
LESSON 5.

1. Proof of Normalization Lemma

Even if it is known as Normalization “ Lemma”, this is a deep theorem in algebra, with

many applications, not merely a lemma to prove the Nullstellensatz. Later we will see its

interesting geometric interpretation.

It takes its name from Emmy Noether, who in 1926 proved it under the hypothesis that

K was infinite. The case where K is a finite field was demonstrated by Oscar Zariski in

1943. To prove the Normalization Lemma, we will first see a couple of results about integral

elements over a ring. Then we will see a proof over an infinite field, rather similar to the

original one. It is less technical than any proof of the general case. For other proofs see

[Atiyah-MacDonald] or [Lang, Algebra, 2nd ed.].

Let A ⊆ B be rings, where A is a subring of B. In this case we also say that B is an

A-algebra. Note that B has a natural structure of A-module. If B is finitely generated

as A-module, then B is called a finite A-algebra. This means that there exist elements

b1, . . . , br ∈ B such that B = b1A + b2A + . . . + brA, i.e. any element of B is a linear

combination with coefficients in A of the generators b1, . . . , br: if b ∈ B, then there is an

expression b = a1b1 + · · ·+ arbr, with a1, . . . , ar ∈ A.

If B is finitely generated as a ring containing A, then B is called a finitely generated

A-algebra. In this case there exists a finite number of elements of B, b1, . . . , br, such that

B = A[b1, . . . , br]; B is the minimal ring containing A and the elements b1, . . . , br. For

any element of B there is an expression as polynomial with coefficients in A in the elements

b1, . . . , br. Another way to express that B is a finitely generated A-algebra is saying that B is

(isomorphic to) a quotient of a polynomial ring in a finite number of variables with coefficients

in A. Indeed, if B = A[b1, . . . , br], we can define a surjective ring homomorphism ϕ sending

any polynomial f(x1, . . . , xr) ∈ A[x1, . . . , xr] to f(b1, . . . , br). So, by the homomorphism

theorem, B ' A[x1, . . . , xr]/ kerϕ.

Theorem 1.1. Let b ∈ B, let A[b] ⊆ B be the A-algebra generated by b.

The following are equivalent:

1) b is integral over A;

2) A[b] is a finite A-algebra;

3) there exists a subring C ⊂ B, with A[b] ⊆ C, such that C is a finite A-algebra.
1
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Proof.

1)⇒ 2) By assumption there is a relation bn + a1b
n−1 + · · ·+ an = 0, with a1, . . . , an ∈ A.

Therefore, for any r ≥ 0, bn+r = −(a1b
n+r−1 + · · · + anb

r). By induction it follows that all

positive powers of b belong to the A-module generated by 1, b, . . . , bn−1.

2)⇒ 3) It is enough to take C = A[b].

3)⇒ 1) Let c1, . . . , cr be generators of C as A-module: C = c1A+ · · ·+crA. Then, for any

i = 1, . . . , r, bci is a linear combination of c1, . . . , cr with coefficients in A. So there exists an

r × r matrix M = (mij)i,j=1...,r with entries in A such that

(1) bci =
r∑

j=1

mijcj,

i.e. (bEr − M)c = 0, where c = (c1 . . . cr) and Er is the identity matrix. Multiplying

equations (1) at the left by the adjoint matrix ad(bEr −M), we get det(bEr −M)ci = 0 for

any i. Since c1, . . . , cr generate C, there is an expression 1 = c1α1 + · · · + crαr. Therefore

det(bEr −M) = det(bEr −M) · 1 = det(bEr −M)c1α1 + · · · + det(bEr −M)crαr = 0. The

expansion of det(bEr −M) gives a relation of integral dependence of b over A. �

Remark. Equation (1) says that b is an eigenvalue of the matrix M . The conclusion is

that b is a root of the characteristic polynomial of M . But, since we work over a ring not

over a field, we cannot reach directly the conclusion. In fact we have to use the assumption

that c1, . . . , cr generate C as A-module.

We will need also the following easy property, known as “ Transitivity of finiteness”:

Suppose that N is a finitely generated B-module. Then N is also an A-module, by restriction

of the scalars. Assume also that B is finitely generated as an A-module. Then N is finitely

generated as an A-module. Indeed if y1, . . . , yn generate N over B and x1, . . . , xm generate

B as A-module, then the mn products xiyj generate N over A.

Corollary 1.2. Let A ⊆ B.

1. Let b1, . . . , bn ∈ B be integral over A. Then A[b1, . . . , bn] is a finite A-module.

2. Transitivity of integral dependence: Let A ⊂ B ⊂ C. If B is integral extension of A

and C is integral extension of B, then C is integral extension of A.

Proof. 1. By induction on n. The case n = 1 is part of Theorem 1.1. Assume n > 1,

let Ar = A[b1, . . . , br]; then by inductive hypothesis An−1 is a finitely generated A-module.

An = An−1[bn] is a finitely generated An−1-module by the case n = 1, since bn is integral

over An−1. Then the thesis follows by the transitivity of finiteness.

2. Let c ∈ C, then we have an equation cn + b1c
n−1 + · · · + bn = 0, with bi ∈ B for any

index i. The ring B′ = A[b1, . . . , bn] is a finitely generated A-module by part 1., and B′[c] is
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a finitely generated B′-module, since c is integral over B′. Hence B′[c] is a finite A-module,

by transitivity of finiteness, and therefore c is integral over A by Theorem 1.1 (iii). �

We are now ready to prove

Theorem 1.3. Normalisation Lemma. Let A = K[y1, . . . , yn] be a finitely generated K–

algebra and an integral domain. Let r := tr.d. Q(A)/K = tr.d. K(y1, . . . , yn)/K. Then there

exist elements z1, . . . , zr ∈ A, algebraically independent over K, such that A is integral over

the K-algebra B = K[z1, . . . , zr].

Proof. The proof is by induction on n.

If n = 1, then A = K[y]. If y is transcendental over K, then r = 1, and A = B. If r = 0,

then y is algebraic over K, A is an algebraic extension of finite degree of K, and B = K.

Let n ≥ 2 and assume the theorem is true for K-algebras with n − 1 generators. Let

ϕ : K[x1, . . . , xn]→ A be the surjective homomorphism sending any polynomial f(x1, . . . , xn)

to f(y1, . . . , yn). If ϕ is an isomorphism, then r = n and B = A. So we assume that

ker ϕ 6= (0) and r < n: there exists a non-zero polynomial f such that f(y1, . . . , yn) = 0.

Possibly renaming the variables, we can assume that xn appears explicitly in f .

If f is monic of degree d with respect to xn, then A = K[y1, . . . , yn] is a finite module over

K[y1, . . . , yn−1], generated by 1, yn, . . . , y
d−1
n . By Theorem 1.1, every element of A is integral

over K[y1, . . . , yn−1]. By inductive assumption, there exists B = K[z1, . . . , zr] with z1, . . . , zr
algebraically independent over K, such that K[y1, . . . , yn−1] is integral over B. By Corollary

1.2, 2., also A is integral over B.

It remains the case where in the kernel of ϕ there is no monic polynomial in xn. We claim

we can “ change coordinates” linearly in K[x1, . . . , xn] in such a way that the polynomial

f becomes monic. That will mean there is another surjection K[x1, . . . , xn] → A such that

some element of the kernel is monic in xn.

We consider the linear change of coordinates xi → xi + aixn, for 1 ≤ i ≤ n − 1 and

xn → xn, where the ai’s are elements of K. Write f as sum of its homogeneous components

f = fd + lower degree terms, where d = deg f . Under this transformation, f → f(x1 +

a1xn, . . . , xn−1 + an−1xn, xn). We claim it is possible to choose the coefficients ai so that this

new polynomial has non zero coefficient of xdn. Just expand, and get f(x1 +a1xn, . . . , xn−1 +

an−1xn, xn) = fd(x1 + a1xn, . . . , xn−1 + an−1xn, xn) + lower degree terms. Then expand the

top degree term and get fd(x1 + a1xn, . . . , xn−1 + an−1xn, xn) = fd(a1, . . . , an−1, 1)xdn +

lower degree terms in xn. Adding gives

f(x1 + a1xn, . . . , xn−1 + an−1xn, xn) = fd(a1, . . . , an−1, 1)xdn + lower degree terms in xn.



4 LESSON 5.

Thus we only have to choose the ai’s so that fd(a1, . . . , an−1, 1) 6= 0. Since fd is a non-

zero homogeneous polynomial of degree d ≥ 1, fd(a1, . . . , an−1, 1) is a non-zero polynomial

of degree less than or equal to d in a1, . . . , an−1. Since the field K is infinite, we are done

thanks to Exercise (1) in Lesson 3. �

Remarks. This proof has been adapted from MathOverflow, a “ question and answer

site for professional mathematicians”: https://mathoverflow.net/questions/92354/noether-

normalization The same proof can be found in the book [M. Reid, Undergraduate Alge-

braic Geometry]. The original article of Emmy Noether is unfortunately in German: Der

Endlichkeitssatz der Invarianten endlicher Gruppen der Charakteristik p, Nachrichten von

der Gesellschaft der Wissenschaften zu Göttingen, 1926.

A nice article on Normalization Lemma, by Judith Sally, can be found in the book ”Emmy

Noether in Bryn Mawr”, published in the occasion of her 100th birthday.

Emmy Noether (1882-1935) is the founder of modern algebra; her story is very interesting

and in some aspects symbolic of the difficulties encountered by women mathematicians. As

quoted in Wikipedia,

“ In a letter to The New York Times, Albert Einstein wrote:

In the judgment of the most competent living mathematicians, Fräulein Noether was the

most significant creative mathematical genius thus far produced since the higher education of

women began. In the realm of algebra, in which the most gifted mathematicians have been

busy for centuries, she discovered methods which have proved of enormous importance in the

development of the present-day younger generation of mathematicians.

On 2 January 1935, a few months before her death, mathematician Norbert Wiener wrote

that

Miss Noether is ... the greatest woman mathematician who has ever lived; and the greatest

woman scientist of any sort now living, and a scholar at least on the plane of Madame Curie.

”

See also http://www.enciclopediadelledonne.it/biografie/emmy-noether/


