993SM - Laboratory of
Computational Physics

lecture 3 - part 1
March 25, 2020

Maria Peressi
Universita degli Studi di Trieste - Dipartimento di Fisica
Sede di Miramare (Strada Costiera 11, Trieste)
e-mail: peressi@ts.infn.it
tel.: +39 040 2240242

mailto:peressi@ts.infn.it

past week:
3. Intrinsic generators

(b) For a quantitative test of uniformity consider the moment of order k:

N 1
1
<xk>calc — N E :CUf, <xk>th :/0 dr xkz P(a:)
=1

For the uniform distribution p,(z) in [0,1], i.e. for

1 for0<z<1
Pu() = {0 outside

we have (z¥)" =1/(k +1). Consider the error
N

1 1
DI e}

1=1

AN(k‘) — ‘<mk>calc . <xk:>th‘ —

for the expected moment of order £ and study its asymptotic beha-
viour for large N. If the behaviour is ~ 1/v/N, then the distribution
is random and uniform. Do the test for k=1, 3, 7, and N=100,
10.000, 100.000.

random number: 'brute force' quality test of average

A “brute force” test: i icss e

Do several

sequences of =

different length £

do 1=1,N y

allocate (rnd(i)) 0 1 2 3 4 5 6 7 8 9 10
log(N)

call random_number(rnd) ! generate a new sequence of "1i" random numbers

I (seed changes automatically)
somma = Sum(rnd** k) <= this sum() corresponds to an internal loop (nested loops)

write(l,*)1,somma/1, abs(somma/1 - 1./(k+1))
I somma/1 1s the PARTIAL sum of the sequence for the momentum k

deallocate(rnd)

end do ok, but time consuming...

how to calculate the sum of the series for increasing N?

no need of recalculating again the sum from scratch;
print out partial sums:

implicit none rantest_es3_simplest.f90
integer :: N, 1, k

real :: sum

real, dimension (:), allocatable :: rnd

print*,' Insert how many random numbers >'
read(*, *)N

allocate (rnd(N))

call random_number(rnd)

print*,' Insert the order of momentum >'
read(*, *)k

print out the result as a
function of “i”

sum = 0.
open (unit=1,file="momentumk.dat"')

do 1=1,N

sum = sum + rnd(1)**k

write(l,*)1,sum/1, abs(sum/1 - 1./(k+1))

I sum/1 1s the PARTIAL sum of the sequence for the momentum k

end do 4

Test on one sequence, several momenta

rantest_es3_simple.f90

allocate (rnd(N))
call random_number(rnd)

allocate(sum(kmax))
sum = 0.
do k = 1, kmax ! Loop for the different momenta also here Print

| the results as a
do 1=1,N

sum(k) = sumCk) + rnd(i)**k _—"function of “i”
write(Cklabel,*)1, sum(k)/1, abs(sum(k)/1 - 1./(k+1))

I sum(k)/1 1s the PARTIAL sum of the sequence for the momentum k

end do ! 1

close(klabel)
end do ! k

Test on one sequence, several momenta

Test of unifornity for intrinsic randon nunber generator

0 1 Ll Ll
k=1 +
1 k=3
-2 X % & ok k=7 #
+ ¥
+
~ =6
=
<
A
x
VvV =8 |
G
o
c
S -18
-
L)
o
& =12 e
- 2
% e
Segusk the higher is the order of the momentum, the i
more meaningful is the test i) 1%
15 | (two functions may have the same average 2. §
(<x>) although they are very different!): + 3
#+ X X
g : . ¥ K
check the behavior for higher-order momenta! -
-20 1 1 1 1 L
8 2 4 6 8 10

log{N}

6

Test on different sequences, a single momentum

Test of unifornity for intrinsic randon nunber generator using <x>, different seeds

0 l 1 1 1 1
“fort.8” u (log{$1)):{log($2)) +
ik KK ’fort.1” u {log{#1)):{log{$2)) <
£ KR WK "fort.2” u (log{#1)):{log($2}) *
'2:f w T+ T o fix)

LAY § \ ¥ - a
AT . -
7 N4 9 w e . g
R A 5 3 .
-4 — LAY, . .
J T - . -~ » "
~ e > .
o ' v
E ~
- '
»
N .

~ =6 !
x
v
k]
-8 I
c
Q
=1
-
- ! I
5 -18
L4
L=
Al
=14
- =12 | i
very small deviations from the expected 3
e behavior could be accidental; - £
i ko
check the overall behavior, and try also 1
“16 ' changing the seed! ¥ ¢ A
| + 4
+
_18 1 1 1 1 1
8 2 4 6 8 10 12
log{N)

A general suggestion:

do you want to check a power law?

~ 1/\/N + cost.

expected if the sequence

deviation of <x>k =

numerically calculate
was
from the sequence
truly uniform

v

linear regression: much better

log(deviation of <x>k) ~ -1/2 |log(N) + cost.’

check the slope of the log-log !!!

8

do you want to fit with gnuplot?

Suppose you have the data in two columns, x and y, and you
suspect a power low y = x2 + const

Consider that: log(y) =a* log(x) + b

gnuplot>f(x)=a *x+Db
gnuplot> fit f(x) 'data.dat' u (1og($1)):(10g($2)) via a,b

gnuplot> plot f(x), 'data.dat'

1) Random numbers
with non uniform
distributions and

1) random processes

M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - Unit Il

10

last lecture:

generation of real (pseudo)random numbers
with uniform distribution in [0; 1]

pu(aj)‘l5
:1

. (az):{l 0< <1
“ 0 otherwise

Part | - Random numbers
with non uniform distributions:

p(z)

How can we generate random numbers with
a given distribution p(x) ?

12

Part | - Random numbers
with non uniform distributions:

p(z)

x
|) inverse transformation method (general)
2) rejection method (even more general)
3) some “ad hoc” methods: the Box-Muller
algorithm for the gaussian distribution

13

Non uniform random numbers distribution:
|) inverse transformation method (general)

Problem: Generate sample of a random variable
(or variate) X with a given distribution p .

Solution: 2-step process

e Generate a random variate uniformly distributed in [0, 1] .. also
called a random number

e Use an appropriate transformation to convert the random number
to a random variate of the correct distribution

Non uniform random numbers distribution:
|) inverse transformation method - algorithm

cumulative distribution function P(x)

/+OO p(x)dx =1

— OO

Let p(x) be a desired distribution, and y = P(x) = / p(z')dz’ the corresponding cumulative distribution.
—00
Assume that P~1(y) is known.
e Sample y from an equidistribution in the interval (0,1). (i.e., use py(y))

e Compute z = P~ 1(y).

The variable x then has the desired probability density p(x).

. J

y = P(x) = dy = dP(z) = pu(y)dy = dP(z) (since p,(y) =1for 0 <y <1)
But: dP(z) = p(x)dz, therefgre p(x)dx = py(y)dy

Non uniform random numbers distribution:

|) inverse transformation method - the concept
P(x)
4

1
y

tive distribution
nction P(x)

Non uniform random numbers distribution:
|) inverse transformation method - the concept

P(x) inturtive rationale: a uniform sampling in'y
A
1 =
Iy tive distribution
N S nction P(x)

..

Non uniform random numbers distribution:

|) inverse transformation method - the concept

P(x) inturtive rationale: a uniform sampling in 'y
4 gives a sampling in x with density proportionalto p(x)

--- ~ tive distribution

L e — (I nction P(x)

Non uniform random numbers distribution:
|) inverse transformation method - examples

1 1: | | | | | ‘P(X)\—l
I) p(x):{m CLSZIZ‘S[) P(x) —

0 otherwise

0 r<a
Yy = P(w):{fxldw’—"”“ a<z<b

a b—a b—a — —

T2 3 4 5 6 7 8 9§ 10

r=yb—a)+a

0 r <0
ae”** x>0

2) p(@)={

0 xr <0
y= P@)={| @ "2,

1 1
r=——In(1—y) or (same distribution!) = ——1Iny
a a
19

Non uniform random numbers distribution:
|) inverse transformation method - examples

1 1: | | | | | ‘P(X)K—l
I) p(x):{m CLSZIZ‘S[) P(x) —

0 otherwise

0 r<a
Yy = P(w):{fxldw’—‘”“ a<z<b

1(1 b—a b—a — b_
xr > /
r=yb—a)+a
0 z <0 -
2) p(x) T {ae—ax T Z 0
0 x <0
y= P@={]_ w 2,
1 o ‘1
r=——1In(1l —y) or (same distribution!) = ——Iny
a a

20

Non uniform random numbers distribution:
2) rejection method (general)

Let [a,b] be the allowed range of values of the variate z, and p,, the maximum of the distribution p(z).

1. Sample a pair of equidistributed random numbers, = € [a,b] and y € [0, p,,]-

2. Ifly < p(z), accept x as the next random number, otherwise return to step 1.

5' Due to Von Newmann (1947).
'rq;ct CN e Applicable to almost all distributions.
(X,y) . p(x) .o Can be inefficient if the area of the
A : . rectangle [a,b] ® [0,pm] is large compared
Zx,y)acc'ept - to the area below the curve p(x)

21

Non uniform random numbers distribution:
3) gaussian distribution

How to produce numbers with gaussian distribution?

- Inverse transformation method: impossible
The cumulative distribution function P(x) cannot be analytically calculated!

- Rejection method: inefficient
22

Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller technique

1 1 2 2
_ —x°/(207)
r) = — e
p() O\ 27

Hint: consider the distribution in 2D instead of ID (here T =1):

p(x)p(y)dady = (2m)~F e~ = H9)/2 dudy

23

Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller technique

1 1 2 5
_ —x°/(207)
r) = — e
p() O\ 27

Hint: consider the distribution in 2D instead of ID (here T =1):

p(x)p(y)dady = (2m)~F e~ = H9)/2 dudy

Use polar coordinates: " = \/x2 +y? , 0 = arctan (y/x); def. P = 7“2/2

|/

24

Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller technique

1 1 2 5
_ —x°/(207)
r) = — e
p() O\ 27

Hint: consider the distribution in 2D instead of ID (here T =1):

p(x)p(y)dady = (2m)~F e~ = H9)/2 dudy

Use polar coordinates: " = \/$2 +y? , 0 = arctan (y/x); def. P = 7“2/2
—> dxdy = r dr df = dp db

and therefore:

p(x)p(y) dz dy = p(p,0) dp df = (21)~" e™* dp df

25

Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller technique

1 1 2 5
_ —x°/(207)

) = e
p() O\ 27

Hint: consider the distribution in 2D instead of ID (here T =1):

p(x)p(y)dady = (2m)~F e~ = H9)/2 dudy

Use polar coordinates: " = \/xQ +y? , 0 = arctan (y/x); def. P = 7“2/2
—> dxdy = r dr df = dp db

and therefore:

p(x)p(y) dz dy = p(p,0) dp df = (2m)~" do

r =rcosfh = +/2pcosb
i {@exponentlally distributed —) y=rsinf = /2psiné
6 uniformly distributed in|0, 27] z,y have gaussian distribution
with () = (y) =0 and o =1

26

Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller recipe #1

x =rcosf = ./2pcosf

£ 1P exponentially distributed —) y=rsinl = +/2psinf
¢ uniformly distributed in|0, 27] x,y have gaussian distribution
with (r) = (y) =0 and o =1

Recipe #1 (BASIC FORM):

{X,Y unt f. distrib. in [0, 1] { 7= rcosh = V=3I X cos(2rY)

p = —In(X) distributed with p(p) = e "3, . _
0 =27Y distributed with (2m) " 'p, y=rsinf = v—2InX Sln(27TY)

NOTE:

X,y are normally distributed and statistically independent. Gaussian variates with given variances Oy,

Oy are obtained by multiplying x and y by 0x and oy respectively
27

Non uniform random numbers distribution:
3) gaussian distribution - Box-Muller recipe #2

If { p exponentially distributed

¢ uniformly distributed in|0, 27|

—>

x =rcosf = ./2pcosf

y =rsinf = /2psin 6

x,y have gaussian distribution

with

(x) =(y) =0and 0 =1

Recipe #2 (POLAR FORM) (implemented in boxmuller.f90) :

< = R2=X2%2+4+Y%is

. uniformly distributed in [0,1]
/,

(X, Y uniformly distributed in [—1,1];
take (X,Y) only within the unitary circle; _

./

X

28

(X
—+v—-2InR? —
r=+v—2In 7
Y
= +v—2InR? —
\ y. v—21In R
since: v
a\ COSHZE, sinﬁzﬁ

Advantages: avoids the calculations
of sin and cos functions

Some programes:

on moodle2 or on INFIS account:

$/home/peressi/comp-phys/lll-random-non-
uniform-and-processes/f90

[do: $cp /home/peressil... .../[f90/*]

expdev.f90 boxmuller.f90

29

993SM - Labora'rory of
Computational Physics

lecture 3 - part 1
March 25, 2020

Maria Peressi

END OF THE FIRST PART

993SM - Laboratory of
Computational Physics

lecture 3 - part 2
March 25, 2020

Maria Peressi
Universita degli Studi di Trieste - Dipartimento di Fisica
Sede di Miramare (Strada Costiera 11, Trieste)
e-mail: peressi@ts.infn.it
tel.: +39 040 2240242

31

mailto:peressi@ts.infn.it

A look at the expdev.f90 code

subroutine expdev(x)

REAL, intent (out) :: x

REAL ::r

do
call random number(r)
if(r > 0) exit

end do

x = -log(r)

END subroutine expdev

32

A look at the boxmuller.f90 code

SUBROUTINE gasdev(rnd)
IMPLICIT NONE
REAL, INTENT(OUT) :: rnd
REAL ::r2, %,y
REAL, SAVE :: g
LOGICAL, SAVE :: gaus_stored=false.
If (gaus_stored) then
rnd=g
gaus stored=.false.
else
do
call random_number(x)
call random_number(y) L. .
x=2.%- . 2 examples of optimization!
y=2%y-1.
r2=x>l<>i<2+y>k>l<2
if (r2>0..and.r2 < |.) exit
end do X
r2=sqrt(-2.*log(r2)/r2) z=v—-2InR? = = X\/—2In R?/R?
rnd=x*r2 It
g=y*r2
gaus_stored=.true.

end It
END SUBROUTINE gasdev

33

A look at the gasdev.c code

#include <math.h>

float gasdev(long *xidum)

{

float ranl(long *idum);
static int iset=0; Every two calls

static double gset; uses the random number

double fac,rsq,vl,v2; : .
already generated in the previous call
if (iset == 0) {
do { L
vi=2.0+ranl(idum)-1.0; 2 examples of optimization!
v2=2.0%ranl(idum)-1.0;
rsgq=v1xv1l+v2*v2,
} while (rsq >= 1.0 || rsq == 0.0);

fac=sqrt(-2.0xlog(rsq)/rsq);—» since: z=+—2InR2 X X+\/—2In R?/R2
gset=vlxfac; R

iset=1; (thus avoiding the calculation of
} eéﬁt?r” float)iv2efac); another v/ to calculate R separately)
1set=0;

return (float)gset;

34

Other programs:

in the same directories indicated before:

(optional, but useful!)

random.f90 (is a module)
t _random.f90

to compile:

$gfortran random.f90 t random.f90
(the module first!)

35

Part |l -
Using random numbers
to simulate
random processes

36

Random processes:
radioactive decay

N(t) Atoms present at time t

A Probability for each atom to decay in At
AN (t) Atoms which decay between t and © + At

AN(t) = —AN(t)At

we use the probability A of decay of each atom
to simulate the behavior of the number of atoms left;
we should be able to obtain (on average):

N(t) = N(t =0)e

37

Radioactive decay:
numerical simulation

A scheme for the
simulation

1. Assign a value to the decay constant A <1 (the
probability for each nucleus to decay in a given
interval of time At)

A establishes the time scale; one iteration in the “do loop"”
corresponds to one time step At

2. Start with Nleft = Nstart= total number of
nuclei at time ¢t =20

3. Basic algorithm: for each nucleus left (not yet
decayed):
e Generates a random number 0 < x <1

e if x < A, the nucleus decays and Nleft =
Nleft - 1, otherwise it remains and Nleft is
unchanged.

4. Repeat for each nucleus

5. Repeat the cycle for the next time step

A DO ! loop on time
DO i= I, nleft ! loop on all the nuclei left
A call random_number(r)
IF @=='lambda) THEN ! BASIC ALGORITHM
nleft = nleft -1 ! update the nuclei left (*)
ENDIF
vEND DO

WARITE (unit=7,fmt=*) t, nleft
if (nleft == 0)dexit
t=t+ |

VY END DO

(*) Notice that the upper bound of the inner loop (nleft) is changed within the execution of the

loop; but with most compilers, in the execution the loop goes on up to the initial value of nleft;

this ensures that the implementation of the algorithm is correct. The program checkloop.fo0 is a
test for the behavior of the loop. Look also at decay_checkloop.f90. If nleft would be changed
(decreased) during the execution, the effect would be an overestimate of the decay rate.
CHECK with your compiler!

38

Programs:

in the same directory indicated before:

decay.f90
decay checkloop.f90

checkloop.f90

39

[name:] DO
exit [name]

or [name:] DO
END DO [name]

(is useful in case of nested loops for explicitly indicating from which loop to exit)
DO
if (condition)exit
END DO

or:

DO WHILE (.not. condition)
END DO
NOTE: first is better (“if () ..exit” can be placed everywhere in the loop,
whereas DO WHILE must execute the loop up to the end)

40

Radioactive decay:
results of numerical simulation

NO | - | plot of the results of decay

simulation (N vs t)
with N=1000

N(t) ~ Noexp(-at)

° ' ' ' ! t

|Og(N(t)j)_ | | ' ' " qecaydar u 10g62) |
\ | semilog plot (log(N) vs t)
. => |Og(N(t)) - |Og No-at

41

Radioactive decay:
results of numerical simulation

5.0

Semilog plot of the results of

decay simulation for the same

decay rate and different initial

number of atoms:

almost a straight line, but with
important deviations

om0 w0 ewo =0 w0 1o (Stochastic) for small N

time

4.0

3.0

log (N}

20

1.0

Stochastic simulations give reliable results when obtained:
- on average and for large numbers
- fine discretisation of time evolution

(homework: change A; compare the value obtained from the simulation with the one inserted; does
the “quality” of the results change with A?)

42

Other random processes:
order and disorder

A box is divided into two parts communicating through a

small hole. One particle randomly can pass through the hole
per unit time, from the left to the right or viceversa.

N,..(t): number of particles present at time t in the left side
Given N,(0), what is N .(t) ?

(more on that in a future Lecture)
43

| =
o
-
"

44

Other random processes
random walks

(see next lecture)

Part lll - Fitting data

Least-square method

e Suppose to have Np data (independent measure-
ments of the variable y which is function of the

variable x):
(z;,y; £0;), 1=1,Np

with +o; error associated to the ¢ value of y.

e Purpose: determine the function y = f(x) which
better described these data. If the analytic form of
the function is known, a part from a set Mp of pa-
rameters {ai,as...,ap,}, i€, f(z) = f(z; {am}),
the goal is to find the best set of parameters.

46

e To test whether the data fit via f(x) is good or
not calculate the quantity
2=y (:g — f(as {am}>>2
i=1 i
Note that by dividing by o;, data with larger errors
have smaller weight in this weighted average.

e The smallest x2, the better the fit is.

47

e Least-squares fitting: The parameters Mp that
minimize x2 are found by:

SXQ —0 (m=1,Mp)
— Z Yg — f(wz) af(x {am}) —0 (1)

’1, aa,m

example: see program fit.f90

48

o If f(x;a,b) = ax

tions giving x¥2 minimum reduce to:

SSxy — SzSy
a —)
JAN
Np 1
S — 5
i=19
N
¢\ Yi
¥y — 52’
i=1 Y4
Np

49

b (linear regression), the equa-

(2)

Examples - linear regression

radioactive decay:
N(t) ~ Noexp(- a t)

log(N(t)) |

~— | we can fit with the exp.
" - but it is better to fit:

log(N(t)) = log No-a't

6.0

Random walk:
<X2N> ~ Na

40

20F

but it is better to fit:

0.0

o log <x2\>=alog N

Example: fit using gnuplot - |

Suppose you want to fit your data (say, ‘data.dat’) with an exponential function.
You have to give: 1) the functional form ; 2) the name of the parameters

gnuplot> f(x) = a * exp (-x*b)

Then we have to recall these informations together with the data we want to fit:
it can be convenient to inizialize the parameters:

gnuplot> a=0. ; b=1. (for example)

gnuplot> fit f(x) "data.dat’ via a,b

On the screen you will have something like:

Final set of parameters Asymptotic Standard Error

a =1 +/- 8.276e-08 (8.276e-06%)
b =10 +/- 1.23e-06 (1.23e-05%)

correlation matrix of the fit parameters:
ab

a 1.000
b 0.671 1.000

It’s convenient to plot together the original data and the fit:

gnuplot> plot f(x), "data.dat’ 51

Example: fit using gnuplot - I

If you prefer to use linear regression, use logarithmic data in the data file, or directly
fit the log of the original data using gnuplot:

gnuplot> f(x) = a + b*x

Then we have to recall these informations together with the data we want to fit
(in the following example: x=log of the first column; y=log of the second column):

gnuplot> fit f(x) "data.dat’ u (log($1)):(log($2)) via a,b

Final set of parameters Asymptotic Standard Error

(...gnuplot will work for you....)

Also in this case it will be convenient to plot together the original data and the fit:
gnuplot> plot f(x), ‘data.dat’ u (log($1)):(log($2))
In case of needs, we can limit the set of data to fit in a certain range [x_min:x_max]:

gnuplot> fit [x_min:x_max] f(x) ‘data.dat’ u ... via ...

52

Part |V -
more on fortran

53

LOGARITHM

log returns the natural logarithm

logl0 returns the common (base 10) logarithm

(NOTE: also in gnuplot, log and log10 are defined with the
same meaning)

INTEGER PART
nint(x) and the others, similar but different (see Lect. ll) => ex.
Il requires histogram for negative and positive data values

possible to label the elements from a negative number or O:
dimension array(-n:im) (e.g, useful for making histograms)
[default in Fortran: n=I; in c and c++:n=0]

54

Array dimension:

default : dimension array([1:]n)
but also using other dimensions e.g.: dimension array(-n:m)

Important to check dimensions of the array when compiling or
during execution !

If not done, it is difficult to interpret error messages (typically:
“segmentation fault”), or even possible to obtain unpredictable results!

Default in g95 and gfortran:
boundaries not checked; use compiler option:

gfortran -fbounds-check myprogram.f90

Print:
man gfortran

and scroll the pages to see the possible options of compilation

55

Making histograms: use int() or similar intrinsic functions?

AINT(A[,KIND])

- Real elemental function

- Returns A truncated to a whole number. AINT(A) is the largest integer which is smaller
than |A|, with the sign of A. For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

- Argument A is Real; optional argument KIND is Integer

ANINT(A[,KIND])

- Real elemental function

- Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and AINT(-3.7) is
-4.0.

- Argument A is Real; optional argument KIND is Integer

FLOOR(A KIND)
- Integer elemental function
- Returns the largest integer < A. For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.
- Argument A is Real of any kind; optional argument KIND is Integer
- Argument KIND is only available in Fortran 95

INT(A[,KIND])

- Integer elemental function

- This function truncates A and converts it into an integer. If A is complex, only the real
part is converted. If A is integer, this function changes the kind only.

- A is numeric; optional argument KIND is Integer.

NINT(A[,KIND])
- Integer elemental function
- Returns the nearest integer to the real value A.

- A is Real
56

fortran98 intrisinc functions

int{ﬁ} or aiht(x}
nint{x) or anint{x)

floor{x) +

57

INTEL Fortran compiler

The following flags are useful (in addition to "-OO0 -g") for debugging your code:

-traceback generate extra information to provide source file traceback at run time
-fp-stack-check generate extra code to ensure that the floating-point stack is in the expected state
-check bounds enables checking for array subscript expressions

-fpe0 allows some control over floating-point exception handling at run-time

58

GNU Fortran compilers

The following flags are usefull (in addition to "-O0 -g")for debugging your code:

-Wall Enables warnings pertaining to usage that should be avoided
-fbounds-check Checks for array subscripts.

GNU: gdb (serial debugger)

GDB is the GNU Project debugger and allows you to see what is going on 'inside' your program while
it executes -- or what the program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch bugs in
the act:

e Start your program, specifying anything that might affect its behavior.
* Make your program stop on specified conditions.
* Examine what has happened, when your program has stopped.
* Change things in your program, so you can experiment with correcting the effects of one bug and
go on to learn about another.
More details in the on line documentation, using the "man gdb" command.

To use this debugger, you should compile your code with one of the gnu compilers and the debugging
command-line options described above, then you run your executable inside the "gdb" environment:

> gfortran -O0 -g -Wall -fbounds-check -o myexec myprog.f90
> ulimit -c unlimited (number of processes an existing user on the server may be authorized to have - use it in the same window!)
> /myexec

> gdb ./myexec
59

Structure of a main program with one function

program name_program (see: expdev.f90 or boxmuller.f90)
implicit none ()

<declaration of variables>

<executable statements>

contains
" subroutine ... (or function) A
end subroutine)

end program

(*) General suggestion for variable declaration:
Use “implicit none” + explicit declaration of variables

See also the use of module in previous Lectures

60

993SM - Labora'rory of
Computational Physics

lecture 3 - part 2
March 25, 2020

Maria Peressi

END OF THE LECTURE

6l

