
LESSON 6.

1. The projective closure of an affine algebraic set.

In this section we will interpret the affine space An as identified with the open subet

U0 ⊂ Pn. As we have seen in Lesson 3, 1.6, this is possible via the homeomorphisms, inverse

each other, ϕ0 : U0 → An and j0 : An → U0. Similar considerations hold for any index

i = 0, . . . , n.

Given an affine variety X ⊂ An = U0 ⊂ Pn, in this way it becomes a subet of Pn and it

makes sense to consider its closure in the Zariski topology of the projective space.

Definition 1.1. The projective closure of X, X, is the closure of X in the Zariski topology

of Pn.

Since the map ϕ0 is a homeomorphism, we have: X ∩An = X because X is closed in An.

The points of X ∩H0, where H0 is the hyperplane at infinity VP (x0), are called the “ points

at infinity” of X in the fixed embedding.

Remark. Note that, if K is an infinite field, then the projective closure of An is Pn, i.e.

the affine space is dense in the projective space.

Indeed, let F be a homogeneous polynomial of degree d vanishing along An = U0. We

can write F = F0x
d
0 + F1x

d−1
0 + · · · + Fd, where Fi is a homogeneous polynomial of degree

i in x1, . . . , xn for any i. By assumption, for every P (a1, . . . , an) ∈ An, P ∈ VP (F ), i.e.

F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). So aF ∈ I(An). We claim that I(An) = (0): if n = 1,

this follows from the principle of identity of polynomials, because K is infinite. If n ≥ 2,

assume that F (a1, ..., an) = 0 for all (a1, ..., an) ∈ Kn and consider F (a1, ..., an−1, x): either

it has positive degree in x for some choice of (a1, ..., an), but then it has finitely many zeroes

against the assumption; or it is always constant in x, so F belongs to K[x1, ..., xn−1] and we

can conclude by induction. So the claim is proved. We get therefore that F0 = F1 = . . . =

Fd = 0 and F = 0.

We want to find the relation between the equations of X ⊂ An and those of its projective

closure X ⊂ Pn.

Proposition 1.2. Let X ⊂ An be an affine variety, X be its projective closure. Then

Ih(X) = hI(X) := 〈hF |F ∈ I(X)〉.
1
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Proof. Let F ∈ Ih(X) be a homogeneous polynomial. If P (a1, . . . , an) ∈ X, then [1, a1, . . . , an] ∈
X, so F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). Hence aF ∈ I(X). There exists k ≥ 0 such that

F = (xk0)h(aF ) (see proof of Proposition 1.3, Lesson 3), so F ∈ hI(X). Hence Ih(X) ⊂ hI(X).

Conversely, ifG ∈ I(X) and P (a1, . . . , an) ∈ X, thenG(a1, . . . , an) = 0 = hG(1, a1, . . . , an),

so hG ∈ Ih(X) (here X is seen as a subset of Pn). So hI(X) ⊂ Ih(X). Since Ih(X) = Ih(X)

(see Exercise 1), we have the claim. �

In particular, if X is a hypersurface and I(X) = 〈F 〉, then Ih(X) = 〈hF 〉.

Next example, that will occupy the rest of this Lesson, will show that, in general, from

I(X) = 〈F1, . . . , Fr〉, it does not follow hI(X) = 〈hF1, . . . ,
hFr〉. Only in the last thirty

years, thanks to the development of symbolic algebra and in particular of the theory of

Gröbner bases, the problem of characterizing the systems of generators of I(X), whose

homogeneization generates hI(X), has been solved.

The example of the skew cubic is of fundamental importance in algebraic geometry, because

of the many geometrical phenomena that appear, and are developed in different classes of

varieties of which the skew cubic is the first case.

Example 1.3 (The skew cubic).

The affine skew cubic is the following closed subset X of A3: X = V (y − x2, z − x3) (we

use variables x, y, z). X is the image of the map ϕ : A1 → A3 such that ϕ(t) = (t, t2, t3).

Note that ϕ : A1 → X is a homeomorphism (see Exercise 3, Lesson 2). Let α be the ideal

〈y − x2, z − x3〉. Note that X = V (α). We claim that α = I(X) = {F ∈ K[x, y, z] |
F (x, x2, x3) = 0 for any x ∈ K. Proceeding as in Lesson 4, Example 1.2, we consider the

development of any polynomial G ∈ K[x, y, z] in Taylor series around (x, x2, x3), and we

get the claim. We observe also that α is a prime ideal; to see this, we consider the ring

homomorphism K[x, y, z] → K[x] such that F (x, y, z) → F (x, x2, x3): it is surjective and

its kernel is α, therefore the quotient ring K[x, y, z]/α is isomorphic to K[x], which is an

integral domain. Therefore α is prime.

LetX be the projective closure ofX in P3. First we will studyX geometrically, then we will

determine its homogeneous ideal. We claim that it is the image of the map ψ : P1 → P3 such

that ψ([λ, µ]) = [λ3, λ2µ, λµ2, µ3]. We identify A1 with the open subset of P1 defined by λ 6= 0

i.e. U0, and A3 with the open subset of P3 defined by x0 6= 0 (U0 again). Note that ψ|A1 = ϕ,

because ψ([1, t]) = [1, t, t2, t3] = via the identification of A3 with U0 = (t, t2, t3) = ϕ(t).

Moreover ψ([0, 1]) = [0, 0, 0, 1]. So ψ(P1) = X ∪ {[0, 0, 0, 1]}.
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Let G be a homogeneous polynomial of K[x0, x1, x2, x3] such that X ⊂ VP (G). Then

G(1, t, t2, t3) = 0 ∀t ∈ K, so G(λ3, λ2µ, λµ2, µ3) = 0 ∀µ ∈ K, ∀λ ∈ K∗. Since K is

infinite, then G(λ3, λ2µ, λµ2, µ3) is the zero polynomial in λ and µ, so G(0, 0, 0, 1) = 0 and

VP (G) ⊃ ψ(P1), therefore X ⊃ ψ(P1).

Conversely, we prove that ψ(P1) is Zariski closed, more precisely

ψ(P1) = VP (F0, F1, F2) where F0 := x1x3 − x22 , F1 := x1x2 − x0x3, F2 := x0x2 − x21 .

One inclusion is clear: every point of P3 of coordinates [λ3, λ2µ, λµ2, µ3] satisfies the three

quadratic equations F0 = F1 = F2 = 0. Conversely, let Fi(y0, . . . , y3) = 0 ∀i = 1, . . . , 3, i.e.

y1y3 = y22, y1y2 = y0y3, y0y2 = y21. We observe that either y0 6= 0 or y3 6= 0, otherwise also

y1 = y2 = 0.

Assume y0 6= 0, then, using the three equations, we get

[y0, y1, y2, y3] = [y30, y
2
0y1, y

2
0y2, y

2
0y3] = [y30, y

2
0y1, y0y

2
1, y0y1y2] = [y30, y

2
0y1, y0y

2
1, y

3
1] = ψ([y0, y1]).

Similarly, if y3 6= 0, [y0, y1, y2, y3] = ψ([y2, y3]). So ψ(P1) = X.

The three polynomials F0, F1, F2 are the 2× 2 minors of the matrix

M =

(
x0 x1 x2

x1 x2 x3

)
with entries in K[x0, x1, x2, x3]. Let F = y − x2, G = z − x3 be the two generators of I(X);
hF = x0x2− x21 , hG = x20x3− x31 , hence VP (hF, hG) = VP (x0x2− x21 , x20x3− x31) 6= X, because

VP (hF, hG) contains the whole line “ at infinity” VP (x0, x1), which is not contained in X.

We shall prove now the non-trivial fact:

Proposition 1.4. Ih(X) = 〈F0, F1, F2〉.

Proof. For all integer number d ≥ 0, let Ih(X)d := Ih(X)∩K[x0, x1, x2, x3]d: it is a K-vector

space of dimension ≤
(
d+3
3

)
. We define a K-linear map ρd having Ih(X)d as kernel:

ρd : K[x0, x1, x2, x3]d → K[λ, µ]3d

such that ρd(F ) = F (λ3, λ2µ, λµ2, µ3). Since ρd is clearly surjective, we compute

dim Ih(X)d =

(
d+ 3

3

)
− (3d+ 1) = (d3 + 6d2 − 7d)/6.

For d ≥ 2, we define now a second K-linear map

ϕd : K[x0, x1, x2, x3]
⊕3
d−2 → Ih(X)d

such that ϕd(G0, G1, G2) = G0F0+G1F1+G2F2. Our aim is to prove that ϕd is surjective. The

elements of its kernel are called the syzygies of degree d among the polynomials F0, F1, F2.
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Two obvious syzygies of degree 3 are constructed by developing, according to the Laplace

rule, the determinant of the matrix obtained repeating one of the rows of M , for examplex0 x1 x2

x0 x1 x2

x1 x2 x3

 .

It gives x0F0 + x1F1 + x2F2 = 0, so (x0, x1, x2) is a syzygy of degree 3. Similarly (x1, x2, x3).

We put H1 = (x0, x1, x2) and H2 = (x1, x2, x3), they both belong to kerϕ3. Note that H1

and H2 give rise to syzygies of all degrees ≥ 3, in fact we can construct a third linear map

ψd : K[x0, x1, x2, x3]
⊕2
d−3 → kerϕd

putting ψd(A,B) = H1A+H2B = (x0, x1, x2)A+(x1, x2, x3)B = (x0A+x1B, x1A+x2B, x2A+

x3B).

Claim. ψd is an isomorphism.

Assuming the claim, we are able to compute dim kerϕd = 2
(
d
3

)
, therefore

dim Im ϕd = 3

(
d+ 1

3

)
− 2

(
d

3

)
which coincides with the dimension of Ih(X)d previously computed. This proves that ϕd is

surjective for all d and concludes the proof of the Proposition.

Proof of the Claim. Let (G0, G1, G2) belong to kerϕd. This means that the following

matrix N with entries in K[x0, x1, x2, x3] is non-invertible:

N :=

G0 G1 G2

x0 x1 x2

x1 x2 x3

 .

Therefore, the rows of N are linearly dependent over the quotient field of the polynomial ring

K(x0, . . . , x3). Since the last two rows are linearly independent, there exist reduced rational

functions a1
a0
, b1
b0
∈ K(x0, x1, x2, x3), such that

G0 =
a1
a0
x0 +

b1
b0
x1 =

a1b0x0 + a0b1x1
a0b0

and similarly

G1 =
a1b0x1 + a0b1x2

a0b0
, G2 =

a1b0x2 + a0b1x3
a0b0

The Gi’s are polynomials, therefore the denominator a0b0 divides the numerator in each of

the three expressions on the right hand side. Moreover, if p is a prime factor of a0, then p
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divides the three products b0x0, b0x1, b0x2, hence p divides b0. We can repeat the reasoning

for a prime divisor of b0, so obtaining that a0 = b0 (up to invertible constants). We get:

G0 =
a1x0 + b1x1

b0
, G1 =

a1x1 + b1x2
b0

, G2 =
a1x2 + b1x3

b0
,

therefore b0 divides the numerators

c0 := a1x0 + b1x1, c1 := a1x1 + b1x2, c2 := a1x2 + b1x3.

Hence b0 divides also x1c0−x0c1 = b1(x
2
1−x0x1) = −b1F2, and similarly x2c0−x0c2 = b1F1,

x2c1− x1c2 = −b1F0. But F0, F1, F2 are irreducible and coprime, so we conclude that b0 | b1.
But b0 and b1 are coprime, so finally we get b0 = a0 = 1. �

As an important by-product of the proof of Proposition 1.4 we have the minimal free

resolution of the R-module Ih(X), where R = K[x0, x1, x2, x3]:

0→ R⊕2 ψ−→ R⊕3 ϕ−→ Ih(X)→ 0

where ψ is represented by the transposed of the matrix M and ϕ by the triple of polynomials

(F0, F1, F2).

Exercises 1.5. 1*. Let X ⊂ An be a closed subset, X be its projective closure in Pn. Prove

that Ih(X) = Ih(X).

2. Find a system of generators of the ideal of the affine skew cubic X, such that, if you

homogeneize them, you get a system of generators for Ih(X).


