
LESSON 7.

1. Irreducible components.

The aim of this lesson is to introduce the irreducible components of the affine varieties,

the “ building blocks” of the algebraic varieties. The idea is that the irreducible varieties are

a generalization in any dimensions of the irreducible hypersurfaces: any hypersurface is a

finite union of irreducible hypersurfaces, similarly any algebraic variety (affine or projective)

is a finite unione of irreducible varieties. The notion of irreducible topological space is typical

of algebraic geometry and is interesting in this context, although it is not so for Hausdorff

topological spaces.

Definition 1.1. Let X be a topological space. X is irreducible if it is not empty and the

following condition holds: if X = X1 ∪ X2 with X1, X2 closed subsets of X, then either

X = X1 or X = X2.

Equivalently, passing to the complementar sets, X is irreducible if it is non empty and,

for all pair of non–empty open subsets U , V , we have U ∩ V 6= ∅.

Note that, by definition, ∅ is not irreducible.

Proposition 1.2. X is irreducible if and only if any non–empty open subset U of X is dense

in X.

Proof. Let X be irreducible, let P be a point of X and let IP be an open neighbourhood of

P in X. IP and U are non–empty and open, so IP ∩ U 6= ∅, therefore P ∈ U . This proves

that U = X.

Conversely, assume that all open subsets are dense. Let U , V 6= ∅ be open subsets. Let

P ∈ U be a point. By assumption P ∈ V = X, so V ∩ U 6= ∅ (U is an open neighbourhood

of P ). �

Example 1.3. 1. If X = {P} is a unique point, then X is irreducible.

2. Let K be an infinite field. Then A1 is irreducible, because proper closed subsets are

finite sets. The same holds for P1.

3. Let f : X → Y be a continuous map of topological spaces. If X is irreducible and f is

surjective, then Y is irreducible.

4. Let Y ⊂ X, Y 6= ∅, be a subset endowed with the induced topology. Then Y is irreducible

if and only if the following holds: if Y ⊂ Z1 ∪ Z2, with Z1 and Z2 closed in X, then either
1
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Y ⊂ Z1 or Y ⊂ Z2; equivalently: if Y ∩ U 6= ∅, Y ∩ V 6= ∅, with U , V open subsets of X,

then Y ∩ U ∩ V 6= ∅.

Proposition 1.4. Let X be a topological space, Y a subset of X. Y is irreducible if and

only if Y is irreducible.

Proof. Note first that if U ⊂ X is open and U ∩ Y = ∅ then U ∩ Y = ∅. Otherwise, if

P ∈ U ∩ Y , let A be an open neighbourhood of P : then A ∩ Y 6= ∅. In particular, U is an

open neighbourhood of P so U ∩ Y 6= ∅.
Let Y be irreducible. If U and V are open subsets of X such that U ∩ Y 6= ∅, V ∩ Y 6= ∅,

then U ∩ Y 6= ∅ and V ∩ Y 6= ∅ so Y ∩ U ∩ V 6= ∅ by the irreducibility of Y . Hence

Y ∩ (U ∩ V ) 6= ∅. So Y is irreducible. If Y is irreducible, we get the irreducibility of Y in a

completely analogous way. �

Corollary 1.5. Let X be an irreducible topological space and let U be a non–empty open

subset of X. Then U is irreducible.

Proof. By Proposition 1.2 U = X, which is irreducible. By Proposition 1.4 U is irreducible.

�

For algebraic sets (both affine and projective) irreducibility can be expressed in a purely

algebraic way.

Proposition 1.6. Let X ⊂ An ( resp. Pn) be an algebraic variety equipped with the Zariski

topology, i.e. the induced topology by the Zariski topology of the affine (or projective) space.

X is irreducible if and only if I(X) (resp. Ih(X)) is prime.

Proof. Assume first that X is irreducible, X ⊂ An. Let F,G be polynomials in K[x1, . . . , xn]

such that FG ∈ I(X): then

V (F ) ∪ V (G) = V (FG) ⊃ V (I(X)) = X,

hence either X ⊂ V (F ) or X ⊂ V (G). In the former case, if P ∈ X then F (P ) = 0, so

F ∈ I(X), in the second case G ∈ I(X); hence I(X) is prime.

Assume now that I(X) is prime. Let X = X1 ∪ X2 be the union of two closed subsets.

Then I(X) = I(X1) ∩ I(X2) (see Lesson 4). Assume that X1 6= X, then I(X1) strictly

contains I(X), otherwise, if I(X) = I(X1), it would follow X1 = V (I(X1)) = V (I(X)) = X

because both are closed. So there exists F ∈ I(X1) such that F 6∈ I(X). But for every

G ∈ I(X2), FG ∈ I(X1) ∩ I(X2) = I(X), which is prime: since F 6∈ I(X), then G ∈ I(X).

So I(X2) ⊂ I(X), and we conclude that I(X2) = I(X), so X2 = X.
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If X ⊂ Pn, the proof is similar, taking into account the following Lemma.

Lemma 1.7. Let P ⊂ K[x0, x1, . . . , xn] be a homogeneous ideal. Then P is prime if and

only if, for every pair of homogeneous polynomials F,G such that FG ∈ P, either F ∈ P or

G ∈ P.

Proof of the Lemma. Let H,K be any polynomials such that HK ∈ P . Let H = H0 +

H1 + · · · + Hd, K = K0 + K1 + · · · + Ke (with Hd 6= 0 6= Ke) be their expressions as sums

of homogeneous polynomials. Then HK = H0K0 + (H0K1 + H1K0) + · · · + HdKe: the

last product is the homogeneous component of degree d+ e of HK. P being homogeneous,

HdKe ∈ P ; by assumption either Hd ∈ P or Ke ∈ P . In the former case, HK − HdK =

(H −Hd)K belongs to P while in the second one H(K −Ke) ∈ P . So in both cases we can

proceed by induction. �

We list now some consequences of Proposition 1.6.

1. Let K be an infinite field. Then An and Pn are irreducible, because I(An) = Ih(Pn) =

(0).

2. Let Y ⊂ Pn be closed. Y is irreducible if and only if its affine cone C(Y ) is irreducible.

3. Let Y = V (F ) ⊂ An, be a hypersurface over an algebraically closed field K. If F is

irreducible, then Y is irreducible.

4. Let K be algebraically closed. There is a bijection between prime ideals of K[x1, . . . , xn]

and irreducible algebraic subsets of An. In particular, the maximal ideals correspond to the

points. Similarly, there is a bijection between homogeneous non–irrelevant prime ideals of

K[x0, x1, . . . , xn] and irreducible algebraic subsets of Pn.

Our next task is to prove that any algebraic variety can be written as a finite union of

irreducible varieties.

Definition 1.8. A topological space X is called noetherian if it satisfies the following equiv-

alent conditions:

(i) the ascending chain condition for open subsets;

(ii) the descending chain condition for closed subsets;

(iii) any non–empty set of open subsets of X has maximal elements;

(iv) any non–empty set of closed subsets of X has minimal elements.

The proof of the equivalence is standard (compare with the properties defining noetherian

rings).
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Example 1.9. An is noetherian: if the following is a descending chain of closed subsets of

An

Y1 ⊃ Y2 ⊃ · · · ⊃ Yk ⊃ . . . ,

then

I(Y1) ⊂ I(Y2) ⊂ · · · ⊂ I(Yk) ⊂ . . .

is an ascending chain of ideals of K[x1, . . . , xn], hence it is stationary from a suitable m on;

therefore V (I(Ym)) = Ym = V (I(Ym+1)) = Ym+1 = . . . .

Proposition 1.10. Let X be a noetherian topological space and Y be a non–empty closed

subset of X. Then Y can be written as a finite union Y = Y1 ∪ · · · ∪ Yr of irreducible closed

subsets. The maximal Yi’s in the union are uniquely determined by Y and are called the

“ irreducible components” of Y . They are the maximal irreducible subsets of Y .

Proof. By contradiction. Let S be the set of the non–empty closed subsets of X which

are not a finite union of irreducible closed subsets: assume S 6= ∅. By noetherianity S has

minimal elements, fix one of them Z. Z is not irreducible, so Z = Z1 ∪ Z2, Zi 6= Z for

i = 1, 2. So Z1, Z2 6∈ S, hence Z1, Z2 are both finite unions of irreducible closed subsets, so

such is Z: a contradiction.

Now assume that Y = Y1 ∪ · · · ∪ Yr, with Yi 6⊆ Yj if i 6= j and Yi irreducible closed for

all i. If there is another similar expression Y = Y ′
1 ∪ · · · ∪ Y ′

s , Y
′
i 6⊆ Y ′

j for i 6= j, then

Y ′
1 ⊂ Y1 ∪ . . . Yr, so Y ′

1 =
⋃r
i=1(Y

′
1 ∪ Yi), hence Y ′

1 ⊂ Yi for some i, and we can assume

i = 1. Similarly, Y1 ⊂ Y ′
j , for some j, so Y ′

1 ⊂ Y1 ⊂ Y ′
j , so j = 1 and Y1 = Y ′

1 . Now let

Z = Y − Y1 = Y2 ∪ · · · ∪ Yr = Y ′
2 ∪ · · · ∪ Y ′

s and proceed by induction. �

Corollary 1.11. Any algebraic variety in An (resp. in Pn) can be written in a unique way

as the finite union of its irreducible components.

Note that the irreducible components of X are its maximal algebraic subsets. They cor-

respond to the minimal prime ideals over I(X). Since I(X) is radical, these minimal prime

ideals coincide with the primary ideals appearing in the primary decomposition of I(X).

Often the irreducible closed subsets of An are called affine varieties, i.e. the term variety

is reserved to the irreducible ones. Similarly for the irreducible closed subsets of Pn.

Definition 1.12. A locally closed subset in Pn is the intersection of an open and a closed

subset. An irreducible locally closed subset of Pn is called a quasi–projective variety.

.
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We conclude this section with the (non-trivial) proof of the irreducibility of the product

of irreducible affine varieties.

Proposition 1.13. Let X ⊂ An and Y ⊂ Am be irreducible affine varieties. Then X ×Y is

an irreducible subvariety of An+m.

Proof. Let X × Y = W1 ∪W2, with W1,W2 closed. For any P ∈ X, the map {P}× Y → Y

which takes (P,Q) to Q is a homeomorphism, so {P} × Y is irreducible. {P} × Y =

(W1 ∩ ({P} × Y )) ∪ (W2 ∩ ({P} × Y )), so ∃i ∈ {1, 2} such that {P} × Y ⊂ Wi. Let

Xi = {P ∈ X | {P} × Y ⊂ Wi}, i = 1, 2. Note that X = X1 ∪X2.

Claim. Xi is closed in X.

Let X i(Q) = {P ∈ X | (P,Q) ∈ Wi}, Q ∈ Y . We have: (X × {Q}) ∩Wi = X i(Q)× {Q} '
X i(Q); X×{Q} and Wi are closed in X×Y , so X i(Q)×{Q} is closed in X×Y and also in

X × {Q}, so X i(Q) is closed in X. Note that Xi =
⋂
Q∈Y X

i(Q), hence Xi is closed, which

proves the Claim.

Since X is irreducible, X = X1 ∪ X2 implies that either X = X1 or X = X2, so either

X × Y = W1 or X × Y = W2. �

Exercises 1.14. 1. Let X 6= ∅ be a topological space. Prove that X is irreducible if and

only if all non–empty open subsets of X are connected.

2*. Prove that the cuspidal cubic Y ⊂ A2
C of equation x3 − y2 = 0 is irreducible. (Hint:

express Y as image of A1 in a continuous map...)

3. Give an example of two irreducible subvarieties of P3 whose intersection is reducible.

4. Find the irreducible components of the following algebraic sets over the complex field:

a) V (y4 − x2, y4 − x2y2 + xy2 − x3) ⊂ A2;

b) V (y2 − xz, z2 − y3) ⊂ A3.

5*. Let Z be a topological space and let {Uα}α∈I be an open covering of Z such that

Uα ∩ Uβ 6= ∅ for α 6= β and that all Uα’s are irreducible. Prove that Z is irreducible.


