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Introduction

In Lesson 1 we introduced the basic concept of a category and gave
different examples of concrete categories (= objects are sets with a certain
structure and morphisms are functions that preserve the structure) as well
as of abstract categories where objects can be of any type.
We have seen that familiar concepts like sets, groups, topological spaces,
lattices… all form categories. Keep in mind your favorite examples!

A category is a sort of “universe” with objects and morphisms.

The basic concept in a category is that of morphism (or map or arrow)
indicated by A ® B, that means we are mainly interested in the way objects
are related each other more than in the objects itself.

In category theory properties are consider in a “global” and not “local” way,
that means properties depend on how objects and arrows behave with
respect to the whole category universe.
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In this lesson 2 we will consider the following concepts:

1.Subcategories and their properties

2. Functors between categories

Notations:

The collection of all morphisms in A is denoted by Mor A.

The morphisms between two objects A and B, A(A,B), can be also denoted

by Mor(A,B).

The composite of morphisms g◦ f can be also simply indicated by gf.
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Subcategories

Subcategories

Given a category C, a subcategory A of C indicated by A Í C is defined as follows:

Definition: A category A is a subcategory of C iff

Ob A Í Ob C, Mor A Í Mor C

and composition and identities in A behaves like in C.



Examples:

1. Setfin Í Set

Where in Setfin objects are finite sets and morphisms are functions.

2. Setinj Í Set

Where in Setinj objects are sets and morphisms are injective functions (composition of

injective functions is still injective and identities are injective).

3. Set Í Rel

Any function f: A ® B represents a relation on AxB given by its graph.

Rel is not a concrete category.

4. Ab Í Grp

Where Ab is the category of abelian groups and homomorphisms between them.

Subcategories: examples



Examples: 

5.DistrLattÍ Latt
Where DistrLatt is the category of distributive lattices and lattice functions (= preserve sup

and inf).

6.Bool Í DistrLatt or also Bool Í Latt

Where Bool is the category with objects Boolean Algebras and morhisms functions that

preserve sup, inf, 0, 1, and complement.

7.Top2ÍTop

Where in Top2 objects are Hausdorff topological spaces and morphisms are continuous

functions.

Similarly, you can construct by yourself other examples by taking a concrete category C

and then choose the subcategory A with objects, objects of C equipped with a specific

property, and as morphism the same as in C.

Examples



Exercise:

In the following chains of inclusions of categories and subcategories verify 

when we get a full inclusion and when not. Motivate the answer.

If an inclusion is not full find a counterexample

Bool Í DistribLatt with 0 and 1 Í Distrib Latt Í Latt Í Ord  Í Preord

AbGrp Í Grp Í Smgrwith1 Í Smgr

Exercise



Functors
The notion of functor between two categories is the second base concept in category 

theory.

It refers to the way we can “move” form one categorical universe to another one.

A functor can be viewed as an arrow/morphism between two categories.

Many of the “natural” or “canonical” constructions in mathematics can be expressed as 

functors. 

Definition. A functor F: A ® B from the category A to the category B is given by

a law that sends any object of A in an object of B and any morphism of A in a morphism 

of B, in such a way that

- domains and codomains are preserved

- identities are preserved

- compositions are preserved.

That means: 

Definition: What is a Functor? 



Functors

F: A ® B functor

When  f: A ® B is a morphism in A, then
F(f) is a morphism in B with domain F(A) and codomain F(B), 

i.e F(f) : F (A) ® F (B)

Such that  

F(1X) = 1F(X)

and F(gf) = F(g) F(f),

where f and g are composable in A.

Definition: What is a Functor? 



Functors: examples

Examples

1) If A is a category then we can consider the identity functor idA:A ® A which is 

the identity on both objects and morphisms

2) Common examples of functors are the so-called forgetful functors.  

For instance:

a) There is a functor U:Grp→ Set defined as follows: if G is a group then U(G) is the 

underlying set of  G (that is, its set of elements), and if f:G→ H is a group 

homomorphism then U(f) is the function f itself. So, U forgets the group structure of 

groups and forgets that group homomorphisms are homomorphisms.

b) Similarly, there is a functor U:Ring→ Set forgetting the ring structure on rings, 

and (for any field) there is a functor U:Vectk→ Set forgetting the vector space 

structure on vector spaces and the property of being linear for functions.



Functors: examples

Examples

c) Forgetful functors do not have to forget all the structure.  For example, let  Ab be 

the category of abelian groups. There is a functor U:Ring→ Ab that forgets the 

multiplicative structure, remembering just the underlying additive group. Or, let Mon

be the category of monoids (semigroups with unit). There is a functor U:Ring→ Mon

that forgets the additive structure, remembering just the underlying multiplicative 

monoid. 

3)  There is an inclusion functor E:Ab→ Grp defined by U(A)=A for any abelian group  

A and  U(f)=f for any homomorphism f of abelian groups. 

It forgets that abelian groups are abelian.

4) Free functors are in some sense dual to forgetful functors (as we will see in the 

next lessons), although they are less elementary. 



Functors: examples

Free functors

Given any set S, one can build the free group F(S) on S. This is a group containing S as a 

subset and with no further properties other than those it is forced to have.   Intuitively, the 

group F(S) is obtained from the set S by adding enough new elements such that it 

becomes a group, but without imposing any equations other than those forced by the 

definition of group.  A little more precisely, the elements of F(S) are formal expressions or 

words such as 

x−4yx2zy−3 (where  x,y,z∈S)

Two such words are seen as equal if one can be obtained from the other by the usual 

cancellation rules, so that, for example,

x3xy = x4y = x2y−1yx2y 

all represent the same element of F(S). To multiply two words, just write one followed by 

the other. 



Functors: examples

For instance,

(x−4yx) • (xzy−3 ) = ( x−4yx2zy−3)

This construction assigns to each set S a group F(S). F is a functor: any map of sets  

f:S→S′ gives rise to a homomorphism of groups F(f) :F(S)→F(S′). For instance, take the 

map of sets f:{w,x,y,z}→{u,v} defined by

f(w)=f(x)=f(y)=u and f(z)=v. 

This gives rise to a homomorphism 

F(f): F({w,x,y,z})→F({u,v}),

which maps, for example, x−4yx2zy−3∈F({w,x,y,z}) to u−4uu2vu−3=u−1vu−3∈F({u,v}).

(b) Similarly, we can construct the free commutative ring F(S) on a set S, giving a functor F

from Set to the category CRing of commutative rings. In fact, F(S) is something familiar, 

namely, the ring of polynomials over Z with variables xs(s∈S). For example, if S is a two-

element set then F(S) = Z[x,y].



Functors: examples

c) We can also construct the free vector space on a set. Fix a field k. The free functor

F:Set→ Vectk is defined on objects by taking F(S) as the set of all formal k-linear 

combinations  of elements of S; it will be a vector space with basis S. Hence, an 

element of F(S) is an expression   ∑λss with s∈ S and where each λs is a scalar and  

there are only finitely many values of s such that λs≠0.  Elements of F (S ) can be 

canonically added, and there is also a canonical scalar multiplication on F(S).

Any function f: S → S’ will be send by F in a corresponding linear function F(f): F(S) 

→F(S’) such that   F(f) (∑λss) = ∑λsf(s).

5. Functors in algebraic topology.

Historically, some of the first examples of functors arose in algebraic topology. There, 

the strategy is – roughly speaking - to learn about a space by extracting data from it in 

some clever way, assembling that data into an algebraic structure, then studying the 

algebraic structure instead of the original space. Algebraic topology therefore involves 

many functors from categories of topological spaces to categories of algebras.



(a) Let Top∗ be the category of topological spaces equipped with a base point, 

together with the continuous base point-preserving maps. There is a functor

π1:Top∗→ Grp assigning to each space X with base point x the fundamental group 

π1(X,x) of X at x.  

(b)For each n∈ N, there is a functor Hn:Top→ Ab assigning to a space its nth 

homology group.   

Functor operations.

For all categories A, there is an identity functor IdA: A ® A,  given by the rule IdA(X) 

= X and IdA(f) = f for all objects X  and arrows f in A.

If  F: A® B and G: B ® C,  then the composite functor GF: A ® C exists, with 

composition defined component-wise.

Functors: Example



Definition.

We say that a functor F: A ® B is faithful if the maps on morphisms F(X,Y): A(X,Y) 

® B(FX, FY) (that send any f, morphism in A, in F(f), morphism in B,) are injective 

for all X,Y ∈A. 

We say that F: A ® B is full if the maps F(X,Y): A(X,Y) ® B(FX, FY) are all 

surjective.

Finally, we say that F is fully faithful if it is both full and faithful, ie. all the F(X,Y): 

A(X,Y) ® B(FX, FY) are bijective.

Functors



Exercises:
1. Verify in the above examples of functors when they are full or faifhul.

2. Show that functors preserve isomorphisms. 

3. Prove that,  every monotone function is a functor, when the underlying 

partial orders are viewed as categories.

4. Every monoid homomorphism is a functor, when the underlying monoids 

are viewed as categories

5. The following law Z:Grp→Grp associating to a group its center Z(G) can 

define a functor?

6. Construct the free functor from Set to Smgr.

Exercises



Categorists have developed a symbolism that allows one quickly
to visualize quite complicated acts by means of diagrams

THANK YOU FOR YOUR ATTENTION


