
Mezzi di contrasto

Sostanze impiegate in diagnostica per immagini in grado di determinare una differenza di contrasto tra diverse strutture anatomiche o tra una struttura normale ed una patologica.

L'impiego di mezzi di contrasto è utile sia per la rilevazione anatomica dell'apparato da studiare che per l'indagine del fenomeno funzionale.

TABELLA I. — Classificazione dei mezzi di contrasto (MdC) per esami radiografici.

Effetti collaterali dei mezzi di contrasto

Reazioni Chemiotossiche (tipo A)

Tali reazioni sono dipendenti dalla dose e dalla concentrazione plasmatica del farmaco, perciò potenzialmente prevedibili. Sono influenzate dalle caratteristiche del mezzo di contrasto, come l'osmolalità, la viscosità, l'idrofilia. Gli organi principalmente colpiti nelle reazioni chemiotossiche sono: il rene, il sistema nervoso centrale e l'apparato cardiovascolare. In particolare, il rene rappresenta il principale organo bersaglio, perché il mdc iodato viene in gran parte eliminato per filtrazione glomerulare.

Nefrotossicità da mezzi di contrasto iodati

- Improvviso deterioramento della funzionalità renale causato dalla somministrazione di mdc iodati
- Dal punto di vista clinico nella maggior parte dei casi è asintomatico ed è caratterizzato da un improvviso aumento della creatininemia.

OSMOLARITA' ELEVATA TOSSICITA' MOLECOLARE

LESIONI DEL MICROCIRCOLO

LESIONI GLOMERULARI

LESIONI TUBULO-INTERSTIZIALI

NEFROTOSSICITA'

Nefrotossicità da mezzi di contrasto iodati

- · I principali fattori di rischio sono:
 - Correlati al paziente:
 - · Insufficienza renale cronica
 - · Disidratazione
 - · Diabete mellito associato a IRC
 - · Ipovolemia secondaria a scompenso cardiaco o sindrome nefrosica
 - Farmaci nefrotossici (FANS; aminoglicosidi, cisplatino)
 - Correlati alla procedura
 - · Ripetute indagini in tempi brevi
 - · Alte dosi di MdC

Nefrotossicità da mezzi di contrasto iodati

- Idratazione
 - 0,9% salina 100 ml/h iniziata 6-12 ore prima e continuata fino a 4-12 ore dopo
 - Sodio bicarbonato?
 - N-acetilcisteina?
 - Evitare, se possibile, la somministrazione di farmaci nefrotossici

C	\bigcirc	D	E	B	Ιl	F	#	•	
							• •	•	

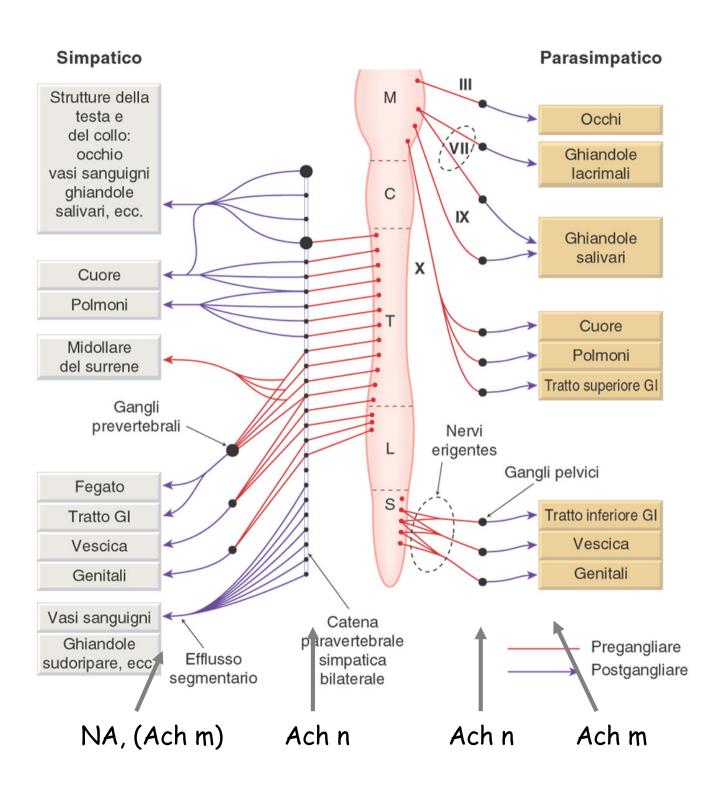
HYPOTENSION WITH TACHYCARDIA

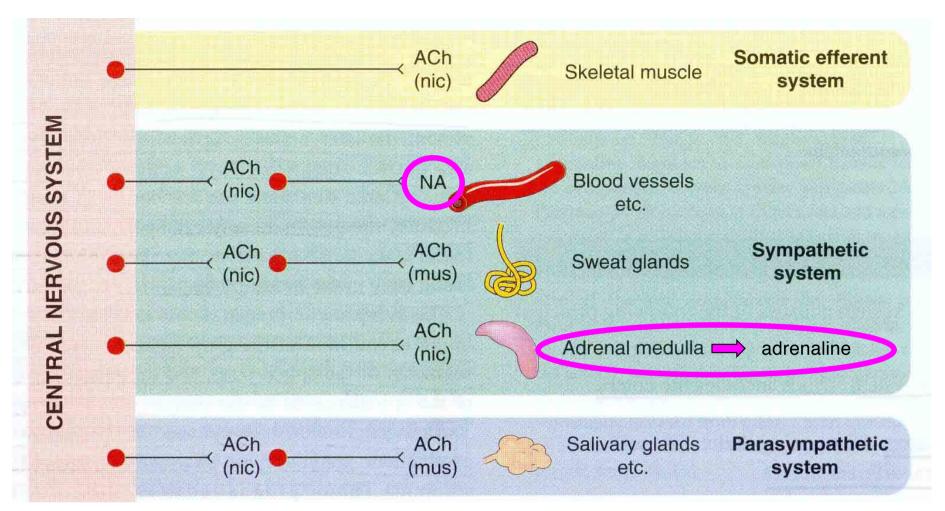
- 1. Preserve IV access, monitor vitals q 15m
- 2. O2 6-10 L/min by face mask
- 3. Elevate legs > 60 degrees
- 4. IVF 0.9% NS wide open
- 5. Epinephrine 0.3 cc of 1:1000 IM (or autoinjector) OR Epi 1 cc of 1:10,000 IV with slow flush or IV fluids

C(D	F	BI	U	F	#:	
						•	

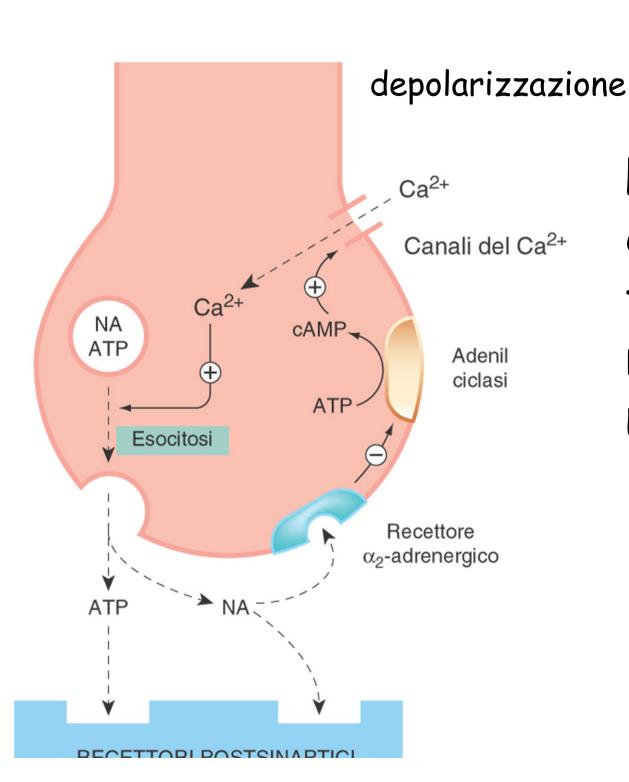
LARYNGEAL EDEMA (INSPIRATORY STRIDOR)

- 1. Preserve IV access, monitor vitals
- **2.** O2 6-10 L/ min by face mask
- 3. Epinephrine 0.3 cc of 1:1000 IM (or autoinjector) OR Epi 1 cc of 1:10,000 IV with slow flush or IV fluids

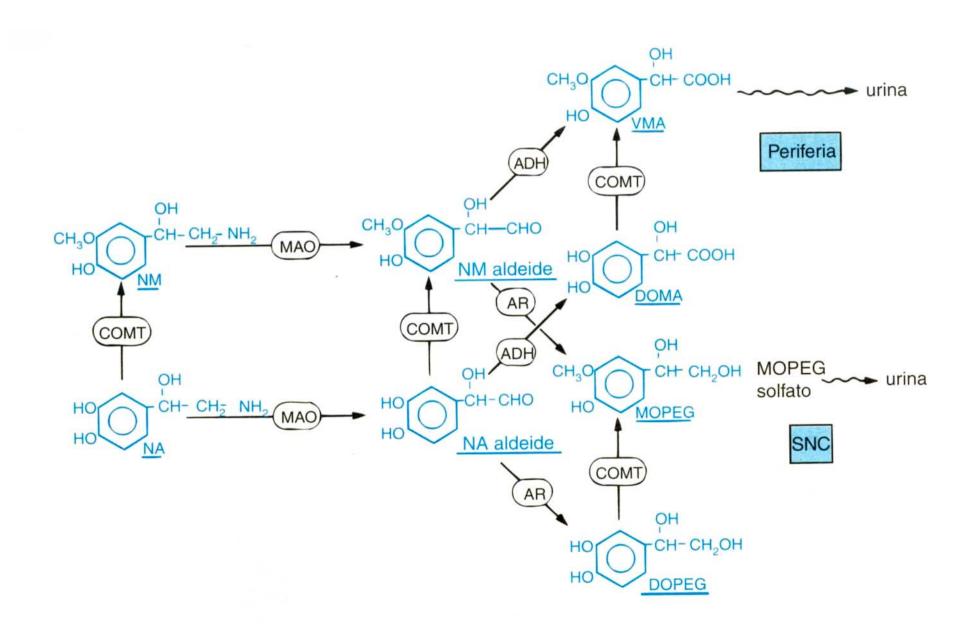

CC	DE	BLUE	#:	


HIVES/DIFFUSE ERYTHEMA

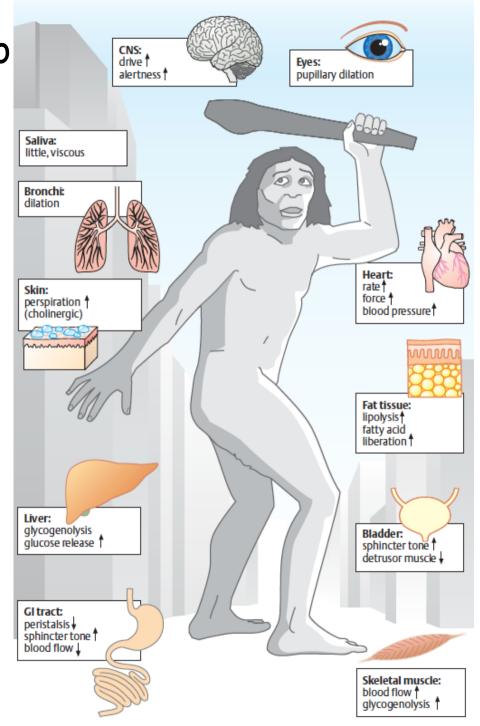
- 1. Observation; monitor vitals q 15 min. Preserve IV access
- 2. If associated with hypotension or respiratory distress then considered **Anaphylaxis**:
 - ◆ O2 6-10 L/min by face mask
 - VF 0.9% NS wide open; elevate legs > 60°
 - ◆ Epinephrine 0.3 cc of 1:1000 IM (or auto-injector) OR Epi 1 cc of 1:10,000 IV with slow flush or IV fluids
 - Call 911 or CODE BLUE
- 3. If ONLY skin findings but severe or progressive may consider Benadryl 50 mg PO, IM, IV but may cause or worsen hypotension

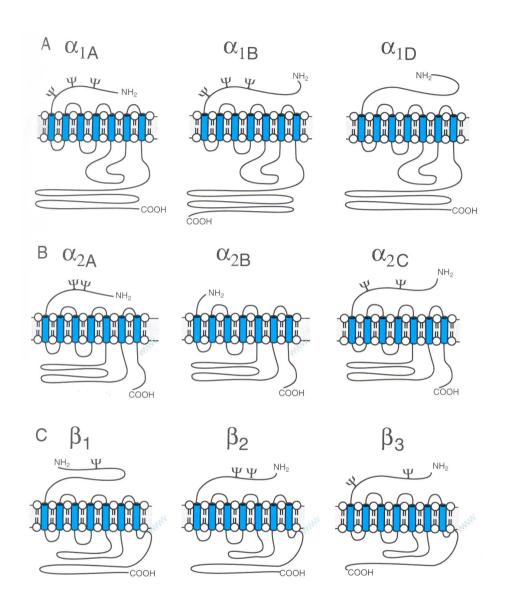

Sistema nervoso autonomo

- Simpatico, parasimpatico e sistema nervoso enterico (plessi nervosi intrinseci del tratto GI)
- Controlla la muscolatura liscia (viscerale e vascolare), le secrezioni esocrine, la frequenza e la forza di contrazione cardiaca e alcuni processi metabolici
- Il sistema simpatico e parasimpatico hanno azioni opposte in alcuni organi (frequenza cardiaca, muscolatura liscia gastrointestinale), ma non in altri (ghiandole salivari, muscolo ciliare)
- L'attività simpatica aumenta durante lo stress, mentre quella parasimpatica predomina durante il riposo



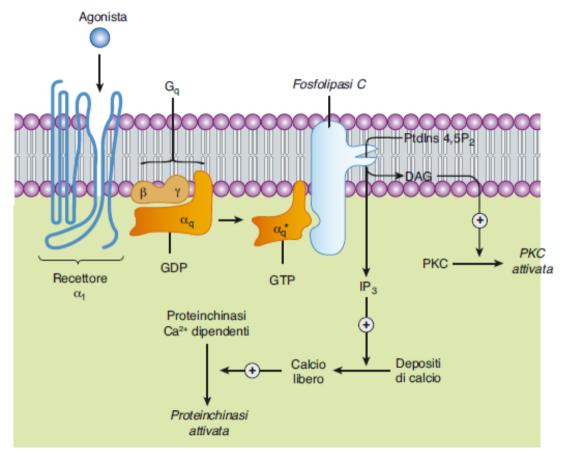
- Le catecolamine sono i neurotrasmettitori che sostengono l'attività simpatica
- La noradrenalina è rilasciata dai terminali sinaptici delle fibre nervose simpatiche
- · L'adrenalina è prodotta dalla midollare del surrene e viene rilasciata nel circolo sanguigno


Liberazione e controllo a feedback del rilascio di noradrenalina


Vie di degradazione delle catecolamine

Azioni del sistema simpatico (reazione di lotta e fuga)

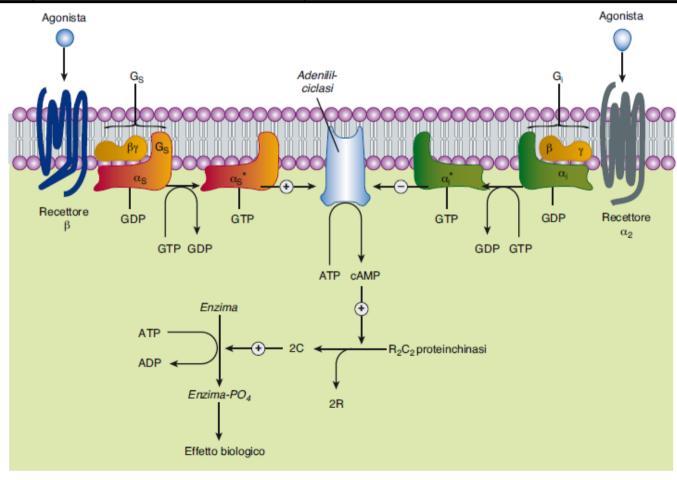
- Aumento della forza, frequenza e gittata cardiaca
- Vasocostrizione cutanea e splancnica e vasodilatazione muscolare
- Dilatazione bronchiale e riduzione delle secrezioni bronchiali
- Aumentata forza di contrazione della muscolatura scheletrica
- Glicolisi e lipolisi
- Midriasi, piloerezione, sudorazione



Recettori adrenergici

a: noradrenalina > adrenalina >> isoproterenolo

β: isoproterenolo > adrenalina > noradrenalina


Famiglia	Sottotipi	Meccanismi di trasduzione
α_1	$\alpha_{1A} \alpha_{1B} \alpha_{1C} \alpha_{1D}$	↑ IP-3/DAG

Attivano anche vie di trasduzione del segnale che sono generalmente associate ai recettori per i fattori di crescita peptidergici che attivano tirosinchinasi (MAP chinasi, PI-3-chinasi), forse importanti per la stimolazione della crescita e proliferazione cellulare

Figura 9-1. Attivazione delle risposte α_1 . La stimolazione dei recettori α_1 da parte delle catecolamine porta all'attivazione di una proteina accoppiante G_q . La subunità attivata α di questa proteina (α_q^*) attiva l'effettore, la fosfolipasi C, che porta al rilascio di IP₃ (inositolo 1,4,5 trifosfato) e di DAG (diacilglicerolo), a partire dal fosfatidilinositolo 4,5, bifosfato (PtdIns 4,5P₂). IP₃ stimola il rilascio del calcio (Ca²⁺) sequestrato nei depositi intracellulari, aumentando le concentrazioni intracitoplasmatiche di Ca²⁺. Gli ioni Ca²⁺ possono poi attivare le proteinchinasi Ca²⁺ dipendenti, che possono a loro volta poi fosforilare i loro substrati. Il DAG attiva la proteinchinasi C (PKC). GTP, guanosin trifosfato; GDP, guanosin difosfato. Si veda il testo per effetti addizionali dell'attivazione di recettori α_1 .

Famiglia	Sottotipi	Meccanismi di trasduzione
α_2	$\alpha_{2A} \alpha_{2B} \alpha_{2C}$	↓ cAMP ↑ permeabilità al K⁺, ↓ permeabilità al Ca²+

Famiglia		Meccanismi di trasduzione
β	β_1 β_2 β_3	↑ cAMP

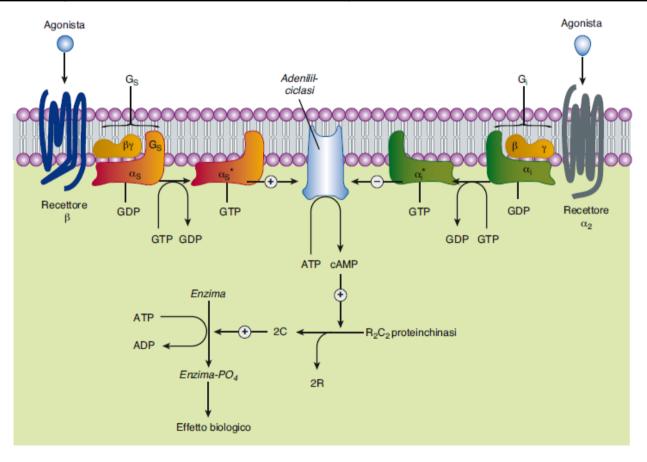
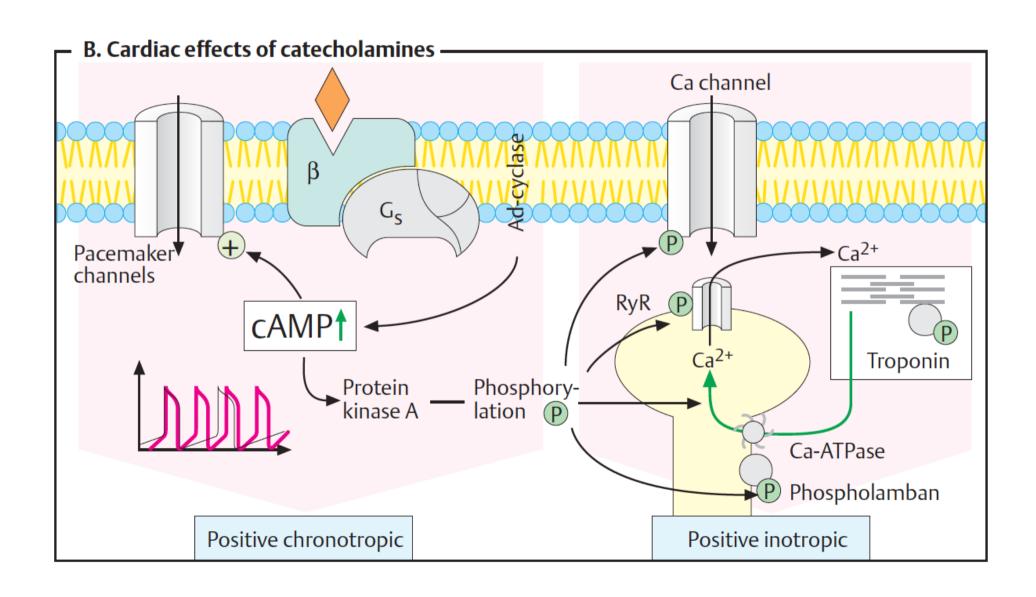
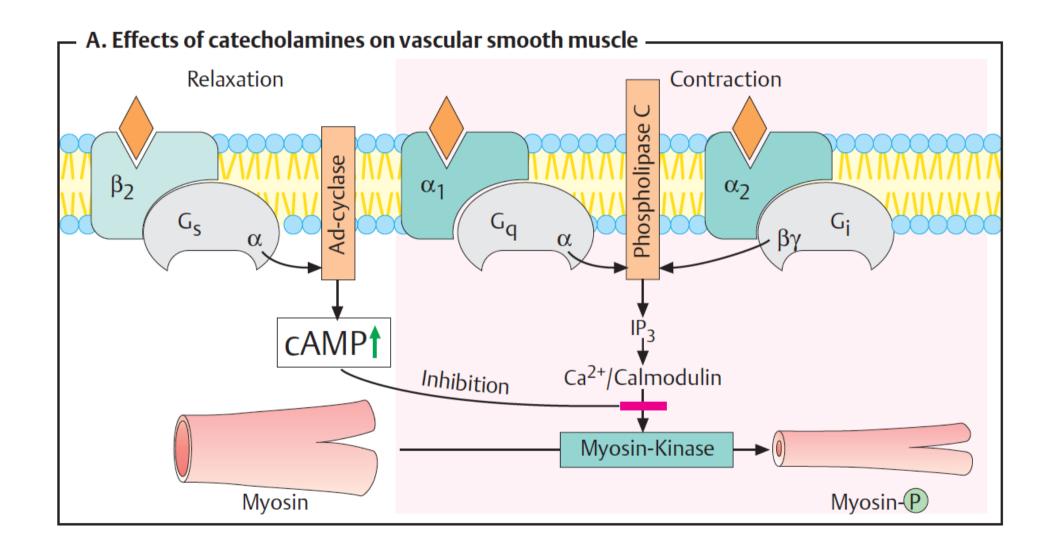


Figura 9-2. Attivazione ed inibizione dell'adenililiciclasi da parte degli agonisti che si legano ai recettori adrenergici. Il legame ai recettori β -adrenergici stimola l'adenililiciclasi, attraverso l'attivazione della proteina G stimolatoria, G_a, che induce la dissociazione della sua subunità alfa legata al GTP. Questa subunità attivata, α_s , attiva direttamente l'adenililiciclasi, aumentando la velocità di sintesi di cAMP. I ligandi per i recettori alfa₂ inibiscono l'adenililiciclasi provocando la dissociazione della proteina G inibiscono l'adenililiciclasi non è subunità α_i caricata con GTP ed un'unità β_i . Il meccanismo attraverso il quale queste subunità inibiscono l'adenililiciclasi non è noto. Il cAMP si lega alla subunità regolatoria (R) della proteinchinasi cAMP-dipendente, inducendo la liberazione di subunità catalitiche attive (C) che fosforilano specifici substrati proteici e ne modificano l'attività. Queste unità catalitiche fosforilano anche la proteina di legame dell'elemento di risposta di cAMP (CREB) che modifica l'espressione genica. Si veda il testo per altre azioni di recettori adrenergici α_2 e β .

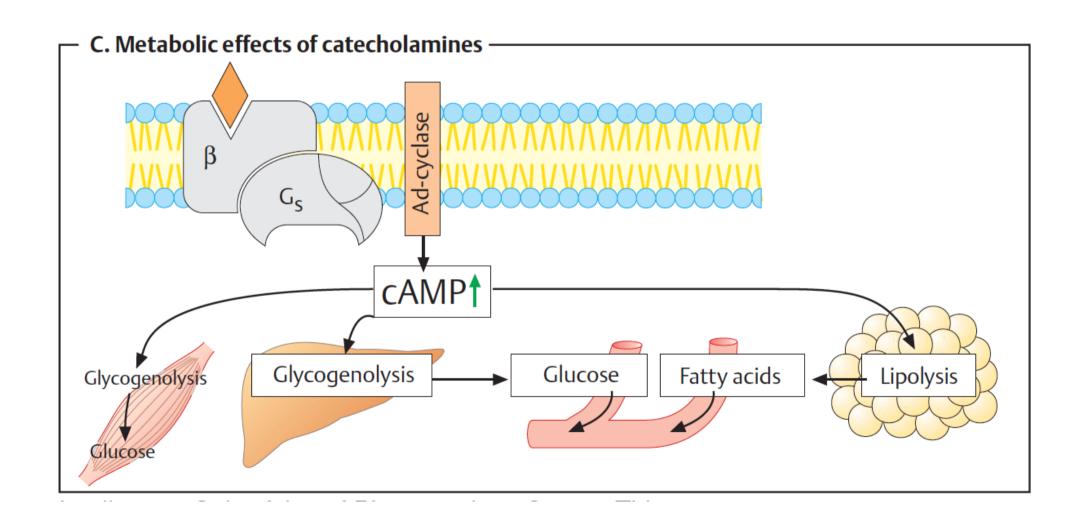

Distribuzione e caratteristiche funzionali dei recettori α adrenergici

Recettori	Tessuto	Risposta
α_1	Muscolatura liscia vasale (cute, splancnico, mucosa nasale)	Contrazione Granda agonista agonista agonista agonista agonista agonista CamKdasi DAG CamKdasi PKC PKC
	Occhio	Midriasi
	Prostata	Contrazione
	Muscolatura liscia organi	Contrazione (sfinteri), rilassamento (pareti)
	Fegato	Glicogenolisi
		Gluconeogenesi
	SNC	Stato di veglia
α_2	presinaptico	

Distribuzione e caratteristiche funzionali di recettori β adrenergici


Recettori	Tessuto	Risposta
β_1	Cuore	Aumento frequenza, contrattilità, velocità di conduzione, automatismo
	Rene	Aumento secrezione renina
	Occhio	Secrezione umor acqueo
β2	Muscolatura liscia vasale	Rilassamento
	Muscolatura liscia organi	Rilassamento
	Muscolatura scheletrica	Aumento forza di contrazione
	Fegato	Glicogenolisi, gluconeogenesi
βз	Tessuto adiposo	Lipolisi e termogenesi

Attivazione dell'adenilato ciclasi da parte dei recettori β_1 adrenergici cardiaci


Distribuzione e caratteristiche funzionali di recettori β adrenergici

Recettori	Tessuto	Risposta		
β_1	Cuore	Aumento frequenza, contrattilità, velocità di conduzione, automatismo		
	Rene	Aumento secrezione renina		
β2	Muscolatura liscia vasale	Rilassamento		
	Muscolatura liscia organi	Rilassamento		
	Muscolatura scheletrica	Aumento forza di contrazione		
	Fegato	Glicogenolisi, gluconeogenesi		
β 3	Tessuto adiposo	Lipolisi e termogenesi		

Distribuzione e caratteristiche funzionali di recettori β adrenergici

Recettori	Tessuto	Risposta		
β_1	Cuore	Aumento frequenza, contrattilità, velocità di conduzione, automatismo		
	Rene	Aumento secrezione renina		
β2	Muscolatura liscia vasale	Rilassamento		
	Muscolatura liscia organi	Rilassamento		
	Muscolatura scheletrica	Aumento forza di contrazione		
	Fegato	Glicogenolisi, gluconeogenesi		
β 3	Tessuto adiposo	Lipolisi e termogenesi		

 Potente stimolante dei recettori a e β adrenergici

VABELLA 12-2 ■ CONFRONTO TRA GLI EFFETTI DELL'INFUSIONE ENDOVENOSA DI ADRENALINA E DI NORADRENALINA NELL'UOMO®

EFFETTO	ADRENALINA	NORADRENALINA
Cuore		
Frequenza cardiaca	+	_b
Volume sistolico	++	++
Gittata cardiaca	+++	0, –
Aritmie	++++	++++
Flusso sanguigno coronarico	++	++
Pressione sanguigna		
Arteriosa sistolica	+++	+++
Arteriosa media	+	++
Arteriosa diastolica	+, 0, -	++
Polmonare media	++	++
Circolazione periferica		
Resistenza periferica totale	-	++
Flusso sanguigno cerebrale	+	0, –
Flusso sanguigno muscolare	+++	0, –
Flusso sanguigno cutaneo	_	2 (En) (1-9 E) 9 (E)
Flusso sanguigno renale		-
Flusso sanguigno splancnico	+++	0, +
Effetti metabolici		
Consumo di ossigeno	++	0, +
Glicemia	+++	0, +
Lattacidemia	+++	0, +
Risposta eosinopenica	+	0
Sistema nervoso centrale	and the last	
Respirazione	+	+
Sensazioni soggettive	+al/_mmask	+

^{+,} aumento; 0, nessuna variazione; –, diminuzione. ° 0.1-0.4 $\mu g/kg/min$. ° Dopo atropina.

Fonte: dati da Goldenberg M et al. Arch Intern Med. 1950; 86:823.

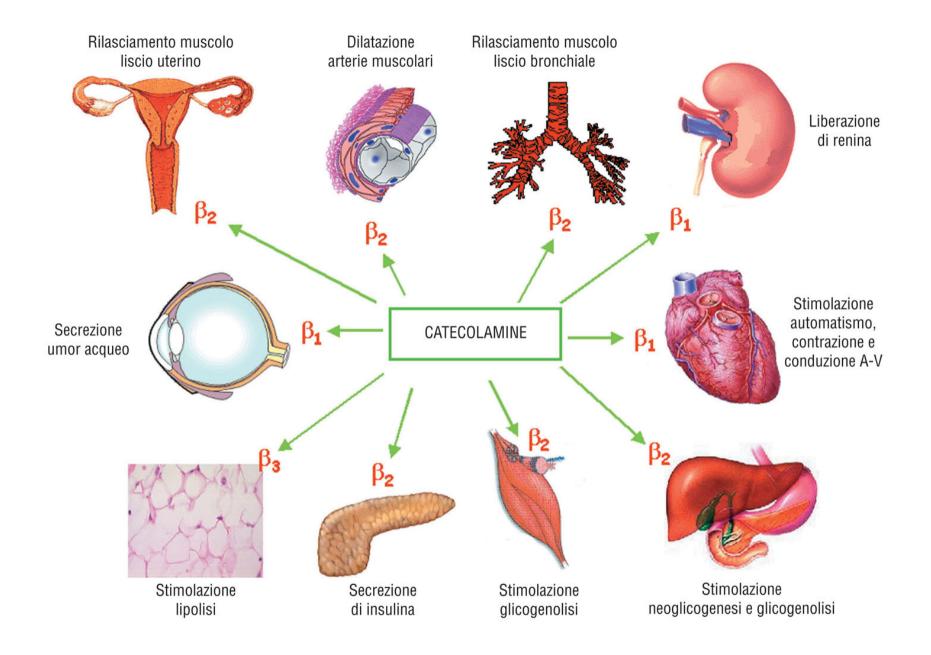
- scarso assorbimento orale, rimozione rapida dai tessuti, metabolizzata dalle MAO e dalle COMT
- · emivita plasmatica 2 min

 uso: shock anafilattico, reazioni anafilattoidi da mezzi di contrasto, arresto cardiaco, asma (trattamento di emergenza), vasocostrittore

Nell'anafilassi (farmaco salvavita):

- 0,3 0,5 mg i.m. (Fastjekt 0,33 mg)
 ogni 5 -15 min
- e.v. $5 10 \mu g/min$ solo personale esperto (fino a 0,25 mg)

- Effetti avversi
 - Per sovradosaggio o iniezione endovenosa troppo rapida: emorragia cerebrale, aritmie ventricolari e angina

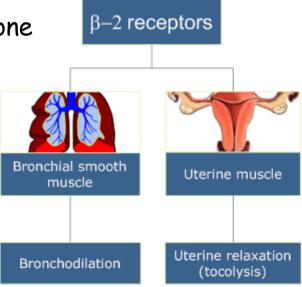

C	O	D	Ε	B	Ll	JE	#:	
							•	

BRONCHOSPASM (EXPIRATORY WHEEZES)

- 1. Preserve IV access, monitor vitals
- 2. O2 6-10 L/min by face mask
- 3. B2 agonist inhaler 2 puffs; repeat x 3
- 4. If not responding or severe, then use Epinephrine 0.3 cc of 1:1000 IM (or auto-injector) OR Epi 1 cc of 1:10,000 IV with slow flush or IV fluids
- 5. Call 911 or CODE BLUE

Farmaci attivi sui recettori β adrenergici

Beta agonisti	Impiego clinico
Non selettivi	
Isoproterenolo	Arresto cardiaco
β ₁ selettivi	
Dobutamina	Shock cardiogeno, test farmacologico di stress cardiaco
β ₂ selettivi	
Salbutamolo	Asma
Beta antagonisti = Beta bloccanti	
Non selettivi	
Propranololo	Antiipertensivo, antianginoso, antiaritmico
β ₁ selettivi	
Atenololo	antiipertensivo


β_2 agonisti

Salbutamolo (Ventolin...): può essere somministrato per via sistemica ed inalatoria. L'azione compare, quando somministrato per inalazione, entro 15 minuti e l'effetto dura 3 – 4 ore. Farmaci simili sono la terbutalina (Bricanyl) e il fenoterolo (Dosberotec).

Formoterolo (Oxis, Foradil): a lunga durata d'azione. Produce rilassamento della muscolatura liscia bronchiale in pochi minuti e la sua azione può durare anche 12 ore. Possibile effetto di broncospasmo paradosso.

Salmeterolo (Arial, Serevent): a lunga durata d'azione (circa 12 ore). Tuttavia l'effetto non compare velocemente e pertanto da solo non è utile per gli episodi acuti. Possibile effetto di broncospasmo paradosso.

Ritodrina (Miolene): farmaco tocolitico.

β_2 agonisti: effetti avversi

- Tremore a carico dei muscoli scheletrici
- Tachicardia, tachiaritmie, ischemia miocardica specie in pazienti con patologia coronarica
- vasodilatazione periferica
- · Ipokaliemia per captazione muscolare dello ione