Exercise. Given v : 2 — R of class C%, find a function C(x,y), (x,y) € Q,
and a nonnegative constant M such that

max  |Apvlg, (z,y) — Av(z,y) — C(m,y)hﬂ < Mh*.
(z,9)€Qn "

Just above we have shown the expansion

Ah”'ﬁh (xuy) = Av (1'7y) + EZ(xay)v (i[!,y) € Q7

o*v
W(%Zy)‘}-

where

o*v
@(x,y) , max

h2
max |E2(x,y)| < —max<{ max
6 (2.9)€Q

(z,y)EQ (z,y)eQ

By this exercise , we can expand one more term:
Ahv|§h (Ivy) = Av (I7y) + C(I,y)hQ + E4(‘T7 y)? (Qj’y) € Qa
where

max |Ey(x,y)| < Mh*.
(z,y)EQn

For the second central difference

v(t—h)—2v({t)+v(t+h)
72

~ v// (t)

approximating v”’ (t), where v is a function of the real variable ¢, we have the
following expansion of the error

v(t—h)—2v(t)+v(t+h)

h2
e 0" (t) =

24

(0(4) (o) + v (ﬁh)) ;

where ay, € (t — h,t) and B, € (t,t+h)..
Now, we need a more refined expansion

v(t—h)—2v(t)+v({t+h)
72

—v"(t)=C(t)h? + E ()

where
E (t) = o (h*) = higher order term in power of h.

So, we assume v of class C% and then, by using the Taylor expansions

h2 hS h4 h5 h6
v (t — h) =7 (t) — h'U/ (t) + 77}” (t) — F'UN/ (t) + ﬂ'[}@l) (t) — HO'U(5) (t) + ﬁov(6) (Oéh)
feh) = ot ()4 ey ey ) he ) e ©
v(t+h)=v(t)+h'(t)+ 5V (t) + 5! (t)+24v (t)+120v (t)+72011 (Bn)



where ay, € (t — h,t) and By, € (t,t + h). Thus, we obtain

2. 1 h4 4 hG 6 6
v(t=h)+v(E+h) = 20(0)+h%" 1)+ 130 (0)+ 255 (v (@) +0 @ (8,))
and then

oy 2 4
v(t—h) 21};lgt)+v(t+h) () = %U(z;) (t)+% (U(a) (an) + 0® (5h)>-

Now, we pass to consider the five-point discretization of the Laplacian.
Let v : Q — R be of class C%. We have, for (x,y) € Qp,

Ahv|ﬁh ($3y> - Av (Iay)
v(z—hy)—2v(z,y)+v(z+hy)  v(@y—h)—2v(zy) +v(r,y+h)
12 + 12

o2y 0%v
— (W (ac,y) + 873/2 (m,y))
n2 o B4 /88 o°
_ how $7y)+(v ah,y)+(9;é(5hay))

12 Oz* ( 720 \ 06 (
h? o*v ht (8% %
s )+ s (5o )+ S (@)

with ap € (x —h,x), B € (x,z+h), vn € (y—h,y) and §, € (y,y + h).
Hence, we can write

Ahv|ﬁh, (l'7y) —Av (xay) =C (Jf, y) h’2 =+ E4 (l‘,y) )

where | o o
v v
C(x,y) = 1 (63:4 (z,y) + ot (x,y))
and
ht /0% 9% 9% 9%
Ey(x,y) = 0 (axﬁ (an,y) + (5ha y) + ayo (z, ) + B ($a5h)> .
We have
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| 4 (.’I?,y)| 720 81'6 (ahay) (B}u ) 5‘y6 (xa,)/h) + 8y6 (-’L’,(Sh)
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Exercise. Write the 1D BVP given by the Poisson equation with Dirichlet
boundary condition on 2 = (0,1). Solve analytically this problem. Propose a
corresponding discrete problem and write the associated linear system. Prove
that the discrete problem has a unique solution. Compute the computational
cost for solving the linear system by gaussian elimination.

The 1D Poisson equation with Dirichlet boundary condition on © = (0, 1) is

{ u" (z) = f(x), z€(0,1),
u(0) =g(0) and u(1) =g(1).

1) Solve analytically this problem.
We have

u (x) =u' (0)+ [ v (s)ds, z €][0,1],
/

and then

= u(0)+ u'(O)Jr u” (t)dt | ds
0
= u(0)+/u ds+//u t) dtds
0 0 0
xr S8

= u(0)+zu ( —|—//u t)dtds, x € [0,1].
0 0

By using the Poisson equation and the boundary condition u (0) = ¢ (0), we
obtain

u(z) =g (0) + au ( //f t)dtds, = € [0,1].

The unknown «’ (0) is determined by the other boundary condition u (1) = g (1):

9(1)=u(1)=y(0)+u’(0)+//f(t)dtds
U’(0)=9(1)—g(0)—//f t) dtds.

gives



The solution is

u(z) =g (0) + au' ( +//f t) dtds
00

=g0)+z|g( jjf dtds | +
0

=(1-2)g(0)+zg(1 +//f dtdsx/l
0

€ [0,1].

£ (t) dtds

o,

f(t) dtds

O~

2) Propose a corresponding discrete problem and write the associated linear
system.
Let h = &, where N is a positive integer. We introduce the mesh

Ry = {mh:m e Z}
and the discretization of Q given by
QhZQﬂRhZ{mhime{l,...,N—l}}.

By using the second central difference for approximating the second derivative,
we obtain the discrete problem

{ uh(;pfh)72u£2(z)+uh(w+h) — f ((E), xr € Qh,
up (0) = g(0) and up (1) =g (1)

where uy, : Q, = Q, U{0,1} — R approximates the solution u of the BVP
Poisson equation with Dirichlet boundary condition.
By introducing

w; =u(ih), i € {0,1,...,N —1,N},
fi=f@h),ie{l,...,N—1},
gi:g(ih)’ ’iE{O,N},

we have the linear system
1= 2u Fug =R, i€ {1,...,N -1},
given by N — 1 equations into the N — 1 unknowns
u; =wu(ih), ie{l,...,N —1}.

Observe that ug = go and uy = gy are known. We can write the linear system
in the form

AU =b



as

[ —2 1 0 . . .0 w1 [ R*fi—g0 ]
1 -2 1 . (%) h2f2
1
. 0 . .
. .. =2 1 UN_2 hZfN_Q
L 0 . . . 0 1 -2 1L UN-—-1 i L h2fN—1 — gN i

where A has order n = N — 1.

3) Prove that the discrete problem has a unique solution.
The matrix A is symmetric. Now, we prove that it is also negative definite.
For v € RV~! we have

-2 1 0 . . . 0
1 -2 1
0 1 ... . N-1
(v, Av) = vT Av = o7 . e . Clv= Z V;Qi5V;
. . . 0 i,j=1
. A 1
o0 . . .0 1 -2
= —2v% + v1v2 + V2U1 — 2v§ + Va3 + U3U2 — 2v§
+ PN
—203 5+ UN_2UN_1 + UN_1UN_2 — 204
= —211% — 21)% — 2v§ 4+ = 21112\,72 — 211]2\,71
420109 + 2v9v3 + - - - + 20N _2UN 1
—v? — (v} — 2u1vg +v3) — (V3 — 20903 +V3) + -+ — (Vi _y — 2un_2UN_1 + VX 1) — v
= v — (v — v2)2 — (ve — 1)3)2 +- = (vn_2 — vN,l)2 — 03, <0.

We have proved that the matrix A is negative semi-definite. Now, we show that

A is negative definite. For v = (vi,va,...,vx_1) € R¥~! such that
(v, Av) =0
we have
2 2

—’U% — (’Ul — ’U2) + ... = (’UN,Q — UNfl) — /U]2V71 =0.
Then

v =0, v1—v2=0, ..., oy—2 —vNn_1 =0, vy_1 =0,
and so v1 = vy = ... =vy_1 = 0. The matrix A is negative definite.

Since the matrix A is negative definite, it is nonsingular because all the
eigenvalues of A are negative and then non-zero. We conclude that the linear
system has a unique solution.

2
N—-1



4) Compute the computational cost for solving the linear system by gaussian
elimination.

The matrix A of the system is tridiagonal. It is a band matrix with band-
width w = 1 and then the computational cost for solving the linear system
is

number of arithmetic operations = O(w?n) = O(n) = O(N — 1).

In this 1D situation, we can solve the linear system by gaussian elimination.

Exercise. Consider the 3D BVP given by the Poisson equation with Dirichlet
boundary condition on Q = (0,1)3. Propose a discrete Laplacian and a conse-
quent discrete problem. Describe, in the matrix of the linear system associated
to the discrete problem, the row corresponding to a mesh point in € with
nearest neighbors in £2;,. Compute the computational cost for solving the linear
system by gaussian elimination.

The 3D Poisson equation with Dirichlet boundary condition on Q = (0,1)3

{ Au(z,y,2) = f(z,y,2), (x,y,2) € Q,

1S
u(z,y,2) =g(x,y,2), (v,y,2) €T,

where I is the boundary of €.

1) Propose a discrete Laplacian and a consequent discrete problem.
Let N be a positive integer and let h = % The space R? is discretized by
the mesh

3 .= {(mh,nh,ph) : m,n,p € Z} .
Each mesh point (mh,nh,ph) € RZ has six nearest neighbors in the mesh:

(m — 1)h,nh, ph) left,

)

(m + 1)h, nh, ph) right,
)
)

e (mh,(n — 1)h,ph) back,
e (mh,(n+ 1)h,ph) front,
e (mh,h,(p—1)h) down,

(
(
(
(
(
(

h,h
mh, h (p + 1) h)

Now, we introduce

e O, =0nN Rf’l as a discretization of €.

e [}, the set of the mesh points not in 2 but with a nearest neighbor in
Oy, as a discretization of T.



e O, = O, UL, as a discretization of €.

The discrete Laplacian is a seven-point discretization of the Laplacian: for
a mesh function vy, : Q — R, we have

AhrUh (Ivyaz)
Uh (33 - h,y,Z) - QU}L (33’%2) + vp (.13 + h,y,Z)
= B
Uh (x,y—h,z)—th(a:,y,z)—i-vh (J?,y—Fh,Z)
+
h2
Up, (3?,1%75— h) - 2’Uh (l‘,y,Z) + vp (x,y,z—i—h)
_l’_
h2
1
T2
-(vh(m,y,z—h)—l—vh(m,y—h,z)—l—vh(x—h,y,z)
_6Uh (CE,y,Z)
+vn (l'+h7yvz)+vh (x7y+h7z)+vh(z7yvz+h))
(3372%2) € Qh-

The discrete problem is

{ Anup (2,y,2) = f(,9,2), (z,y,2) € M,
Uh (l‘vya Z) =g (13, Y, Z) ) (17;,% Z) € Fh7

where uy, : Q, — R approximates the solution « of the BVP Poission equation
with Dirichlet boundary condition.

2) Describe, in the matrix of the linear system associated to the discrete
problem, the row corresponding to a mesh point in £, with nearest neighbors
in Qh.

By setting

Uijk = Uh (Zh,jh, kh) R (Zh,jh, kh) S ﬁ}“
fijk = f (Zhajha kh) ’ (lha]hv kh) € Wy,
Gijk *— 9 (Zhajhv kh) y (Zha.]hv kh) € Fh7

the discrete Poisson problem becomes

{ Wijh—1 + Uij—1k + Uim1jk — OUk + Uit1jk + Uij1k + Yijks1 = B2 fijr, (4,7,k) € {1,...,N — 1},
Uijk = Gijk, (ih,jh,kh) € T'y.

This is the system of the (N — 1)? scalar linear equations

. 3
Ui 1 Ui — 1+ Ui— 1 —6Us kUi 1k Uij 1kt Uijeer = B2 fije, (i,7,k) € {1,...,N —1}7,



into the (N — 1)3 scalar unknowns
wijr, (i,5,k) € {1,...,N —1}>.
We write the linear system in the form
AU = b,
where

e A is the square matrix of the system of order n = (N — 1)3.
e U is the column vector of the unknowns of dimension n.

e b is the column vector of the known terms of dimension n.

The (N — 1)% unknowns, which are arranged in a cube, need to be ordered
in a column vector. We cut j, by slices

QM:{(ih,jh,kh):(i,j)e{l,...,N—1}2}, kell,...,N—1},

where each slice is like 2, in the 2D case. The slices are ordered as 2, 1,...,Qx nv—1
from the bottom to the top. Inside each slice, the unknowns are ordered as in
the 2D case. In this linear order of the unknowns, for an index [ € {1,...,n}

corresponding to a mesh point in €2;, with nearest neighbors in €2, we have the
equation

Ul,(N,1)2 + Ulf(Nfl) + U1 —6U +Upp1 +Upn-1 + Ul+(N71)2 = h2fl.

3) Compute the computational cost for solving the linear system by gaussian
elimination.

The matrix A has seven non-zero diagonals: the principal diagonal, the
first lower and upper diagonals, the (N — 1)-th lower and upper diagonals and
(N — 1)2—th lower and upper diagonals. So, A is a band matrix with bandwidth
w = (N —1)* and then the computational cost for solving the linear system is

number of arithmetic operations = O(w?n) = O((N —1)* (N = 1)*) = O(N = 1)").

We cannot solve the linear system by gaussian elimination.



