Discrete-Time Markov Chains

Stochastic Modelling and Simulation

Theoretical exercises

Exercise 1

Let $\{X_n\}_{n\geq 0}$ be a time-homogeneous DTMC on state space $S = \{1, \ldots, N\}$ with transition probability matrix $P = \{p_{i,j}\}_{i,j}$. Let $P^{(n)}$ be the matrix defined as $p_{i,j}^{(n)} = Pr(X_n = j \mid X_0 = i), \forall i, j \in S.$ Show that $P^{(n)} = P^n$, where P^n is the *n*-th power of the matrix P.

Hints: Recall that $P^0 = I$ and $P^1 = P$. Use the memory-less property and the time homogeneity of the DTMC.

Exercise 2

The limiting distribution is defined as a vector $\pi = [\pi_1, \ldots, \pi_N]$, such that $\pi_i = \lim_{n \to \infty} \Pr(X_n = i).$

Show that if the limiting distribution exists, it satysfies $\pi_j = \sum_{i=1}^N \pi_i \cdot p_{i,j}$, for $j \in S$ and $\sum_{j=1}^N \pi_j = 1$.