia raggiungibile è dunque:

$$E_{\max} = N_{cicli} \Delta E = \frac{\eta E_{o} \cdot T_{os}}{T_{ciclo}}$$

eq. 4.11

• Occorre dunque stimare il parametro T_{ciclo};

Stima di T_{ciclo}

 λ_c =Lunghezza caratteristica della particella confinata = raggio di Larmoor nel campo magnetico Galattico

$$\lambda_C \approx r_L = \frac{E}{ZeB}$$

• Se assumiamo:

$$\lambda_C \approx r_L = \frac{E}{ZeB}$$

• Allora:
$$T_{ciclo} = \frac{\lambda_C}{V} = \frac{E}{ZeBV}$$

• Possiamo determinare la massima energia (eq. 4.11):

$$E_{\max} = N_{cicli} \Delta E = \frac{\eta E \cdot T_{OS}}{T_{ciclo}} \longrightarrow E_{\max} = \frac{\eta E \cdot T_{OS}}{T_{ciclo}} = \eta \Delta \left(\frac{ZeBV}{\Delta}\right) \cdot T_{OS}$$

$$\Rightarrow \eta = \frac{4}{3} \frac{V}{c} \Longrightarrow E_{\text{max}} = \frac{4}{3} \frac{ZeB}{c} V^2 \cdot T_{os} \qquad \qquad B = 3 \times 10^{-6} G$$
$$V = 5 \times 10^8 cm/s$$
$$T_{os} = 10^3 y = 3 \times 10^{10} s$$

$$E_{\text{max}} = \frac{4}{3} \frac{ZeB}{c} V^2 \cdot T_{OS} = 480 \cdot Z \quad erg = 3 \times 10^{14} Z \quad eV$$

 $E_{\text{max}} = 300 \times Z \qquad TeV$ eq. 4.12

29

Conclusioni circa il modello

- Il modello di accelerazione dei RC da parte di SN fonda la sua giustificazione sulla concordanza tra energia cinetica emessa (10^{42} erg/s) e la "potenza" sotto forma di RC nella Galassia: W_{CR} =5×10⁴⁰ erg/s
- Un meccanismo che trasferisca il ~5% di energia verso particelle relativistiche (RC) è sufficiente per spiegare i RC galattici sino ad energie ~ 10^{15} eV.
- Il meccanismo di Fermi ha proprio una efficienza $\eta = \frac{V}{c} \approx 5 \times 10^{-2}$
- Nella regione di accelerazione, lo spettro energetico dei RC è descritto da una legge di potenza: $dN(E) = E^{\alpha-1} E^{-2}$

$$\frac{dN(E)}{dE} \propto E^{\alpha - 1} = E^{-2}$$

- La legge di potenza alla sorgente del tipo E⁻² si confronta con l'osservazione sperimentale di uno spettro del tipo E^{-2.7} sulla Terra, tenendo conto della probabilità di fuga dalla Galassia vs. E
- L'energia *massima* che i RC possono acquisire in queste regione di accelerazione è

$$E_{\rm max} = 300 \times Z \qquad TeV$$

 In corrispondenza di questa energia, si trova una struttura nello spettro osservato (ginocchio). La previsione del modello è che il ginocchio dipende dalla rigidità (ossia, da Z) della particella

Astrofisica Nucleare e Subnucleare Propagazione di Raggi Cosmici

3. Propagazione dei RAGGI COSMICI nella Galassia (Cap. 5 libro)

Corso "Astrofisica delle particelle" Prof. Maurizio Spurio Università di Bologna a.a. 2013/14

Modulazione dei RC di bassa energia dovuta al ciclo del Sole

La Galassia

- Il gas interstellare o intragalattico (GI) è il mezzo in cui si formano le stelle.
- Contribuisce per il 5% alla massa della Galassia

Distribuzione di idrogeno neutro nella Galassia

Il campo magnetico galattico

- Si misura tramite la polarizzazione della luce delle stelle
- Intensità media:
 3-4 μGauss
- Coerenti su scale di 1-10 pc

Nubi Gassose

- Scoperte con astronomia radio
- Il gas viene riscaldato da vari meccanismi:
 - Esplosioni di SN
 - Radiazione U.V. da stelle giganti
 - Eccitazione/ionizzazione da RC
- Si raffredda con altri meccanismi:
 - Bremsstrhalung (gas caldi, K>10⁷ K)
 - Diseccitazione $10^4 \text{ K} \le \text{T} \le 10^7 \text{ K}$
 - Emissione termica

Densità media del mezzo Interstellare

Figure 17.2. The radial distribution of atomic and molecular hydrogen as deduced from radio surveys of the Galaxy in the 21-cm line of atomic hydrogen and from millimetre surveys of the molecular emission lines of carbon monoxide, CO. (After D. Michalis and J. Binney (1981). *Galactic astronomy: structure and kinematics*, pp. 535, 554. San Francisco: W.H. Freeman and Co.)

• Figura 17.2 libro

$$\rho_{\rm ISM} = 1 \text{ p/cm}^3 =$$

=1.6x10⁻²⁴ g/cm³

NOME	COSTITUENTI	Rivelsti da	.VOLUNE e MASSA Jel Nezzo (at.		No	T(K)
NUBI	H2, CO CS etc	Lince moleculori Euriss. Polueri	~ 0.5 j.	40%	1000	10
NUBI DI H NUBI DIFRISE	H,C,O neutri	lines di 21 cm Liuce Assorbum.	5%	40%	1-100	80
INTER NEBULE	H, H ⁺ , E (1011377. 10%)	21 cm t Dusorbiu. Linee H	40'l.	20%	0.1-1	-10
CORONE Stellari	H*, e	soft X (0.1-2 keV)	~50%	0.1%	1000	106

Richiamo: moto di un RC nel campo magnetico Galattico

$$mv^{2}/r = pv/r = ZevB/c$$

$$r = pc/ZeB$$

$$r(cm) = \frac{1}{300} \frac{E(eV)}{ZB(G)}$$

$$(10^{12} eV) = 10^{15} cm = 3 \times 10^{-4} pc$$

$$r = (10^{15} eV) = 10^{18} cm = 3 \times 10^{-1} pc$$

$$(10^{18} eV) = 10^{21} cm = 300 pc$$

Abbondanze dei nuclei nel Sistema Solare

 Sono rappresentative delle abbondanze degli elementi nel mezzo interstellare

10¹⁰ Abundace relative to silicon = 10^6 Hydrogen burning Helium burning cosmological nucleosynthesis 10⁸ Carbon and oxygen burning explosive burning 10⁶ Silicon burning equilibrium or quasi-equilibrium explosive burning 10 r-, s-, and p-processes 10^{2} 10⁰ Spallation or/and explosive nucleosynthesis 10⁻² 50 100 150 200 0 Mass number

Lang'80 from Type I carbonaceous chrondile meteorites

Suess & Urey'56 from terrestrial, meteorite, and solar abundances

Ref: Mashnik, astro/ph: 0008382

Confronto tra le abbondanze dei vari nuclidi nei RC e nel mezzo IG

- I RC hanno una composizione chimica analoga a quella del Sistema Solare (Solar System Abundance, SSA)?
- Se sì, questo indica una origine simile a quella del SS.
- Le abbondanze degli elementi nei RC si determinano tramite esperimenti di misura diretta dei RC
- Si notano alcune discrepanze rispetto al SSA, in particolare in corrispondenza al gruppo Li,Be,B e del gruppo prima del Fe

Abbondanze relative dei RC e del sistema

- H e He sono dominanti (98%), leggermente in difetto rispetto SS
- Buon accordo tra CR e SS per molti elementi, in particolare C, O, Mg, Fe.
- Elementi leggeri Li, Be, B e quelli prima del ferro Sc,V sono straordinariamente abbondanti nei RC rispetto SSA

J.A. Simpson, Ann. Rev. Nucl. Part. Sci. 33 (1983), 323

Produzione di Li, Be, B nei RC

- ⁶Li,Be,B sono catalizzatori delle reazioni di nucleosintesi. Ciò significa che NON sono rilasciati al termine della vita stellare. Il solo ⁷Li ha una piccola percentuale di origine cosmologica, mentre ⁶Li,Be,B non sono stati prodotti dal big bang.
- Li,Be,B sono prodotti temporaneamente durante la catena di fusione, ma vengono "consumati" durante le reazioni (vedere cap. 8): le stelle consumano questi elementi durante la loro vita.
- Quale è l'origine di questi elementi rari?
- Reeves, Fowler & Hoyle (1970) ipotizzarono la loro origine come dovuta all'interazione dei RC (spallazione e fusione di α + α) con il mezzo interstellare (ISM).

Interazioni di alta energia di p con nuclei

- Il p interagisce con un solo nucleone nel nucleo
- Nell'interazione p-nucleone vengono prodotte molte particelle (pioni principalmente)

- Nel Sistema di riferimento del laboratorio, le particelle sono emesse in avanti.
- In genere, pochi (1 o 2) nucleoni partecipano all'interazione, e vengono rimossi dal nucleo originario. La parte rimanente è in uno stato eccitato, e alcuni frammenti (n,α) possono evaporare. La parte rimanente viene chiamata frammento nucleare, o nucleo di spallazione.

Meccanismo di propagazione

- Gli elementi del gruppo M(=C,N,O) sono gli elementi candidati a produrre L(=Li,Be,B) durante la propagazione.
- Il processo fisico con cui gli M producono gli L è la spallazione, urto con i protoni del GI.
- Quale quantità di materiale:

 $\xi = \rho L (gcm^{-2})$

i nuclei M devono attraversare per produrre, nel rapporto osservato, gli elementi L.

 Il problema può essere impostato con un sistema di equazioni differenziali.

• Costruiamo un "modellino giocattolo" di propagazione dei RC, in cui le ipotesi di partenza sono:

- Nessuna presenza di nuclei Leggeri (N_L) alle sorgenti dei RC
- Una certa quantità di nuclei Medi (N_M) , che durante la propagazione diminuisce a causa della spallazione

$$N_L(0) = 0$$
$$N_M(0) = N_M^0$$

• Il processo di spallazione P_{ML}

$$N_M + p \rightarrow N_L + X$$

avviene con una probabilità $0 \le P_{ML} \le 1$.

$$P_{ML} = \frac{\sigma_{spall.}}{\sigma_{tot.}}$$

• Sperimentalmente
$$P_{ML}$$
=28%.

$$N_M + p \rightarrow N_L + X$$

$$\frac{d}{d\xi} N_M(\xi) = -\frac{N_M(\xi)}{\lambda_M}$$
(1)
$$\frac{d}{d\xi} N_L(\xi) = -\frac{N_L(\xi)}{\lambda_L} + \frac{P_{ML}}{\lambda_M} N_M(\xi)$$
(2)

$$\lambda_{i} = \frac{1}{N_{0} \cdot \sigma_{i}}$$

$$\sigma_{i} \propto \sigma_{0} \cdot A_{matta}^{2/3}$$

$$\sigma_{M} = (45mb) \cdot A_{M}^{2/3} = 280 \text{ mb}$$

$$\sigma_{L} = (45mb) \cdot A_{L}^{2/3} = 200 \text{ mb}$$

$$\lambda_{M} = \frac{1}{(6 \times 10^{23} \cdot 280mb)} = 6.0 \text{ g.cm}^{-2}$$

$$\lambda_{L} = \frac{1}{(6 \times 10^{23} \cdot 200mb)} = 8.4 \text{ g.cm}^{-2}$$

lunghezza di interazione nucleare

La soluzione dell'eq. 1 è:

$$N_M(\xi) = N_M^0 \cdot e^{-\xi/\lambda_M} \quad (3)$$

Moltiplicando ambo i membri della (2) per e

$$\begin{aligned} \frac{d}{d\xi} N_L(\xi) \cdot e^{\xi/\lambda_L} &= -\frac{N_L(\xi)}{\lambda_L} \cdot e^{\xi/\lambda_L} + \frac{P_{ML}}{\lambda_M} N_M(\xi) \cdot e^{\xi/\lambda_L} \\ \frac{d}{d\xi} \left(N_L(\xi) \cdot e^{\xi/\lambda_L} \right) &= \frac{P_{ML}}{\lambda_M} N_M^0 \cdot e^{(\xi/\lambda_L - \xi/\lambda_M)} \end{aligned}$$

Questa, è una equazione del tipo:

$$\frac{d}{dx} \left(y(x) \cdot e^{x/\lambda_L} \right) = B \cdot e^{\left(x/\lambda_L - x/\lambda_M \right)} \quad (4)$$

dove $B = \frac{P_{ML}}{\lambda_M} N_M^0$

$$\frac{d}{dx}\left(y(x)\cdot e^{x/\lambda_L}\right) = B\cdot e^{\left(x/\lambda_L - x/\lambda_M\right)} \quad (4)$$

Proviamo con una soluzione del tipo:

$$y(x) = N_L(\xi) = c \cdot \left(e^{-x/\lambda_L} - e^{-x/\lambda_M} \right)$$
(5)

• Con le condizioni al contorno: $y(x) = 0 = N_L(0) = 0$

$$\frac{d}{dx} \left[c \cdot \left(e^{-x/\lambda_L} - e^{-x/\lambda_M} \right) \cdot e^{x/\lambda_L} \right] = B \cdot e^{\left(x/\lambda_L - x/\lambda_M \right)}$$
$$\frac{d}{dx} \left[c \cdot \left(1 - e^{-x/\lambda_M + x/\lambda_L} \right) \right] = B \cdot e^{\left(x/\lambda_L - x/\lambda_M \right)}$$
$$c \cdot \left(\frac{1}{\lambda_M} - \frac{1}{\lambda_L} \right) = B$$
$$c = B \cdot \frac{\lambda_M \lambda_L}{\lambda_L - \lambda_M}$$

30

Inserendo il valore di "c" nella (5) otteniamo finalmente:

$$N_{L}(\xi) = \left(\frac{P_{ML}}{\lambda_{M}} N_{M}^{0}\right) \cdot \left(\frac{\lambda_{M} \lambda_{L}}{\lambda_{L} - \lambda_{M}}\right) \cdot \left(e^{-\xi/\lambda_{L}} - e^{-\xi/\lambda_{M}}\right) \quad (6)$$
$$N_{M}(\xi) = N_{M}^{0} \cdot e^{-\xi/\lambda_{M}} \quad (3)$$

Quindi: perché i RC, presentino R osservato, devono avere attraversato nella Galassia uno spessore di "materiale equivalente" pari a ξ_T =4.8 g cm⁻².

La Terra non ha una posizione privilegiata nella Galassia; un qualsiasi altro osservatore misura lo **stesso** numero.

3.7 Stima del tempo di confinamento da ξ_T : Galassia senza alone.

- Il modello semplificato conferma la produzione di Li, Be, B da parte degli elementi del gruppo C,N,O con le abbondanze relative come sperimentalmente misurate;
- Il modello, senza ulteriori correzioni, non funziona altrettanto bene per riprodurre le abbondanze di Mn, Cr, V da parte del Ferro (potete immaginare perché ?)
- □ Dal valore ottenuto di ξ_T =4.8 g cm⁻² è possibile ottenere una stima del tempo di confinamento dei RC nella galassia. Infatti:

$$\xi_{T} = \rho_{CR} \cdot c \cdot \tau$$

$$\rho_{CR} = \frac{1p}{cm^{3}} = 1.6 \times 10^{-24} \ g.cm^{-3}$$

$$\tau = \frac{4.8 (g.cm^{-2})}{3 \times 10^{10} \ (cm/s) \cdot 1.6 \times 10^{-24} \ (g.cm^{-3})} = 10^{14} s = 3 \times 10^{6} y$$

Stima del tempo di confinamento nella Galassia con alone

Nel caso si consideri la densità della Galassia con alone di DM:

$$\rho_{CR} = 0.3 \, p/cm^3$$

$$\tau_{Alone} = \frac{4.8 \, (g.cm^{-2})}{0.3 \times 3 \times 10^{10} \, (cm/s) \cdot 1.6 \times 10^{-24} \, (g.cm^{-3})} = 10^7 \, y$$

Si noti che in ogni caso, se i RC si movessero di moto rettilineo, la distanza percorsa nel tempo τ sarebbe:

$$L = c \cdot \tau = 3 \times 10^{10} \times 10^{14} = 3 \times 10^{24} cm = 10^{6} pc$$

valore molto maggiore delle dimensioni della Galassia.

- τ rappresenta il tempo di diffusione dei RC dalla Galassia.
- In seguito, occorre raffinare il modello per determinare $\tau = \tau(E)$

Se il moto dei RC fosse rettilineo:

$$L_{min} = \tau_D c = 3 \ 10^{10} \ 10^{14} \ cm/s \ s = 10^6 \ pc \gg 15 \ kpc = r_{galax}$$

Ciò conferma che i RC hanno una direzione continuamente modificata durante τ (dal Campo Magnetico Galattico)

3.8 Variazione del tempo di confinamento con l'energia

- Il modello illustrato (confinamento dei RC nella Galassia come scatola parzialmente trasparente) è chiamato "*leaky box*";
- Il rapporto r=(#L/#M) dipende dal tempo di confinamento τ dei RC nella Galassia; all'aumentare di τ , cresce r.
- Se il confinamento è dovuto al campo B Galattico, ci si aspetta che i RC più energetici abbiano un tempo di confinamento inferiore (ossia, aumenta la probabilità di fuggire dal piano Galattico);
- In tal caso, all'aumentare dell'energia ci si aspetta un valore di r che *decresce* con l'energia;
- L'equazione differenziale deve essere modificata per tener conto di $\tau(E)$.

Dipendenza del rapporto B/C vs. E

0.4 AMS-02 • La probabilità di 0.3 fuga dalla Galassi dipende dall' poron-to-carbon ratio 0.2 Orth et al. (1972) energia dei RC Dwyer & Meyer (1973–1975) ▲ Simon et al. (1974–1976) come: HEA03-C2 (1980) Webber et al. (1981) $\tau = \tau_o \,/\, E^{0.6}$ 0.1 CRN–Spacelab2 (1985) Buckley et al. (1991) AMS-01 (1998) ATIC-02 (2003) Poiché $\tau \sim \xi$ CREAM-I (2004) TRACER (2006) 0.05 10² 10 $\xi = \xi_o E^{-0.6}$ kinetic energy (GeV/n)

Nota: non è possibile ricavare questo in modo semplice per via analitica.