
LESSON 4.

1. The ideal of an algebraic set and the Hilbert Nullstellensatz.

Let X ⊂ An be an affine variety, X = V (α), where α ⊂ K[x1, . . . , xn] is an ideal.

The ideal α defining X is not unique. We have already made this observation in the

case of the hypersurfaces. For another example, let O = {(0, 0)} ⊂ A2 be the origin; then

O = V (x1, x2) = V (x21 , x2) = V (x21 , x
3
2) = V (x21 , x1x2, x

2
2) = . . . Nevertheless, there is an

ideal we can canonically associate to X: the biggest one among the ideals defining it.

We give the following definition:

Definition 1.1. Let Y ⊂ An be any set.

The ideal of Y is

I(Y ) = {F ∈ K[x1, . . . , xn] | F (P ) = 0 for any P ∈ Y } = {F ∈ K[x1, . . . , xn] | Y ⊂ V (F )} :

it is the set of all polynomials vanishing on Y . Note that I(Y ) is in fact an ideal, because

the sum of two polynomials vanishing along Y also vanishes along Y , and the product of

any polynomial by a polynomial vanishing along Y again vanishes along Y .

Example 1.2. Maximal ideal of a point.

If P (a1, . . . , an) is a point, then I(P ) = 〈x1 − a1, . . . , xn − an〉. Indeed all its polynomials

vanish on P , and, on the other side, it is a maximal ideal.

The fact that 〈x1−a1, . . . , xn−an〉 is maximal can be understood looking at the quotient ring

K[x1, . . . , xn]/〈x1 − a1, . . . , xn − an〉: the idea is that in the quotient the variables x1, . . . , xn

are replaced by the constants a1, . . . , an, so it has to be K[a1, . . . , an] = K. Since the quotient

is a field, the ideal is maximal.

Another proof of the maximality of 〈x1 − a1, . . . , xn − an〉 can be given by exploiting the

expansion in power series around a := (a1, . . . , an) of any polynomial F (x1, . . . , xn). I first

recall that this expansion is possible for polynomials over any field, without involving any

differentiation process, but using only the formal definition of derivative for polynomials.

See for instance [R. Walker, Algebraic curves, Springer, pp. 21-23.]

The proof goes as follows. Assume that F (a1, . . . , an) = 0 and use the Taylor expansion:

F (x1, . . . , xn) = F (a) +
n∑

i=1

(xi − ai)Fxi
(a) +

n∑
i,j=1

(xi − ai)(xj − aj)Fxixj
(a) + . . .

It follows that F ∈ 〈x1 − a1, . . . , xn − an〉.
1
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The following relations follow immediately by the definition:

(i) if Y ⊂ Y ′, then I(Y ) ⊃ I(Y ′);

(ii) I(Y ∪ Y ′) = I(Y ) ∩ I(Y ′);

(iii) I(Y ∩ Y ′) ⊃ I(Y ) + I(Y ′).

Similarly, if Z ⊂ Pn is any set, the homogeneous ideal of Z is, by definition, the homogeneous

ideal of K[x0, x1, . . . , xn] generated by the set

{G ∈ K[x0, x1, . . . , xn] | G is homogeneous and VP (G) ⊃ Z}.

It is denoted Ih(Z).

Relations similar to (i),(ii),(iii) are satisfied. Ih(Z) is also the set of polynomials F (x0, . . . , xn)

such that every point of Z is a projective zero of F .

If X = V (α) we want to understand the relation between α and I(X).

Let α ⊂ K[x1, . . . , xn] be an ideal. Let
√
α denote the radical of α:

√
α =: {F ∈ K[x1, . . . , xn] | ∃r ≥ 1 s.t. F r ∈ α}.

Note that
√
α is an ideal (why?) and that always α ⊂

√
α; if equality holds, then α is called

a radical ideal.

Proposition 1.3. The ideal of a subset of the affine space is radical, more precisely:

(1) for any X ⊂ An, I(X) is a radical ideal;

(2) for any Z ⊂ Pn, Ih(Z) is a homogeneous radical ideal.

Proof.

(1) If F ∈
√
I(X), let r ≥ 1 such that F r ∈ I(X): if P ∈ X, then (F r)(P ) = 0 = (F (P ))r

in the base field K. Therefore F (P ) = 0.

(2) is similar, taking into account that Ih(Z) is a homogeneous ideal (see Exercise (6)).

�

We can interpret I as a map from P(An), the power set of the affine space, to P(K[x1, . . . , xn]),

the power set of the polynomial ring. On the other hand, V can be seen as a map in the

opposite sense. We have:

Proposition 1.4. Let α ⊂ K[x1, . . . , xn] be an ideal, let Y ⊂ An be any subset. Then:

(i) α ⊂ I(V (α));

(ii) Y ⊂ V (I(Y ));

(iii) V (I(Y )) = Y : the closure of Y in the Zariski topology of An.
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Proof.

(i) If F ∈ α and P ∈ V (α), then F (P ) = 0, so F ∈ I(V (α)).

(ii) If P ∈ Y and F ∈ I(Y ), then F (P ) = 0, so P ∈ V (I(Y )).

(iii) Taking closures in (ii), we get: Y ⊂ V (I(Y )) = V (I(Y )), because it is already closed.

Conversely, let X = V (β) be any closed set containing Y : X = V (β) ⊃ Y . Then

I(Y ) ⊃ I(V (β)) ⊃ β by (i); we apply V again: V (β) = X ⊃ V (I(Y )) so any closed

set containing Y contains V (I(Y )) so Y ⊃ V (I(Y )).

�

Similar properties relate homogeneous ideals of K[x0, x1, . . . , xn] and subsets of Pn; in

particular, if Z ⊂ Pn, then VP (Ih(Z)) = Z, the closure of Z in the Zariski topology of Pn. In

the projective case, one has to take care of the fact that any homogeneous ideal is generated

by the set of its homogeneous elements, and so, to prove an inclusion between homogeneous

ideals, it is enough to check it on the homogeneous elements.

There does not exist any characterization of I(V (α)) in general. We can only say that

it is a radical ideal containing α, so it contains also
√
α. To characterise I(V (α)) we need

to put into the picture the properties of the base field K.

The following celebrated theorem gives the answer for algebraically closed fields.

Theorem 1.5 (Hilbert’s Nullstellensatz - Theorem of zeros). Let K be an algebraically

closed field. Let α ⊂ K[x1, . . . , xn] be an ideal. Then I(V (α)) =
√
α.

Remark. The assumption on K is necessary. Let me recall that K is algebraically closed

if any non–constant polynomial of K[x] has at least one root in K, or, equivalently, if any

irreducible polynomial of K[x] has degree 1. So if K is not algebraically closed, there exists

F ∈ K[x], irreducible of degree d > 1. Therefore F has no zero in K, hence V (F ) ⊂ A1
K is

empty. So I(V (F )) = I(∅) = {G ∈ K[x] | ∅ ⊂ V (G)} = K[x]. But 〈F 〉 is a maximal ideal

in K[x], and 〈F 〉 ⊂
√
〈F 〉. If 〈F 〉 6=

√
〈F 〉, by the maximality

√
〈F 〉 = 〈1〉, so ∃r ≥ 1 such

that 1r = 1 ∈ 〈F 〉, which is false. Hence
√
〈F 〉 = 〈F 〉 6= K[x] = I(V (F )).

We will deduce the proof of Hilbert Nullestellensatz, after several steps, from another very

important theorem, known as “ Emmy Noether normalization Lemma”.

We start with some definitions.

Let K ⊂ E be fields, K a subfield of E. Let {zi}i∈I be a family of elements of E.

Definition 1.6. The family {zi}i∈I is algebraically free over K or, equivalently, the elements

zi’s are algebraically independent over K if there does not exist any non–zero polynomial
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F ∈ K[xi]i∈I , the polynomial ring in a set of variables indexed on I, such that F vanishes

in the elements of the family {zi}.

For example: if the family is formed by one element z, {z} is algebraically free over K if

and only if z is transcendental over K. The family {π,
√
π} is not algebraically free over Q:

it satisfies the non–trivial relation x21 − x2 = 0.

By convention, the empty family is free over any field K.

Let S be the set of the families of elements of E, which are algebraically free over K. S
is a non–empty set, partially ordered by inclusion and inductive. By Zorn’s lemma, there

exist in S maximal elements, i.e. algebraically free families such that they do not remain

free if any element of E is added. Any such maximal algebraically free family is called a

transcendence basis of E over K. It can be proved that, if B,B′ are two transcendence

bases, then they have the same cardinality, called the transcendence degree of E over K. It

is denoted tr.d.E/K.

Definition 1.7. A K–algebra is a ring A containing (a subfield isomorphic to) K.

Let y1, . . . , yn be elements of E: the K–algebra generated by y1, . . . , yn is, by definition,

the minimum subring of E containing K, y1, . . . , yn: it is denoted K[y1, . . . , yn] and its ele-

ments are polynomials in the elements y1, . . . , yn with coefficients in K. Its quotient field

K(y1, . . . , yn) is the minimum subfield of E containing K, y1, . . . , yn.

A finitely generated K–algebra A is a K–algebra such that there exist elements of A

y1, . . . , yr which verify the condition A = K[y1, . . . , yr].

Proposition 1.8. There exists a transcendence basis of K(y1, . . . , yn) over K contained in

the set {y1, . . . , yn}.

Proof. Let S be the set of the subfamilies of {y1, . . . , yn} formed by algebraically indepen-

dent elements: S is a finite set so it possesses maximal elements with respect to the inclu-

sion. We can assume that {y1, . . . , yr} is such a maximal family. Then yr+1, . . . , yn are each

one algebraic over K(y1, . . . , yr) so K(y1, . . . , yn) is an algebraic extension of K(y1, . . . , yr).

If z ∈ K(y1, . . . , yn) is any element, then z is algebraic over K(y1, . . . , yr), so the family

{y1, . . . , yr, z} is not algebraically free. �

Corollary 1.9. tr.d.K(y1, . . . , yn)/K ≤ n.

Let now A ⊂ B be rings, A a subring of B.
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Definition 1.10. Let b ∈ B: b is integral over A if it is a root of a monic polynomial of

A[x], i.e. there exist a1, . . . , an ∈ A such that

bn + a1b
n−1 + a2b

n−2 + · · ·+ an = 0.

Such a relation is called an integral equation for b over A.

Note that, if A is a field, then b is integral over A if and only if b is algebraic over A.

B is called integral over A, or an integral extension of A, if and only if b is integral over

A for every b ∈ B.

We can state now the

Theorem 1.11. Normalization Lemma. Let A be a finitely generated K–algebra and an

integral domain. Let r := tr.d.K(y1, . . . , yn)/K. Then there exist elements z1, . . . , zr ∈ A,

algebraically independent over K, such that A is integral over K[z1, . . . , zr].

Proof. We postpone the proof. �

We start now the proof of the Nullstellensatz.

1st Step.

Let K be an algebraically closed field, let M ⊂ K[x1, . . . , xn] be a maximal ideal. Then,

there exist a1, . . . , an ∈ K such that M = 〈x1 − a1, . . . , xn − an〉.

Proof. Let K ′ be the quotient ring K[x1, . . . , xn]/M: it is a field becauseM is maximal, and

a finitely generated K–algebra (by the residues in K ′ of x1, . . . , xn). By the Normalization

Lemma, there exist z1, . . . , zr ∈ K ′, algebraically independent over K, such that K ′ is integral

over A := K[z1, . . . , zr]. We claim that A is a field: let f ∈ A, f 6= 0; f ∈ K ′ so there exists

f−1 ∈ K ′, and f−1 is integral over A; we fix an integral equation for f−1 over A:

(f−1)s + as−1(f
−1)s−1 + · · ·+ a0 = 0

where a0, . . . , as−1 ∈ A. We multiply this equation by f s−1:

f−1 + as−1 + · · ·+ a0f
s−1 = 0

hence f−1 ∈ A. So A is both a field and a polynomial ring over K, so r = 0 and A = K.

Therefore K ′ is an algebraic extension of K, which is algebraically closed, so K ′ ' K. Let us

fix an isomorphism ψ : K[x1, . . . , xn]/M ∼−→K and let p : K[x1, . . . , xn]→ K[x1, . . . , xn]/M
be the canonical epimorphism.

Let ai = ψ(p(xi)), i = 1, . . . , n. The kernel of ψ ◦ p is M, and xi − ai ∈ ker(ψ ◦ p) for any

i. So 〈x1 − a1, . . . , xn − an〉 ⊂ ker(ψ ◦ p) =M. Since 〈x1 − a1, . . . , xn − an〉 is maximal (see

Example 1.2), we conclude the proof of the 1st Step.
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2nd Step (Weak Nullstellensatz).

Let K be an algebraically closed field, let α ⊂ K[x1, . . . , xn] be a proper ideal. Then

V (α) 6= ∅ i.e. the polynomials of α have at least one common zero in An
K .

Proof. Since α is proper, there exists a maximal idealM containing α. Then V (α) ⊃ V (M).

By 1st Step,M = 〈x1−a1, . . . , xn−an〉, so V (M) = {P} with P (a1, . . . , an), hence P ∈ V (α).

3rd Step (Rabinowitch method).

Let K be an algebraically closed field: we will prove that I(V (α)) ⊂
√
α. Since the reverse

inclusion always holds, this will conclude the proof.

Let F ∈ I(V (α)), F 6= 0 and let α = 〈G1, . . . , Gr〉. The assumption on F means: if

G1(P ) = · · · = Gr(P ) = 0, then F (P ) = 0. Let us consider the polynomial ring in n + 1

variables K[x1, . . . , xn+1] and let β be the ideal β = 〈G1, . . . , Gr, xn+1F − 1〉: β has no zeroes

in An+1, hence, by Step 2, 1 ∈ β, i.e. there exist H1, . . . , Hr+1 ∈ K[x1, . . . , xn+1] such that

1 = H1G1 + · · ·+HrGr +Hr+1(xn+1F − 1).

We introduce the K-homomorphism ψ : K[x1, . . . , xn+1] → K(x1, . . . , xn) defined by

H(x1, . . . , xn+1)→ H(x1, . . . , xn,
1
F

).

The polynomials G1, . . . , Gr do not contain xn+1 so ψ(Gi) = Gi ∀ i = 1, . . . , r. Moreover

ψ(xn+1F − 1) = 0, ψ(1) = 1. Therefore

1 = ψ(H1G1 + · · ·+HrGr +Hr+1(xn+1F − 1)) = ψ(H1)G1 + · · ·+ ψ(Hr)Gr

where ψ(Hi) is a rational function with denominator a power of F . By multiplying this

relation by a common denominator, we get an expression of the form:

Fm = H ′1G1 + · · ·+H ′rGr,

so F ∈
√
α. �

Corollary 1.12. Let K be an algebraically closed field.

1. There is a bijection between algebraic subsets of An and radical ideals of K[x1, . . . , xn].

The bijection is given by α → V (α) and X → I(X). In fact, if X is closed in the

Zariski topology, then V (I(X)) = X; if α is a radical ideal, then I(V (α)) = α.

2. Let X, Y ⊂ An be closed sets. Then

(i) I(X ∩ Y ) =
√
I(X) + I(Y );

(ii) I(X ∪ Y ) = I(X) ∩ I(Y ) =
√
I(X)I(Y ).

3. The points of a hypersurface determine its reduced equation.

Proof. 1. is clear. 2. follows from next lemma, using the Nullstellensatz. To prove 3.,

assume that F,G are square-free polynomials in K[x1 . . . , xn] such that V (F ) = V (G). By
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the Nullstellensatz it follows that
√
F = I(V (F )) = I(V (G)) =

√
G, so 〈F 〉 = 〈G〉, which

means that F,G differ at most by units. �

Lemma 1.13. Let α, β be ideals of K[x1, . . . , xn]. Then

a)
√√

α =
√
α;

b)
√
α + β =

√√
α +
√
β;

c)
√
α ∩ β =

√
αβ =

√
α ∩
√
β.

Proof.

a) if F ∈
√√

α, there exists r ≥ 1 such that F r ∈
√
α, hence there exists s ≥ 1 such

that F rs ∈ α.

b) α ⊂
√
α, β ⊂

√
β imply α + β ⊂

√
α +
√
β hence

√
α + β ⊂

√√
α +
√
β.

Conversely, α ⊂ α + β, β ⊂ α + β imply
√
α ⊂

√
α + β,

√
β ⊂

√
α + β, hence√

α +
√
β ⊂
√
α + β so

√√
α +
√
β ⊂

√√
α + β =

√
α + β.

c) αβ ⊂ α∩ β ⊂ α (resp. ⊂ β) therefore
√
αβ ⊂

√
α ∩ β ⊂

√
α∩
√
β. If F ∈

√
α∩
√
β,

then F r ∈ α, F s ∈ β for suitable r, s ≥ 1, hence F r+s ∈ αβ, so F ∈
√
αβ.

�

Part 2.(i) of Corollary 1.12 implies that I(X∩Y ) 6= I(X)+I(Y ) if and only if I(X)+I(Y )

is not radical.

Remark. The weak form of the Nullstellensatz says that a system of algebraic equations

has at least one solution over an algebraically closed field if, and only if, the ideal generated

by the corresponding polynomials is not the whole ring, or, equivalently, if it is impossible

to find a linear combination of them, with coefficients in the polynomial ring, equal to

the constant 1. The above proof of Nullstellensatz is not constructive, in the sense that,

given polynomials F1, . . . , Fr, it does not say how to check if 1 belongs or not to the ideal

〈F1, . . . , Fr〉.
The problem of making the proof constructive is connected to the more general “ ideal

membership problem”, which asks, given an ideal α ⊂ K[x1 . . . , xn] and a polynomial G ∈
K[x1 . . . , xn], to decide if G ∈ α or not.

Answers to these problems can be given with the tools of computational algebra, in par-

ticular using the theory of Gröbner bases.

We move now to the projective space. There exist proper homogeneous ideals ofK[x0, x1, . . . , xn]

without zeroes in Pn, also assuming K algebraically closed: for example the maximal ideal

〈x0, x1, . . . , xn〉. The following characterization holds:
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Proposition 1.14. Let K be an algebraically closed field and let I be a homogeneous ideal

of K[x0, x1, . . . , xn].

The following are equivalent:

(i) VP (I) = ∅;
(ii) either I = K[x0, x1, . . . , xn] or

√
I = 〈x0, x1, . . . , xn〉;

(iii) there exists d ≥ 1 such that I ⊃ K[x0, x1, . . . , xn]d, the homogeneous components of

K[x0, x1, . . . , xn] of the homogeneous polynomials of degree d.

Proof.

(i)⇒(ii) Let p : An+1−{0} → Pn be the canonical surjection. We have: VP (I) = p(V (I)−
{0}), where V (I) ⊂ An+1. So if VP (I) = ∅, then either V (I) = ∅ or V (I) = {0}. If V (I) = ∅
then I(V (I)) = I(∅) = K[x0, x1, . . . , xn]; if V (I) = {0}, then I(V (I)) = 〈x0, x1, . . . , xn〉 =

√
I

by the Nullstellensatz.

(ii)⇒(iii) Let
√
I = K[x0, x1, . . . , xn], then 1 ∈

√
I so 1r = 1 ∈ I(r ≥ 1). If

√
I =

〈x0, x1, . . . , xn〉, then for any variable xk there exists an index ik ≥ 1 such that xikk ∈ I. If

d ≥ i0 + i1 + · · ·+ in, then any monomial of degree d is in I, so K[x0, x1, . . . , xn]d ⊂ I.

(iii)⇒(i) because no point in Pn has all coordinates equal to 0. �

Theorem 1.15. Let K be an algebraically closed field and I be a homogeneous ideal of

K[x0, x1, . . . , xn]. If F is a homogeneous non–constant polynomial such that VP (F ) ⊃ VP (I)

(i.e. F vanishes on VP (I), then F ∈
√
I.

Proof. We have p(V (I) − {0}) = VP (I) ⊂ VP (F ). Since F is non–constant, we have

also V (F ) = p−1(VP (F )) ∪ {0}, so V (F ) ⊃ V (I); by the Nullstellensatz I(V (I)) =
√
I ⊃

I(V (F )) =
√

(F ) 3 F . �

Corollary 1.16 (homogeneous Nullstellensatz). Let I be a homogeneous ideal of K[x0, x1, . . . , xn]

such that VP (I) 6= ∅, K algebraically closed. Then
√
I = Ih(VP (I)).

Definition 1.17. A homogeneous ideal of K[x0, x1, . . . , xn] such that
√
I = 〈x0, x1, . . . , xn〉

is called irrelevant.

Corollary 1.18. Let K be an algebraically closed field. There is a bijection between the set

of projective algebraic subsets of Pn and the set of radical homogeneous non–irrelevant ideals

of K[x0, x1, . . . , xn].

Remark. Let X ⊂ Pn be an algebraic set, X 6= ∅. The affine cone of X, denoted by

C(X), is the following subset of An+1: C(X) = p−1(X) ∪ {0}. If X = VP (F1, . . . , Fr),

with F1, . . . , Fr homogeneous, then C(X) = V (F1, . . . , Fr). By the Nullstellensatz, if K is

algebraically closed, I(C(X)) = Ih(X).
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Exercises 1. (1) Give a non-trivial example of an ideal α of K[x1, . . . , xn] such that

α 6=
√
α.

(2) Show that the following closed subsets of the affine plane are such that equality

does not hold in the relation I(Y ∩ Y ′) ⊃ I(Y ) + I(Y ′): Y = V (x2 + y2 − 1)

and Y ′ = V (y − 1). (Remark: as observed by Malech, it is necessary to add the

assumptions that K is algebraically closed and char K 6= 2.)

(3) Let α ⊂ K[x1, . . . , xn] be an ideal. Prove that α =
√
α if and only if the quotient

ring K[x1, . . . , xn]/α does not contain any non–zero nilpotent.

(4) Consider Z ⊂ Q. Prove that if an element y ∈ Q is integral over Z, then y ∈ Z.

(Hint: fixed y = a/b ∈ Q integral over Z, write an integral equation for y, then use

the unique factorization in Z.)

(5) Let us recall that a prime ideal of a ring R is an ideal P such that a 6∈ P , b 6∈ P
implies ab 6∈ P . Prove that any prime ideal is a radical ideal.

(6) * Let I be a homogeneous ideal of K[x1, . . . , xn] satisfying the following condition: if

F is a homogeneous polynomial such that F r ∈ I for some positive integer r, then

F ∈ I. Prove that I is a radical ideal. (Hint: take F non homogeneous such that

for some r ≥ 1 F r ∈ I, then use induction on the number of non-zero homogeneous

components of F to prove that F ∈ I.)


