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APPROXIMATE INFERENCE BY SAMPLING

Generate a sample from a given distribution
Estimate integrals and expectations
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BASIC SAMPLING

Ancestral Sampling in Bayesian Networks
Rejection Sampling
Importance Sampling
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MARKOV CHAINS

Main idea: to sample from p(x), simulate from an ergodic
Markov Chain with stationary probability p(x).

Definition of Markov Chains
Stationary distributions and ergodicity
Reversible MC and detailed balance condition
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BASICS

Main idea: to sample from p(x), simulate from an ergodic
Markov Chain with stationary probability p(x).

Definition of Markov Chains
Stationary distributions and ergodicity
Reversible MC and detailed balance condition
Metropolis Hastings acceptance criterion
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MCMC EXAMPLE - UNIMODAL

Example: Sampling from a 2-D Gaussian

Figure 11.9 from Bishop: A simple illustration using Metropolis algorithm to sample from a
Gaussian distribution whose one standard-deviation contour is shown by the ellipse. The
proposal distribution is an isotropic Gaussian distribution whose standard deviation is 0.2. Steps
that are accepted are shown as green lines, and rejected steps are shown in red. A total of 150
candidate samples are generated, of which 43 are rejected.

24 (Section 3)
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MCMC EXAMPLE - MULTIMODAL

Example: Sampling from a Multi-Modal Distribution

Figure 27.8 from Barber: Metropolis-Hastings samples from a bi-variate distribution p(x1, x2)
using a proposal q̃(xÕ|x) = N(xÕ|x, I). We also plot the iso-probability contours of p. Although
p(x) is multi-modal, the dimensionality is low enough and the modes su�ciently close such that
a simple Gaussian proposal distribution is able to bridge the two modes. In higher dimensions,
such multi-modality is more problematic.

Question: Why do you think it might sometimes be di�cult to sample from a
multi-modal distribution?

25 (Section 3)
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GIBBS SAMPLING

Main idea: to sample from p(x1, . . . , xn), sample iteratively from
1 dimensional conditional distributions.

Gibbs sampling as MCMC
Metropolis-within-Gibbs
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GIBBS SAMPLING - ERGODICITY

An Example Where Gibbs Fails

Figure 27.5 from Barber: A two dimensional distribution for which Gibbs sampling
fails. The distribution has mass only in the shaded quadrants. Gibbs sampling proceeds
from the lth sample state (xl

1, x
l
2) and then sampling from p(x2|xl

1), which we write
(xl+1

1 , xl+1
2 ) where xl+1

1 = xl
1. One then continues with a sample from p(x1|x2 = xl+1

2 ),
etc. If we start in the lower left quadrant and proceed this way, the upper right region is
never explored.

35 (Section 4)
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GIBBS SAMPLING - CORRELATION

Gibbs is More E�ective When Variables Are Less Correlated

Figure 27.7 from Barber: Two hundred Gibbs samples for a two dimensional Gaussian.
At each stage only a single component is updated. (a): For a Gaussian with low
correlation, Gibbs sampling can move through the likely regions e�ectively. (b): For a
strongly correlated Gaussian, Gibbs sampling is less e�ective and does not rapidly
explore the likely regions.

When the variables are very correlated a common strategy is to seek variable
transformations so that the transformed variables are approximately independent.

36 (Section 4)
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CONVERGENCE DIAGNOSTIC

How to check that a MC has reached stationarity
Compare between variance and within variance between
several simulations
Compute index R̂ and effective sample size
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EXAMPLE OF MCMC RUN

Convergence Diagnostics Via Visual Inspection

Figure 11.2 from Gelman et al. (2nd Edition): Five independent sequences of a Markov chain simulation for
the bivariate unit normal distribution, with over-dispersed starting points indicated by solid squares. (a) After
50 iterations, the sequences are still far from convergence. (b) After 1000 iterations, the sequences are nearer
to convergence. Figure (c) shows the iterates from the second halves of the sequences. The points in Figure
(c) have been jittered so that steps in which the random walk stood still are not hidden.

41 (Section 5)
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CONVERGENCE DIAGNOSTIC - EXAMPLE

INFERENCE AND ASSESSING CONVERGENCE 283

Figure 11.3 Examples of two challenges in assessing convergence of iterative simulations. (a) In
the left plot, either sequence alone looks stable, but the juxtaposition makes it clear that they have
not converged to a common distribution. (b) In the right plot, the twosequences happen to cover a
common distribution but neither sequence appears stationary. These graphs demonstrate the need
to use between-sequence and also within-sequence information when assessing convergence.

and discarding the rest. In our applications, we have found it useful to skip iterations in
problems with large numbers of parameters where computer storage is a problem, perhaps
setting k so that the total number of iterations saved is no more than 1000.

Whether or not the sequences are thinned, if the sequences have reached approximate
convergence, they can be directly used for inferences about the parameters θ and any other
quantities of interest.

Multiple sequences with overdispersed starting points

Our recommended approach to assessing convergence of iterative simulation is based on
comparing different simulated sequences, as illustrated in Figure 11.1 on page 276, which
shows five parallel simulations before and after approximate convergence. In Figure 11.1a,
the multiple sequences clearly have not converged; the variance within each sequence is
much less than the variance between sequences. Later, in Figure 11.1b, the sequences have
mixed, and the two variance components are essentially equal.

To see such disparities, we clearly need more than one independent sequence. Thus our
plan is to simulate independently at least two sequences, with starting points drawn from
an overdispersed distribution (either from a crude estimate such as discussed in Section 10.2
or a more elaborate approximation as discussed in the next chapter).

Monitoring scalar estimands

We monitor each scalar estimand or other scalar quantities of interest separately. Estimands
include all the parameters of interest in the model and any other quantities of interest (for
example, the ratio of two parameters or the value of a predicted future observation). It is
often useful also to monitor the value of the logarithm of the posterior density, which has
probably already been computed if we are using a version of the Metropolis algorithm.

Challenges of monitoring convergence: mixing and stationarity

Figure 11.3 illustrates two of the challenges of monitoring convergence of iterative simu-
lations. The first graph shows two sequences, each of which looks fine on its own (and,
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HAMILTONIAN MONTE CARLO - ALGORITHM

Appendix: Hamiltonian Monte-Carlo Algorithm

– Algorithm 27.4 from Barber

77 (Section 7)
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HAMILTONIAN MONTE CARLO - EXAMPLE

Figure 27.9 from Barber: Hybrid Monte Carlo. (a): Multi-modal distribution
p(x) for which we desire samples. (b): HMC forms the joint distribution p(x)p(y)
where p(y) is Gaussian. (c): This is a plot of (b) from above. Starting from the
point x, we first draw a y from the Gaussian p(y), giving a point (x, y), given by
the green line. Then we use Hamiltonian dynamics (white line) to traverse the
distribution at roughly constant energy for a fixed number of steps, giving xÕ, yÕ.
We accept this point if H(xÕ, yÕ) > H(x, yÕ) and make the new sample xÕ (red
line). Otherwise this candidate is accepted with probability
exp(H(xÕ, yÕ) ≠ H(x, yÕ)). If rejected the new sample xÕ is taken as a copy of x.
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