Homework 01

Exercise 1

Let Y be a random variable taking values in $\{1, \ldots, N\}$ and suppose that any value is equally likely, i.e. that $P(Y=j)=\frac{1}{N}$.

Knowing that $\sum_{j=1}^{N} j=\frac{N(N+1)}{2}$, show that $\mathbb{E}(Y)=\frac{N+1}{2}$.

Exercise 2

Prove that $\mathbb{E}(X)=\mu$ for $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.

Exercise 3

Let X and Y have discrete joint distribution

$$
p(x, y)= \begin{cases}\frac{1}{30}(x+y) & \text { for } x=0,1,2 \text { and } y=0,1,2,3 \\ 0 & \text { otherwise }\end{cases}
$$

Are X and Y independent?

Exercise 4

Let X and Y be two continuos random variables with joint probability density

$$
f(x, y)= \begin{cases}24 x y & \text { for } 0<x<1,0<y<1, x+y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find

1. the marginal density of Y;
2. the conditional density of X given $Y=1 / 2$.

Exercise 5

Let the joint distribution of X and Y be

$$
f(X, Y)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right) \Gamma\left(\alpha_{3}\right)} x^{\alpha_{1}-1} y^{\alpha_{2}-1}(1-x-y)^{\alpha_{3}-1}
$$

Suppose that $0<x<1,0<y<1, x+y<1$ and prove that the marginal distribution of X is a $\operatorname{Beta}\left(\alpha_{1}, \alpha_{2}+\alpha_{3}\right)$

