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Lesson 1 

Category theory represents a powerful mathematical language that can concisely

express and abstract the relationships between various mathematical ideas; infact it

can describe precisely many similar phenomena that occur in different mathematical

fields.

Categories abound in mathematics and in related fields such as computer science.

Such entities as sets, vector spaces, groups, topological spaces, Banach spaces,

manifolds, ordered sets, automata, languages, etc., all naturally give rise to categories.

Also, Category theory provides a vehicle that allows to transport problems from one

area of mathematics to another area, where solutions are some times easier. For

example, algebraic topology can be described as an investigation of topological

problems by algebraic methods.

• Motivations for a course on Category Thoery



Motivations

“Category theory takes a bird’s eye view of mathematics. From high in the sky, details
become invisible, but we can spot patterns that were impossible to detect from ground

level. How is the lowest common multiple of two numbers like the direct sum of two

vector spaces? What do discrete topological spaces, free groups, and fields of
fractions have in common? We will discover answers to these and many similar

questions, seeing patterns in mathematics that you may never have seen before.
The most important concept in this book is that of universal property. The further you

go in mathematics, especially pure mathematics, the more universal properties you will

meet. We will spend most of our time studying different manifestations of this
concept”.

• Motivations for a course on Category Thoery

Source Tom Leinster: Basic Category theory



Motivations

To give an example of a construction with similar properties that occurs in

completely different mathematical fields and that can be described by a

universal property, you can think at the concept of “product” for sets, groups,

topological spaces, vector spaces…

- A cartesian product of sets A and B indicated by AxB is defined by its

elements: AxB = í(a,b) with a ÎA and b ÎB ý

- The group product GxH of two groups id done as in the case of sets with an

operation defined pointwise: (g,h) ◦ (g’,h’) = (g ◦ g’, h ◦ h’)

- The topological product of two topological spaces X and Y is obtained by

defining the classical product topology on the cartesian product XxY. You can

consider that the product topology is the coarsest topology (i.e. the topology

with the fewest open sets for which all the projections are continuous).

How can we find a unique definition that capture all the three examples ?



Category theory allows us to say precisely what it means to “act like” a product
object.

We can define a product of two objects in a general contex via the following
“universal property”: an object X is the product of X1 and X2 denoted X1×X2, if and

only if there are two projections p1 and p2 such that for any pair of morphisms f1 and

f2 from an arbitrary object S to X1 and X2 respectively there exists a "unique
morphism” h from S to X1×X2 such that the following diagram commutes:

The idea of product



You can check, that in case lile sets, groups or topological spaces this definition

does indeed agrees with the classical definition of product. The beautiful thing about

such an abstract definition is that it captures the “idea” of what a product is, and we
get a unique definition that applies to many different contexts.

Universal property will be at the core of our course.

The idea of product



Source; Stanford Encyclopedia of Philosophy

The notions of categories, functors, natural transformations, limits and colimits

appeared almost out of nowhere in a paper by Eilenberg & Mac Lane (1945) entitled

“General Theory of Natural Equivalences.” We say “almost,” because their earlier
paper (1942) already contains specific functors and natural transformations at work,

limited to groups. A desire to clarify and abstract their 1942 results led Eilenberg &
Mac Lane to devise category theory. The central notion at the time, as their title

indicates, was that of natural transformation. In order to give a general definition of

the latter, they defined functor, borrowing the term from Carnap, and in order to
define functor, they borrowed the word ‘category’ from the philosophy of Aristotle,

Kant, and C. S. Peirce, but redefining it mathematically.

Brief Historical Sketch



After their 1945 paper, it was not clear that the concepts of category theory would

amount to more than a convenient language; this indeed was the status quo for about

fifteen years. Category theory was employed in this manner by Eilenberg & Steenrod
(1952), in an influential book on the foundations of algebraic topology, and by Cartan &

Eilenberg (1956), in a ground breaking book on homological algebra.
These books allowed new generations of mathematicians to learn algebraic topology

and homological algebra directly in the categorical language, and to master the

method of diagrams. Indeed, without the method of diagram chasing, many results in
these two books seem inconceivable, or would have required a considerably more

intricate presentation.

Brief Historical Sketch



The situation changed radically with Grothendieck’s (1957) landmark paper entitled

“Sur quelques points d’algèbre homologique”, in which the author employed
categories intrinsically to define and construct more general theories which he then

applied to specific fields, e.g., to algebraic geometry. Kan (1958) showed that a new

idea of “adjoint functors” could capture fundamental concepts and costructions in
other areas (in his case, homotopy theory).

At this point, category theory became more than a convenient language, by virtue of

many interesting developments.

Brief Historical Sketch



Thanks in large part to the efforts of Freyd and Lawvere, in the 70’ category theory

gradually became an autonomous field of research. And indeed, it did grow rapidly as a
discipline, but also in its applications, mainly in its source contexts, namely algebraic

topology and homological algebra, but also in algebraic geometry and, after the

appearance of Lawvere’s Ph.D. thesis, in universal algebra. This thesis also constitutes
a landmark in this history of the field, for in it Lawvere proposed the category of

categories as a foundation for category theory, set theory and, thus, the whole of
mathematics, as well as using categories for the study of logic.

Brief Historical Sketch



From the 1980s to the present, category theory has found new applications. In

theoretical computer science, category theory is now firmly rooted, and contributes,
among other things, to the development of new logical systems and to the semantics of

programming. Its applications to mathematics are becoming more diverse, even

touching on theoretical physics, which employs higher-dimensional category theory.

To conclude: Category theory is now a common tool in the mathematician’s toolbox; It
is also clear that category theory organizes and unifies much of mathematics.

Brief Historical Sketch



Definition: A category C consists of:

- a collection ob(C) of objects;

- for each A, B ∈ ob(C), a collection C (A, B) of morphisms  
such that:

- for each A, B,C ∈ ob(C), there is a function
C(A,B)  x C(B,C) ® C(AC),   called composition and indicated with  the 

symbol ◦

satisfying the following two axioms: 

- for each A ∈ ob(C), there exists a morphism 1A of C (A, A),    called the 
identity on A,   such that  for each f ∈ C (A, B), we have f ◦ 1A = f = 1B ◦ f. 
- associativity: for each f ∈ C (A, B), g ∈ C (B,C) and 

h ∈ C (C, D), we have (h ◦ g) ◦ f = h ◦ (g ◦ f); 

Definition: What is a Category? 



A morphism f ∈ C (A, B) can be indicated by an arrow, f : A ® B where A is 
called the domain of f and B the codomain of f.

Associativity:

Definition: A morphism f is  an isomorphism iff there exists an inverse 
morphism  g: B ® A such that  g ◦ f = 1A     and f ◦ g  = 1B . 

Morphisms



Exercise1: Any identity morphism is an isomorphism.

Exercise 2:  Composition of isomorphisms is an isomorphism.

Exercise 3 :  Show that a morphism in a category can have at most one inverse. That 

is, given a morphism f : A → B, show that there is at most one morphism g: B → A 

such that g ◦ f = 1A and f ◦ g = 1B .

Exercise 4: which are the morphisms that are isomorphisms in the examples
mentioned in the following slides?

Exercises



Concrete categories: categories of mathematical structures 

(a) Set the category described as follows. Its objects are sets. Given sets A and 

B, a morphism from A to B is a function from A to B. 
Composition in the category is ordinary composition of functions, and the identity 

maps are the identity functions. This is a basic model you can always keep in 

mind to have some intuition about the category concept.

(b) Grp is the category of groups, whose objects are groups and whose maps are 
group homomorphisms.

Axioms are easily verified since the composition of homomorphisms is again an 

homomorphism and identity functions are homomophisms.

Examples of categories



Similarly

(c) Ring is the category of rings and ring homomorphisms. 

(d) For each field k, there is a category Vectk of vector spaces over k and linear 

maps between them.

(e) Top is the category of topological spaces and continuous maps.

(f) Latt is the category with objects lattices and morphisms lattice morphisms 

(functions that preserve sup and inf ).

Examples of categories



The examples of categories mentioned so far are important, but could give a false

impression. In each of them in fact, the objects of the category are sets with

structure (such as a group structure, a topology, or, in the case of Set, no structure
at all). The morphisms are the functions preserving the structure. And in each of

them, there is a clear sense of what the elements of a given object are.
However, not all categories are like this. In general, the objects of a category are

not necessarily ‘sets equipped with extra stuff’. Thus, in a general category, it does

not make sense to talk about the ‘elements’ of an object. Similarly, in a general
category, the morphisms need not necessarily be mappings or functions in the

usual sense.
The value of category theory stays in this power of abstraction and in its strong

capacity of generalization.

Examples of categories



Abstraction

A category is a system of related objects. The objects do not live in isolation:

there is some notion of map between objects, binding them together.

In a category morphisms (or arrows or maps ) are more important than objects!

Objects itself correspond to the identity morphisms.

Looking mainly at morphisms means that we must consider the way how

objects relate each other not the objects in itself (an object does not always
has elements).

Working in a category means to conside a global approach instead than a

local one. Properties of objects depend on how they are in relation with other

objects of the same category.
These concepts will become clear during the course.



Preorder Sets as categories

A preorder is a reflexive and transitive binary relation. A preordered set (S, ≤) is a 
set S together with a preorder ≤ on it.

Examples:
- S = N and ≤ has its usual meaning; 

- S is the set of subsets of {1,...,10} and ≤ is the inclusion ; 

- S = Z and a ≤ b means that a divides b.

A preordered set (S, ≤) can be regarded as a category S in which objects are 
objects of the set S and, for each A, B ∈ S , there is at most one morphism A → B. 

This is the case when A ≤ B; otherwise S(A,B) is empty.
S is clearly a category since  composition of morphisms,associativity and identity 
axioms are automatic consequences of the transitive and reflexive properties of ≤.

Examples of categories:  Abstract CategoriesExamples of categories:  Abstract Categories



Category Mat of matrices:   objects all natural numbers;   Mat (m, n) is the set of all

real m×n matrices (a morphism is a matrix),  idn:n→n is the unit diagonal n×n matrix, 
and composition of matrices is defined by the usual multiplication of matrices. 

Category Rel of relations: objects are sets and  morphisms are relations between
sets. Composition is the classical composition of relations and identity the identity

relation.      

Examples of categories:  Abstract Categories



Example of a category with a unique object and many morphisms.

Any monoid (an algebraic structure with a single associative binary operation and
an identity object) forms a category with a single object x. The morphisms from x to

x are precisely the elements of the monoid, the identity morphism of x is the identity
of the monoid, and the categorical composition of morphisms is given by the

monoid operation. .

Similarly any gropup can be seen as a category with a single object in which every
morphism is invertible, that is, for every morphism f there is a morphism g that is

both left and right inverse to f under composition.

Examples of categories:  Abstract Categories



We can also consider examples of finite categories with a finite number of

objects and of arrows; we can draw these examples as graphs

Examples of categories:  Abstract Categories
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