
Exercise. Given v : Ω → R of class C6, find a function C(x, y), (x, y) ∈ Ω,
and a nonnegative constant M such that

max
(x,y)∈Ωh

∣∣∆hv|Ωh
(x, y)−∆v (x, y)− C(x, y)h2

∣∣ ≤Mh4.

Just above we have shown the expansion

∆hv|Ωh
(x, y) = ∆v (x, y) + E2(x, y), (x, y) ∈ Ω,

where

max
(x,y)∈Ωh

|E2(x, y)| ≤ h2

6
max

{
max

(x,y)∈Ω

∣∣∣∣∂4v

∂x4
(x, y)

∣∣∣∣ , max
(x,y)∈Ω

∣∣∣∣∂4v

∂y4
(x, y)

∣∣∣∣
}
.

By this exercise , we can expand one more term:

∆hv|Ωh
(x, y) = ∆v (x, y) + C(x, y)h2 + E4(x, y), (x, y) ∈ Ω,

where
max

(x,y)∈Ωh

|E4(x, y)| ≤Mh4.

For the second central difference

v (t− h)− 2v (t) + v (t+ h)

h2
≈ v′′ (t)

approximating v′′ (t), where v is a function of the real variable t, we have the
following expansion of the error

v (t− h)− 2v (t) + v (t+ h)

h2
− v′′ (t) =

h2

24

(
v(4) (αh) + v(4) (βh)

)
,

where αh ∈ (t− h, t) and βh ∈ (t, t+ h)..
Now, we need a more refined expansion

v (t− h)− 2v (t) + v (t+ h)

h2
− v′′ (t) = C (t)h2 + E (t)

where
E (t) = o

(
h2
)

= higher order term in power of h.

So, we assume v of class C6 and then, by using the Taylor expansions

v (t− h) = v (t)− hv′ (t) +
h2

2
v′′ (t)− h3

6
v′′′ (t) +

h4

24
v(4) (t)− h5

120
v(5) (t) +

h6

720
v(6) (αh)

v (t+ h) = v (t) + hv′ (t) +
h2

2
v′′ (t) +

h3

6
v′′′ (t) +

h4

24
v(4) (t) +

h5

120
v(5) (t) +

h6

720
v(6) (βh)
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where αh ∈ (t− h, t) and βh ∈ (t, t+ h). Thus, we obtain

v (t− h)+v (t+ h) = 2v (t)+h2v′′ (t)+
h4

12
v(4) (t)+

h6

720

(
v(6) (αh) + v(6) (βh)

)
.

and then

v (t− h)− 2v (t) + v (t+ h)

h2
− v′′ (t) =

h2

12
v(4) (t) +

h4

720

(
v(6) (αh) + v(6) (βh)

)
.

Now, we pass to consider the five-point discretization of the Laplacian.
Let v : Ω→ R be of class C6. We have, for (x, y) ∈ Ωh,

∆hv|Ωh
(x, y)−∆v (x, y)

=
v (x− h, y)− 2v (x, y) + v (x+ h, y)

h2
+
v (x, y − h)− 2v (x, y) + v (x, y + h)

h2

−
(
∂2v

∂x2
(x, y) +

∂2v

∂y2
(x, y)

)
=

h2

12

∂4v

∂x4
(x, y) +

h4

720

(
∂6v

∂x6
(αh, y) +

∂6v

∂x6
(βh, y)

)
+
h2

12

∂4v

∂y4
(x, y) +

h4

720

(
∂6v

∂y6
(x, γh) +

∂6v

∂y6
(x, δh)

)
with αh ∈ (x− h, x), βh ∈ (x, x+ h), γh ∈ (y − h, y) and δh ∈ (y, y + h).
Hence, we can write

∆hv|Ωh
(x, y)−∆v (x, y) = C (x, y)h2 + E4 (x, y) ,

where

C (x, y) =
1

12

(
∂4v

∂x4
(x, y) +

∂4v

∂y4
(x, y)

)
and

E4 (x, y) =
h4

720

(
∂6v

∂x6
(αh, y) +

∂6v

∂x6
(βh, y) +

∂6v

∂y6
(x, γh) +

∂6v

∂y6
(x, δh)

)
.

We have

|E4 (x, y)| =
h4

720

∣∣∣∣∂6v

∂x6
(αh, y) +

∂6v

∂x6
(βh, y) +

∂6v

∂y6
(x, γh) +

∂6v

∂y6
(x, δh)

∣∣∣∣
≤ h4

720

(∣∣∣∣∂6v

∂x6
(αh, y)

∣∣∣∣+

∣∣∣∣∂6v

∂x6
(βh, y)

∣∣∣∣+

∣∣∣∣∂6v

∂y6
(x, γh)

∣∣∣∣+

∣∣∣∣∂6v

∂y6
(x, δh)

∣∣∣∣)
≤ h4

180
max

{
max

(x,y)∈Ω

∣∣∣∣∂6v

∂x6
(x, y)

∣∣∣∣ , max
(x,y)∈Ω

∣∣∣∣∂6v

∂y6
(x, y)

∣∣∣∣
}

= Mh4, where M =
1

180
max

{
max

(x,y)∈Ω

∣∣∣∣∂6v

∂x6
(x, y)

∣∣∣∣ , max
(x,y)∈Ω

∣∣∣∣∂6v

∂y6
(x, y)

∣∣∣∣
}
.
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Exercise. Write the 1D BVP given by the Poisson equation with Dirichlet
boundary condition on Ω = (0, 1). Solve analytically this problem. Propose a
corresponding discrete problem and write the associated linear system. Prove
that the discrete problem has a unique solution. Compute the computational
cost for solving the linear system by gaussian elimination.

The 1D Poisson equation with Dirichlet boundary condition on Ω = (0, 1) is{
u′′ (x) = f (x) , x ∈ (0, 1) ,
u (0) = g (0) and u (1) = g (1) .

1) Solve analytically this problem.
We have

u′ (x) = u′ (0) +

x∫
0

u′′ (s) ds, x ∈ [0, 1] ,

and then

u (x) = u (0) +

x∫
0

u′ (s) ds

= u (0) +

x∫
0

u′ (0) +

s∫
0

u′′ (t) dt

 ds

= u (0) +

x∫
0

u′ (0) ds+

x∫
0

s∫
0

u′′ (t) dtds

= u (0) + xu′ (0) +

x∫
0

s∫
0

u′′ (t) dtds, x ∈ [0, 1] .

By using the Poisson equation and the boundary condition u (0) = g (0), we
obtain

u (x) = g (0) + xu′ (0) +

x∫
0

s∫
0

f (t) dtds, x ∈ [0, 1] .

The unknown u′ (0) is determined by the other boundary condition u (1) = g (1):

g (1) = u (1) = g (0) + u′ (0) +

1∫
0

s∫
0

f (t) dtds

gives

u′ (0) = g (1)− g (0)−
1∫

0

s∫
0

f (t) dtds.
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The solution is

u (x) = g (0) + xu′ (0) +

x∫
0

s∫
0

f (t) dtds

= g (0) + x

g (1)− g (0)−
1∫

0

s∫
0

f (t) dtds

+

x∫
0

s∫
0

f (t) dtds

= (1− x) g (0) + xg (1) +

x∫
0

s∫
0

f (t) dtds− x
1∫

0

s∫
0

f (t) dtds

x ∈ [0, 1] .

2) Propose a corresponding discrete problem and write the associated linear
system.

Let h = 1
N , where N is a positive integer. We introduce the mesh

Rh = {mh : m ∈ Z}

and the discretization of Ω given by

Ωh = Ω ∩ Rh = {mh : m ∈ {1, . . . , N − 1}} .

By using the second central difference for approximating the second derivative,
we obtain the discrete problem{

uh(x−h)−2uh(x)+uh(x+h)
h2 = f (x) , x ∈ Ωh,

uh (0) = g (0) and uh (1) = g (1)

where uh : Ωh = Ωh ∪ {0, 1} → R approximates the solution u of the BVP
Poisson equation with Dirichlet boundary condition.

By introducing

ui = u (ih) , i ∈ {0, 1, . . . , N − 1, N} ,
fi = f (ih) , i ∈ {1, . . . , N − 1} ,
gi = g (ih) , i ∈ {0, N} ,

we have the linear system

ui−1 − 2ui + ui+1 = h2fi, i ∈ {1, . . . , N − 1} ,

given by N − 1 equations into the N − 1 unknowns

ui = u (ih) , i ∈ {1, . . . , N − 1} .

Observe that u0 = g0 and uN = gN are known. We can write the linear system
in the form

AU = b
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as 

−2 1 0 . . . 0
1 −2 1 . .
0 1 . . . .
. . . . . . .
. . . . . 0
. . . −2 1
0 . . . 0 1 −2





u1

u2

.

.

.
uN−2

uN−1


=



h2f1 − g0

h2f2

.

.

.
h2fN−2

h2fN−1 − gN


,

where A has order n = N − 1.

3) Prove that the discrete problem has a unique solution.
The matrix A is symmetric. Now, we prove that it is also negative definite.

For v ∈ RN−1, we have

〈v,Av〉 = vTAv = vT



−2 1 0 . . . 0
1 −2 1 . .
0 1 . . . .
. . . . . . .
. . . . . 0
. . . −2 1
0 . . . 0 1 −2


v =

N−1∑
i,j=1

viaijvj

= −2v2
1 + v1v2 + v2v1 − 2v2

2 + v2v3 + v3v2 − 2v2
3

+ · · ·
−2v2

N−2 + vN−2vN−1 + vN−1vN−2 − 2v2
N−1

= −2v2
1 − 2v2

2 − 2v2
3 + · · · − 2v2

N−2 − 2v2
N−1

+2v1v2 + 2v2v3 + · · ·+ 2vN−2vN−1

= −v2
1 − (v2

1 − 2v1v2 + v2
2)− (v2

2 − 2v2v3 + v2
3) + · · · − (v2

N−2 − 2vN−2vN−1 + v2
N−1)− v2

N−1

= −v2
1 − (v1 − v2)

2 − (v2 − v3)
2

+ · · · − (vN−2 − vN−1)
2 − v2

N−1 ≤ 0.

We have proved that the matrix A is negative semi-definite. Now, we show that
A is negative definite. For v = (v1, v2, . . . , vN−1) ∈ RN−1 such that

〈v,Av〉 = 0

we have
−v2

1 − (v1 − v2)
2

+ . . .− (vN−2 − vN−1)
2 − v2

N−1 = 0.

Then
v1 = 0, v1 − v2 = 0, . . . , vN−2 − vN−1 = 0, vN−1 = 0,

and so v1 = v2 = . . . = vN−1 = 0. The matrix A is negative definite.
Since the matrix A is negative definite, it is nonsingular because all the

eigenvalues of A are negative and then non-zero. We conclude that the linear
system has a unique solution.
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4) Compute the computational cost for solving the linear system by gaussian
elimination.

The matrix A of the system is tridiagonal. It is a band matrix with band-
width w = 1 and then the computational cost for solving the linear system
is

number of arithmetic operations = O(w2n) = O(n) = O(N − 1).

In this 1D situation, we can solve the linear system by gaussian elimination.

Exercise. Consider the 3D BVP given by the Poisson equation with Dirichlet
boundary condition on Ω = (0, 1)3. Propose a discrete Laplacian and a conse-
quent discrete problem. Describe, in the matrix of the linear system associated
to the discrete problem, the row corresponding to a mesh point in Ωh with
nearest neighbors in Ωh. Compute the computational cost for solving the linear
system by gaussian elimination.

The 3D Poisson equation with Dirichlet boundary condition on Ω = (0, 1)3

is {
∆u (x, y, z) = f (x, y, z) , (x, y, z) ∈ Ω,
u (x, y, z) = g (x, y, z) , (x, y, z) ∈ Γ,

where Γ is the boundary of Ω.

1) Propose a discrete Laplacian and a consequent discrete problem.
Let N be a positive integer and let h = 1

N . The space R3 is discretized by
the mesh

R3
h := {(mh, nh, ph) : m,n, p ∈ Z} .

Each mesh point (mh, nh, ph) ∈ R3
h has six nearest neighbors in the mesh:

• ((m− 1)h, nh, ph) left,

• ((m+ 1)h, nh, ph) right,

• (mh, (n− 1)h, ph) back,

• (mh, (n+ 1)h, ph) front,

• (mh, h, (p− 1)h) down,

• (mh, h, (p+ 1)h) up.

Now, we introduce

• Ωh = Ω ∩ R3
h as a discretization of Ω.

• Γh, the set of the mesh points not in Ωh but with a nearest neighbor in
Ωh, as a discretization of Γ.
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• Ωh = Ωh ∪ Γh as a discretization of Ω.

The discrete Laplacian is a seven-point discretization of the Laplacian: for
a mesh function vh : Ωh → R, we have

∆hvh (x, y, z)

=
vh (x− h, y, z)− 2vh (x, y, z) + vh (x+ h, y, z)

h2

+
vh (x, y − h, z)− 2vh (x, y, z) + vh (x, y + h, z)

h2

+
vh (x, y, z − h)− 2vh (x, y, z) + vh (x, y, z + h)

h2

=
1

h2

· (vh (x, y, z − h) + vh (x, y − h, z) + vh (x− h, y, z)
−6vh (x, y, z)

+vh (x+ h, y, z) + vh (x, y + h, z) + vh (x, y, z + h))

(x, y, z) ∈ Ωh.

The discrete problem is{
∆huh (x, y, z) = f (x, y, z) , (x, y, z) ∈ Ωh,
uh (x, y, z) = g (x, y, z) , (x, y, z) ∈ Γh,

where uh : Ωh → R approximates the solution u of the BVP Poission equation
with Dirichlet boundary condition.

2) Describe, in the matrix of the linear system associated to the discrete
problem, the row corresponding to a mesh point in Ωh with nearest neighbors
in Ωh.

By setting

uijk := uh (ih, jh, kh) , (ih, jh, kh) ∈ Ωh,

fijk := f (ih, jh, kh) , (ih, jh, kh) ∈ Ωh,

gijk := g (ih, jh, kh) , (ih, jh, kh) ∈ Γh,

the discrete Poisson problem becomes{
uijk−1 + uij−1k + ui−1jk − 6uijk + ui+1jk + uij+1k + uijk+1 = h2fijk, (i, j, k) ∈ {1, . . . , N − 1}3 ,
uijk = gijk, (ih, jh, kh) ∈ Γh.

This is the system of the (N − 1)3 scalar linear equations

uijk−1+uij−1k+ui−1jk−6uijk+ui+1jk+uij+1k+uijk+1 = h2fijk, (i, j, k) ∈ {1, . . . , N − 1}3 ,
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into the (N − 1)3 scalar unknowns

uijk, (i, j, k) ∈ {1, . . . , N − 1}3 .

We write the linear system in the form

AU = b,

where

• A is the square matrix of the system of order n = (N − 1)3.

• U is the column vector of the unknowns of dimension n.

• b is the column vector of the known terms of dimension n.

The (N − 1)3 unknowns, which are arranged in a cube, need to be ordered
in a column vector. We cut Ωh by slices

Ωh,k =
{

(ih, jh, kh) : (i, j) ∈ {1, . . . , N − 1}2
}
, k ∈ {1, . . . , N − 1} ,

where each slice is like Ωh in the 2D case. The slices are ordered as Ωh,1, . . . ,Ωh,N−1

from the bottom to the top. Inside each slice, the unknowns are ordered as in
the 2D case. In this linear order of the unknowns, for an index l ∈ {1, . . . , n}
corresponding to a mesh point in Ωh with nearest neighbors in Ωh, we have the
equation

Ul−(N−1)2 + Ul−(N−1) + Ul−1 − 6Ul + Ul+1 + Ul+N−1 + Ul+(N−1)2 = h2fl.

3) Compute the computational cost for solving the linear system by gaussian
elimination.

The matrix A has seven non-zero diagonals: the principal diagonal, the
first lower and upper diagonals, the (N − 1)-th lower and upper diagonals and

(N − 1)
2
-th lower and upper diagonals. So, A is a band matrix with bandwidth

w = (N − 1)
2

and then the computational cost for solving the linear system is

number of arithmetic operations = O(w2n) = O((N − 1)
4

(N − 1)
3
) = O((N − 1)

7
).

We cannot solve the linear system by gaussian elimination.
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