
LESSON 3.

1. Examples of algebraic varieties.

1.1. Points. In the Zariski topology both in An and in Pn all points are closed.

If P (a1, . . . , an) ∈ An, then P = V (x1 − a1, . . . , xn − an).

But in the projective space, if P [a0, . . . , an] ∈ Pn, the equations are different: P =

VP (aixj − ajxi)i,j=0,...,n.

In this way the polynomials defining P as closed set are homogeneous. They can be seen

as minors of order 2 of the matrix (
a0 a1 . . . an

x0 x1 . . . xn

)
with entries in K[x0, x1, . . . , xn]. This expresses the fact that x0, . . . , xn are proportional to

a0, . . . , an. Equations of the form VP (x0 − a0, . . . , xn − an) don’t make sense.

1.2. Affine and projective linear subspaces. Generalizing the previous example, the

linear subspaces, both in the affine and in the projective case, are examples of algebraic sets.

As it is well known, they are defined by equations of degree 1.

1.3. Hypersurfaces. An affine hypersurface is an affine variety of the form V (F ), the set

of zeroes of a unique polynomial F of positive degree. Similarly, in the projective space, a

projective hypersurface is of the form VP (G), where G ∈ K[x0, x1, . . . , xn] is a homogeneous

non-constant polynomial.

Examples of hypersurfaces are the curves in the affine or projective plane, and the surfaces

in a space of dimension 3, as for instance the quadrics.

Let us recall that the polynomial ring K[x1, . . . , xn] is a UFD (unique factorization do-

main), i. e. every non-constant polynomial F can be expressed in a unique way (up to the

order and up to units) as F = F r1
1 F

r2
2 . . . F rs

s , where F1, . . . , Fs are irreducible and two by

two distinct polynomials, and ri ≥ 1 for any i = 1, . . . , s. Hence the hypersurface of An

defined by F is

X := V (F ) = V (F r1
1 F

r2
2 . . . F rs

s ) = V (F1F2 . . . Fs) = V (F1) ∪ V (F2) ∪ · · · ∪ V (Fs).

The equation F1F2 . . . Fs = 0 is called the reduced equation of X. Note that F1F2 . . . Fs

generates the radical
√
F . If s = 1, X is called an irreducible hypersurface; by definition its
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degree is the degree of its reduced equation. Therefore, any hypersurface is a finite union of

irreducible hypersurfaces.

Assume now that Z = VP (G), with G ∈ K[x0, x1, . . . , xn], G homogeneous, is a projective

hypersurface. Exercise 2 asks to prove that the irreducible factors of G are homogeneous.

Therefore, as in the affine case, any projective hypersurface Z has a reduced equation (whose

degree is, by definition, the degree of Z) and Z is a finite union of irreducible hypersurfaces.

If the field K is algebraically closed, the degree of a projective hypersurface has the

following important geometrical meaning.

Proposition 1.1. Let K be an algebraically closed field. Let Z ⊂ Pn be a projective hyper-

surface of degree d. Then any line in Pn, not contained in Z, meets Z at exactly d points,

counting multiplicities.

In the proof we will see what we mean by saying “ counting multiplicity”.

Proof. Let G be the reduced equation of Z and L ⊂ Pn be any line.

We fix two points on L: A = [a0, . . . , an], B = [b0, . . . , bn]. So L admits parametric

equations of the form 
x0 = λa0 + µb0
x1 = λa1 + µb1
. . .

xn = λan + µbn

The points of Z ∩ L are obtained from the homogeneous pairs [λ, µ] which are solutions

of the equation G(λa0 +µb0, . . . , λan +µbn) = 0. If L ⊂ Z, then this equation is an identity.

Otherwise, G(λa0 +µb0, . . . , λan +µbn) is a non-zero homogeneous polynomial of degree d in

the two variables λ, µ. Since K is algebraically closed, it can be factorized in linear factors:

G(λa0 + µb0, . . . , λan + µbn) = (µ1λ− λ1µ)d1(µ2λ− λ2µ)d2 . . . (µrλ− λrµ)dr

with d1 +d2 + . . .+dr = d. Every factor corresponds to a point in Z ∩L, to be counted with

the same multiplicity as the corresponding factor. �

If K is not algebraically closed, considering the algebraic closure of K and using Proposi-

tion 1.1, we get that d is an upper bound on the number of points of Z ∩ L.

1.4. Product of affine spaces. Let An, Am be two affine spaces over the field K. The

cartesian product An × Am is the set of pairs (P,Q), P ∈ An, Q ∈ Am: it is in natural

bijection with An+m via the map

ϕ : An × Am −→ An+m
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such that ϕ((a1, . . . , an), (b1, . . . , bm)) = (a1, . . . , an, b1, . . . , bm).

From now on we will always identify An×Am with An+m. Therefore we have two topologies

on An × Am: the Zariski topology and the product topology.

Proposition 1.2. The Zariski topology is strictly finer than the product topology.

Proof. Let us first observe that, if X = V (α) ⊂ An, α ⊂ K[x1, . . . , xn] and Y = V (β) ⊂ Am,

β ⊂ K[y1, . . . , ym], then X × Y ⊂ An × Am is Zariski closed, precisely X × Y = V (α ∪ β)

where the union is made in the polynomial ring in n+m variables K[x1, . . . , xn, y1, . . . , ym].

Now we consider U = An \X and V = Am \ Y , open subsets of An and Am in the Zariski

topology. Then U × V = An × Am \ ((An × Y ) ∪ (X × Am)): this is a set-theoretical fact

that holds true in general. So it is open in An × Am in the Zariski topology.

Conversely, we give an example to prove that the two topologies are different. Precisely

we show that A1 ×A1 = A2 contains some subsets which are Zariski open, but are not open

in the product topology.

The proper open subsets in the product topology are of the form A1×A1 \ { finite unions

of “ vertical” and “ horizontal” lines}. See the figure.

Let X = A2 \ V (x− y): it is Zariski open but does not contain any non-empty subset of

the above form, so it is not open in the product topology. There are similar examples in

An × Am for any n,m. �

Note that there is no similar construction for Pn × Pm. We will see later that there is an

injective map of Pn × Pm to the projective space of dimension (n + 1)(m + 1) − 1, whose

image is a projective variety, the Segre map. This allows to give to the product of projective

spaces a geometric structure. We see here only the first case.

1.5. P1 × P1. The cartesian product P1 × P1 is simply a set: we want to define an injective

map σ from P1 × P1 to P3, so that the image is a projective variety, which will be identified

with our product.

It is defined in the following way: σ([x0, x1], [y0, y1]) = [x0y0, x0y1, x1y0, x1y1]. Using coor-

dinates z0, ..., z3 in P3, σ is defined parametrically by
z0 = x0y0

z1 = x0y1

z2 = x1y0

z3 = x1y1

It is easy to observe that σ is a well–defined map: the image is never [0, 0, 0, 0], and

depends uniquely on the pair of points and not on the choice of their coordinates. Moreover



4 LESSON 3.

	



LESSON 3. 5

σ is injective. Assume that σ([x0, x1], [y0, y1]) = σ([x′0, x
′
1], [y

′
0, y
′
1]). Then there exists a

non-zero constant λ such that 
x0y0 = λx′0y

′
0

x0y1 = λx′0y
′
1

x1y0 = λx′1y
′
0

x1y1 = λx′1y
′
1

Now, if y0 6= 0, then x0 = (λy′0/y0)x
′
0 and x1 = (λy′0/y0)x

′
1; if y1 6= 0, then x0 = (λy′1/y1)x

′
0

and x1 = (λy′1/y1)x
′
1; in both cases [x0, x1] = [x′0, x

′
1]. Similarly one proves that [y0, y1] =

[y′0, y
′
1].

Let Σ denote the image σ(P1×P1). It is the quadric z0z3−z1z2 = 0. On one hand it is clear

that σ(P1 × P1) ⊂ VP (z0z3 − z1z2). Conversely, assume that z0z3 = z1z2 and z0 6= 0. Then,

multiplying all coordinates by z0 we get: [z0, z1, z2, z3] = [z20 , z0z1, z0z2, z0z3]; by assumption

this coincides with [z20 , z0z1, z0z2, z1z2], and is therefore equal to σ([z0, z2], [z0, z1]). If z0 = 0,

the argument is similar,using another non-zero coordinate.

The map σ is called the Segre map and Σ the Segre variety.

1.6. Embedding of An in Pn. We will see now how to unify the two notions introduced

so far of affine and projective variety. Precisely, after identifying An with the open subset

U0 ⊂ Pn (or with any Ui), we will prove that the Zariski topology on An coincides with the

topology induced by the Zariski topology of Pn.

Let Hi be the hyperplane of Pn of equation xi = 0, i = 0, . . . , n; it is closed in the

Zariski topology, and its complementar set Ui is open. So we have an open covering of Pn:

Pn = U0 ∪ U1 ∪ · · · ∪ Un. Let us recall that for any i there is a bijection ϕi : Ui → An such

that ϕi([x0, . . . , xi, . . . , xn]) = (x0

xi
, . . . , 1̂, . . . , xn

xi
). The inverse map is ji : An → Ui such that

ji(y1, . . . , yn) = [y1, . . . , 1, . . . , yn].

Proposition 1.3. The map ϕi is a homeomorphism, for i = 0, . . . , n.

Proof. Assume i = 0 (the other cases are similar).

We introduce two maps:

(i) dehomogeneization of polynomials with respect to x0.

It is a map a : K[x0, x1, . . . , xn]→ K[y1, . . . , yn] such that

a(F (x0, . . . , xn)) = aF (y1, . . . , yn) := F (1, y1, . . . , yn).

Note that a is a ring homomorphism.

(ii) homogeneization of polynomials with respect to x0.
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It is a map h : K[y1, . . . , yn]→ K[x0, x1, . . . , xn] defined by

h(G(y1, . . . , yn)) = hG(x0, . . . , xn) := xdegG0 G(
x1

x0

, . . . ,
xn

x0

).

hG is always a homogeneous polynomial of the same degree as G. The map h is clearly not

a ring homomorphism. Note that always a(hG) = G but in general h(aF ) 6= F ; what we can

say is that, if F (x0, . . . , xn) is homogeneous, then there exists r ≥ 0 such that F = xr0(
h(aF )).

Let X ⊂ U0 be closed in the topology induced by the Zariski topology of the projective

space, i.e. X = U0 ∩ VP (I) where I is a homogeneous ideal of K[x0, x1, . . . , xn]. Define aI =

{aF | F ∈ I}: it is an ideal of K[y1, . . . , yn] (because a is a ring homomorphism). We prove

that ϕ0(X) = V (aI). Indeed, let P [x0, . . . , xn] be a point of U0; then ϕ0(P ) = (x1

x0
, . . . , xn

x0
) ∈

ϕ0(X) ⇐⇒ P [x0, . . . , xn] = [1, x1

x0
, . . . , xn

x0
] ∈ X = VP (I) ⇐⇒ F (1, x1

x0
, . . . , xn

x0
) = 0 ∀ aF ∈

aI ⇐⇒ ϕ0(P ) ∈ V (aI).

Conversely: let Y = V (α) be a Zariski closed set of An, where α ideal of K[y1, . . . , yn].

Let hα be the homogeneous ideal of K[x0, x1, . . . , xn] generated by the set {hG | G ∈ α}. We

prove that ϕ−10 (Y ) = VP (hα)∩U0. Indeed [1, x0, . . . , xn] ∈ ϕ−10 (Y )⇐⇒ (x1, . . . , xn) ∈ Y ⇐⇒
G(x1, . . . , xn) = hG(1, x1, . . . , xn) = 0 ∀ G ∈ α⇐⇒ [1, x1, . . . , xn] ∈ VP (hα). �

From now on we will often identify An with U0 via ϕ0 (and similarly with Ui via ϕi). So

if P [x0, . . . , xn] ∈ U0, we will refer to x0, . . . , xn as the homogeneous coordinates of P and to
x1

x0
, . . . , xn

x0
as the non–homogeneous or affine coordinates of P .

Exercises 1. It will useful to remember that any algebraically closed field is infinite.

(1) Assume that K is an algebraically closed field.

a) Prove that, if n ≥ 1, then in An
K the complementar set of any hypersurface has

infinitely many points.

b) Prove that, if n ≥ 2, then also any hypersurface has infinitely many points.

(2) Prove that the Zariski topology on An is T1.

(3) Let F ∈ K[x0, x1, . . . , xn] be a homogeneous polynomial. Check that its irreducible

factors are homogeneous. (Hint: prove that a product of two polynomials not both

homogeneous is not homogeneous.)

Solution of Exercise 1 (1).

Let the hypersurface in question be defined by F (x1, . . . , xn) = 0, F non constant. We

can assume that the variable xn occurs in F . So we have an expression

F = f0 + f1xn + · · ·+ fdx
d
n,
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with fi ∈ K[x1, . . . , xn−1] ∀i, d > 0 and fd 6= 0.

a) For this first part it is enough to assume that K is an infinite field. We proceed by

induction on the number of variables. If n = 1, the statement is true because K is infinite.

Let n > 1: by the inductive assumption, there exist infinitely many (a1, . . . , an−1) ∈ Kn−1

such that fd(a1, . . . , an−1) 6= 0. Then for any such (n− 1)-tuple F (a1, . . . , an−1, xn) is a non

zero polynomial of degree d > 0 in K[xn]: it has finitely many zeros, so there are infinitely

many an ∈ K such that F (a1, . . . , an−1, an) 6= 0.

b) As in a), there exist infinitely many (a1, . . . , an−1) ∈ Kn−1 such that fd(a1, . . . , an−1) 6=
0. Since K is algebraically closed, for each of these (a1, . . . , an−1) there is at least one an ∈ K
such that F (a1, . . . , an−1, an) = 0.


