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We consider the heat equation on an open spatial domain Ω ⊆ Rd (d ∈
{1, 2, 3}) for a time interval [0, T ]:

∂u

∂t
(x, t) = c∆u (x, t) + f (x, t) , (x, t) ∈ Ω× [0, T ] ,

where c > 0 and f : Ω × [0, T ] → R are given and u : Ω × [0, T ] → R is the
unknown.

Here u (x, t) can be interpreted as the temperature at the point x ∈ Ω and
at the time t ∈ [0, T ]. In this context, the constant c depends on conductivity,
specific heat and density of the material in Ω and the function f takes into
account sources and sinks of heat.

To obtain a problem with a unique solution, we need:

• a boundary condition: we consider the homogeneous boundary condition

u (x, t) = 0, (x, t) ∈ Γ× [0, T ] ,

where Γ is the boundary of Ω;

• an initial condition
u (x, 0) = u0 (x) , x ∈ Ω,

where u0 : Ω→ R.

1 The semi-discretization in space

Let us suppose that Ω = (0, 1)
2

is the unit square in R2.
In this case, by introducing the mesh R2

h, h = 1
N with N positive integer,

and then Ωh, Γh and Ωh as discretizations of Ω, Γ and Ω, respectively, the
Laplacian ∆ can be discretized by the five-point discretization ∆h.

Thus, in the discrete problem, we look for a function uh : Ωh × [0, T ] → R
such that

∂uh
∂t

(x, t) = c∆huh (x, t) + f (x, t) , (x, t) ∈ Ωh × [0, T ] ,

uh (x, t) = 0, (x, t) ∈ Γh × [0, T ] ,

uh (x, 0) = u0 (x) , x ∈ Ωh.
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This is an ODE. In particular, it is a system of (N−1)2 scalar ODEs in (N−1)2

unknown scalar functions: there is a scalar ODE for each point in Ωh and there
is an unknown scalar function

uh (x, ·) : [0, T ]→ R

for each point x ∈ Ωh (recall that uh is known in Γh).
Observe that a space point in the Poisson equation was denoted by (x, y)

and, now, it is denoted by x = (x1, x2).
The process of reducing an evolutionary PDE, like the heat equation, to a

system of scalar ODEs by using a finite difference approximation of the spatial
operator, as when the five-point discretization is used for approximating the
Laplacian, is called the semi-discretization in space or the method of lines. The
lines are the unknown functions of time

uh (x, ·) : [0, T ]→ R, x ∈ Ωh.

We have a line for each point in Ωh.
The method of lines is not a full discretization, since we still have to choose

a numerical method for solving in time the system of scalar ODEs. In principle,
any of the methods for the numerical solution of ODEs could be used to obtain
a full discretization. We shall investigate some of the simplest possibilities,
namely:

• the forward Euler method,

• the backward Euler method,

• the trapezoidal rule.

For simplicity, we consider one space dimension, where

Ω = (0, 1) ,Ωh = {h, 2h, . . . , (N − 1)h}, and Γh = {0, 1}.

To consider the one-dimensional case is simply a notational convenience. The
analysis in two space dimensions is very similar.

In the one-dimensional case, the systems of scalar ODEs of the method of
lines is

∂uh
∂t

(x, t) = c∆huh (x, t) + f (x, t) , (x, t) ∈ Ωh × [0, T ] ,

uh (0, t) = uh (1, t) = 0

uh (x, 0) = u0 (x) , x ∈ Ωh,

(1)

where

∆huh (x, t) =
uh (x− h, t)− 2uh (x, t) + uh (x+ h, t)

h2
.
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The ODE (1) is a system of N − 1 scalar ODEs in the N − 1 unknown scalar
functions: there is a scalar ODE for each point in Ωh and the unknown scalar
functions are the lines

uh (x, ·) : [0, T ]→ R, x ∈ Ωh.

(see Figure 1).

2 The centered difference/forward difference method

We begin by considering a full discretization of the heat equation that corre-
sponds to the forward Euler method for solving the system (1) of the method
of lines.

Let h = 1
N be the spatial stepsize, N positive integer, and let k = T

M be the
time stepsize, M positive integer.

By setting

Umn := uh (nh,mk) , n ∈ {0, . . . , N} and m ∈ {0, . . . ,M} ,

and
fmn := f (nh,mk) , n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M} ,

we consider

Um+1
n − Umn

k
= c

Umn−1 − 2Umn + Umn+1

h2
+ fmn

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
Um0 = 0 and UmN = 0, m ∈ {0, . . . ,M} ,
U0
n = u0 (nh) , n ∈ {1, . . . , N − 1} ,

as a full discretization of the heat equation.
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We call this full discretization the centered difference/forward difference
method for the heat equation since, in

∂u

∂t
(nh,mk) = c∆u (nh,mk) + f (nk,mk) = c

∂2u

∂x2
(nh,mk) + f (nk,mk) ,

we are approximating the spatial derivative ∂2u
∂x2 (nh,mk) by the centered differ-

ence
Umn−1 − 2Umn + Umn+1

h2

and the time derivative ∂u
∂t (nh,mk) by the forward difference

Um+1
n − Umn

k
.

In the following, we use the compact notation

Um :=
(
Um1 , . . . , U

m
N−1

)
and fm :=

(
fm1 , . . . , f

m
N−1

)
, m ∈ {0, . . . ,M}.

By writing the full discretization of the heat equation

Um+1
n − Umn

k
= c

Umn−1 − 2Umn + Umn+1

h2
+ fmn

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}

as

Um+1
n = Umn + k

(
c
Umn−1 − 2Umn + Umn+1

h2
+ fmn

)
n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}

and then in compact form as

Um+1 = Um + k (c∆hU
m + fm) , m ∈ {0, . . . ,M − 1} ,

where

(∆hU
m)n =

Umn−1 − 2Umn + Umn+1

h2
, n ∈ {1, . . . , N − 1},

we see that the centered difference/forward difference method is exactly the
forward Euler method as applied to the system (1) of the method of lines: the
forward Euler method for

y′(t) = F (t, y(t)) = c∆hy(t) + (f(h, t), . . . , f((N − 1)h, t))

is
Um+1 = Um + kF (mk,Um) = Um + k (c∆hU

m + fm) .
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Since the forward Euler method is an explicit method for ODEs, not any
linear equation has to be solved to obtain Um+1 from Um, m ∈ {0, . . . ,M − 1}.
Indeed, the components of Um+1 can be obtained by the components of Um as

Um+1
n = Umn + k

(
c
Umn−1 − 2Umn + Umn+1

h2
+ fmn

)
=
ck

h2
Umn−1 +

(
1− 2

ck

h2

)
Umn +

ck

h2
Umn+1 + kfmn

= λUmn−1 + (1− 2λ)Umn + λUmn+1 + kfmn

n ∈ {1, . . . , N − 1} ,

where

λ :=
ck

h2
.

Observe that we start with

U0 =
(
U0

1 , . . . , U
0
N−1

)
= (u0(h), . . . , u0 ((N − 1)h)) .

Exercise. In the physical interpretation of the heat equation, what are the
dimensions of λ?

2.1 A numerical test

Consider the particular instance of the heat equation, where

c = 1

u0 (x) =
(
x− x2

) (
x2 + sin 2πx

)
, x ∈ (0, 1) ,

f(x, t) = 0, (x, t) ∈ (0, 1)× [0, T ],

T =
1

30
.

We use the centered difference/forward difference method with

• h = 1
20 (N = 20) and k = 1

1200 (M = 40)

• h = 1
20 (N = 20) and k = 1

600 (M = 20).

Since there are no sources of heat, the solution u(x, t) is expected to become
zero at any point in Ω as t→ +∞, i.e. in the long-time the temperature inside
of the body Ω becomes constant and equal to the temperature at the boundary.

The first computation with h = 1
20 and k = 1

1200 gives very reasonable results
(and we could have extended it for a much longer time without problem). The
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second plot shows UM ≈ u(·, T ).

The second computation with h = 1
20 and k = 1

600 becomes unreasonable
after a few time steps. The second plot shows UM ≈ u(·, T ).

Experimentation with this method shows that the good behavior is con-
trolled by the value of λ = ck

h2 .
In the first computation, we have

λ =
ck

h2
=

1
1200

1
400

=
1

3
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and in the second, we have

λ =
ck

h2
=

1
600
1

400

=
2

3
.

Indeed, for λ ≤ 1
2 the computation proceeds reasonably, but for λ > 1

2 , the
computed solution Um, m ∈ {0, . . . ,M}, becomes oscillatory with an amplitude
that grows exponentially as m increases.

Now, we try to explain analytically this fact.

2.2 Error analysis

Let u be the exact solution of the heat equation which is assumed sufficiently
smooth. Let

umn := u (nh,mk) , n ∈ {0, . . . , N} and m ∈ {0, . . . ,M} .

These values umn should be compared with the corresponding values

Umn = uh (nh,mk) , n ∈ {0, . . . , N} and m ∈ {0, . . . ,M} ,

introduced for the discrete solution uh.
We introduce the consistency error

εm+1
n :=

um+1
n − umn

k
− c

umn−1 − 2umn + umn+1

h2
− fmn

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1} ,

Let n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}. We have previously seen
that the centered difference scheme satisfies

umn−1 − 2umn + umn+1

h2
− ∂2u

∂x2
(nh,mk) =

1

24

(
∂4u

∂x4
(α,mk) +

∂4u

∂x4
(β,mk)

)
h2,

where α ∈ ((n− 1)h, nh) and β ∈ (nh, (n+ 1)h). So, we have∣∣∣∣umn−1 − 2umn + umn+1

h2
− ∂2u

∂x2
(nh,mk)

∣∣∣∣ ≤ 1

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2.

Exercise. Given a sufficiently smooth function v(t) of one real variable t and
k > 0, a finite difference approximating the first derivative v′ (t) is the forward
difference

v′ (t) ≈ v (t+ k)− v (t)

k
.

Prove that

v (t+ k)− v (t)

k
= v′ (t) +

1

2
v′′ (γ) k,
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where γ ∈ (t, t+ k). Then, prove that∣∣∣∣um+1
n − umn

k
− ∂u

∂t
(nh,mk)

∣∣∣∣ ≤ 1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k.
Now, since

εm+1
n =

um+1
n − umn

k
− c

umn−1 − 2umn + umn+1

h2
− fmn

=
um+1
n − umn

k
− ∂u

∂t
(nh,mk)

−c
(
umn−1 − 2umn + umn+1

h2
− ∂2u

∂x2
(nh,mk)

)
+
∂u

∂t
(nh,mk)− c∂

2u

∂x2
(nh,mk)− fmn︸ ︷︷ ︸

=0

,

we have∣∣εm+1
n

∣∣ ≤ c

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2 +
1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k.
So we have obtained the consistency result for the centered difference/forward

difference method:

max
n∈{1,...,N−1}
m∈{1,...,M}

|εmn | ≤
c

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2 +
1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k.
(2)

Now, we introduce the convergence error

emn := Umn − umn , n ∈ {0, . . . , N} and m ∈ {0, . . . ,M} .

Since

Um+1
n − Umn

k
= c

Umn−1 − 2Umn + Umn+1

h2
+ fmn

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
Um0 = 0 and UmN = 0, m ∈ {0, . . . ,M} ,
U0
n = u0 (nh) , n ∈ {1, . . . , N − 1} ,

um+1
n − umn

k
= c

umn−1 − 2umn + umn+1

h2
+ fmn + εm+1

n

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
um0 = 0 and umN = 0, m ∈ {0, . . . ,M} ,
u0
n = u0 (nh) , n ∈ {1, . . . , N − 1} ,
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by subtracting we see that the convergence error is the solution of the full
discrete problem

em+1
n − emn

k
= c

emn−1 − 2emn + emn+1

h2
− εm+1

n ,

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1} ,
emn = 0, n ∈ {0, N} and m ∈ {0, . . . ,M} ,
e0
n = 0, n ∈ {1, . . . , N − 1} .

where the function f is the opposite of the consistency error and zero initial
condition holds.

The next one is a stability result for the centered difference/forward difference
method.

Theorem 1 If λ ≤ 1
2 , then

max
n∈{1,...,N−1}
m∈{0,...,M}

|emn | ≤ T max
n∈{1,...,N−1}
m∈{1,...,M}

|εmn |

Proof. Suppose λ ≤ 1
2 . Since

em+1
n − emn

k
= c

emn−1 − 2emn + emn+1

h2
− εm+1

n

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1} ,

we obtain

em+1
n =

ck

h2
emn−1 +

(
1− 2

ck

h2

)
emn +

ck

h2
emn+1 − kεm+1

n

= λemn−1 + (1− 2λ) emn + λemn+1 − kεm+1
n

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}

and then ∣∣em+1
n

∣∣ ≤ λ ∣∣emn−1

∣∣+ (1− 2λ) |emn |+ λ
∣∣emn+1

∣∣+ k
∣∣εm+1
n

∣∣
n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1} .

(3)

Here we are using that fact that λ ≤ 1
2 .

By introducing the vectors

em :=
(
em1 , . . . , e

m
N−1

)
, m ∈ {0, . . . ,M},

and the vectors

εm+1 :=
(
εm+1

1 , . . . , εm+1
N−1

)
, m ∈ {0, . . . ,M − 1},
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by (3) we obtain, since em0 = emN = 0,

‖em+1‖L∞(Ωh)

≤ λ‖em‖L∞(Ωh) + (1− 2λ) ‖em‖L∞(Ωh) + λ‖em‖L∞(Ωh) + k‖εm+1‖L∞(Ωh)

= ‖em‖L∞(Ωh) + k‖εm+1‖L∞(Ωh), m ∈ {0, . . . ,M − 1} .

Since e0 = 0, we have

‖em‖L∞(Ωh) ≤ ‖e0‖L∞(Ωh) + k‖ε1‖L∞(Ωh) + · · ·+ k‖εm‖L∞(Ωh)

= k(‖ε1‖L∞(Ωh) + · · ·+ ‖εm‖L∞(Ωh)), m ∈ {0, . . . ,M} .

Therefore

max
n∈{1,...,N−1}
m∈{0,...,M}

|emn | = max
m∈{0,...,M}

‖em‖L∞(Ωh)

≤ kM max
m∈{1,...,M}

‖εm‖L∞(Ωh)

= T max
n∈{1,...,N−1}
m∈{1,...,M}

|εmn |.

As in case of the Poisson equation,

consistency and stability ⇒ convergence

and we have the convergence result for the centered difference/forward difference
method: if λ ≤ 1

2 , then

max
n∈{1,...,N−1}
m∈{0,...,M}

|emn |

≤ T

(
c

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2 +
1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k
)
.

(4)

The method is convergent of order two with respect to h and of order one with
respect to k.

Since we have stability and then convergence as long as the condition

λ =
ch2

k
≤ 1

2
, i.e. k ≤ h2

2c
,

is satisfied, the centered difference/forward difference method is said condition-
ally stable and conditionally convergent. With the centered difference /forward
difference method, we are not free to choose independently h and k.
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2.3 Fourier analysis

Up to now, we have given our results by using for the space discretization the
norm L∞ on L(Ωh).

Another very useful way to analyze stability and convergence of the centered
difference/forward difference method is to use the Fourier analysis, as we have
done for the Poisson equation. In this analysis, we use the discrete L2 norm
‖ · ‖h on L(Ωh). Recall that functions of L(Ωh) are extended to Ωh giving zero
values in Γh.

Consider the discrete problem relating convergence error and consistency
error:

em+1
n − emn

k
= c

emn−1 − 2emn + emn+1

h2
− εm+1

n ,

i. e. em+1
n = emn + kc

emn−1 − 2emn + emn+1

h2
− kεm+1

n ,

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1} ,
emn = 0, n ∈ {0, N} and m ∈ {0, . . . ,M}
e0
n = 0, n ∈ {1, . . . , N − 1} .

By using the vectors

em =
(
em1 , . . . , e

m
N−1

)
, m ∈ {0, . . . ,M} ,

and
εm+1 =

(
εm+1

1 , . . . , εm+1
N−1

)
, m ∈ {0, . . . ,M − 1} ,

we obtain the recursive equation

em+1 = em + kc∆he
m − kεm+1 = R(kc∆h)em − kεm+1, m ∈ {0, . . . ,M − 1} ,

(5)
where ∆h : L (Ωh)→ L (Ωh) is the discrete Laplacian and R(kc∆h) : L(Ωh)→
L(Ωh) is given by

R(kc∆h) = I + kc∆h.

Since the linear operator ∆h (which is a (N − 1) × (N − 1) matrix) has
eigenvalues

λn,h = −
4 sin2

(
πnh

2

)
h2

, n ∈ {1, . . . , N − 1},

with relevant eigenvectors the discrete functions φn,h, n ∈ {1, . . . , N − 1}, given
by

φn,h (x) = sin (πnx) , x ∈ Ωh,

the linear operator R(kc∆h) has eigenvalues

R (kcλn,h) = 1 + kcλn,h

with relevant eigenvectors φn,h, n ∈ {1, . . . , N − 1}.
Now, we introduce the following lemma.
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Lemma 2 Let S be an analytic function whose domain contains the eigen-
values λn,h, n ∈ {1, . . . , N − 1}, of ∆h. For the linear operator S(∆h) :
L (Ωh) → L (Ωh), whose eigenvalues are S(λn,h) with relevant eigenvectors
φn,h, n ∈ {1, . . . , N − 1}, we have

‖S (∆h)‖ = ρ (S (∆h)) ,

where ‖S (∆h)‖ is the operator norm of S (∆h) relevant to the norm ‖ · ‖h and

ρ (S (∆h)) = max
n∈{1,...,N−1}

|S(λn,h)|

is the spectral radius of S (∆h).

Proof. Given f ∈ L (Ωh) with discrete Fourier series

f =

N−1∑
n=1

anφn,h,

we can easily compute the discrete Fourier series of S (∆h) f : we have

S (∆h) f = S (∆h)

(
N−1∑
n=1

anφn,h

)
=

N−1∑
n=1

anS (∆h)φn,h

=

N−1∑
n=1

anS (λn,h)φn,h.

By the discrete Parseval’s identity, we conclude that

‖S (∆h) f‖2h =

N−1∑
n=1

|anS (λn,h)|2 ‖φn,k‖2h

=

N−1∑
n=1

|an|2 |S (λn,h)|2 ‖φn,k‖2h ≤ ρ (S (∆h))
2
N−1∑
n=1

|an|2 ‖φn,k‖2h

= ρ (S (∆h))
2 ‖f‖2h

and then
‖S (∆h) f‖h ≤ ρ (S (∆h)) ‖f‖h .

Moreover, for f = φn,h, where n ∈ {1, . . . , N − 1} is such that

ρ (S (∆h)) = |S(λn,h)|,

By the Parseval’s identity it is clear that

‖S (∆h) f‖h = ρ (S (∆h)) ‖f‖h .

We conclude that

‖S (∆h)‖ = max
f∈L(Ωh)\{0}

‖S (∆h) f‖h
‖f‖h

= ρ (S (∆h)) .
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Exercise. Give another proof of the previous lemma by taking into account
that ∆h is a symmetric matrix and then S(∆h) is a symmetric matrix. Use
the fact that the spectral norm (i.e. the 2-norm) of a symmetric matrix is the
spectral radius.

By the recursive equation (5), we obtain

em = k

m∑
i=1

R (kc∆h)
m−i

(−εi), m ∈ {0, . . . ,M} . (6)

Exercise. Prove that (6) is the solution of (5).
Now, we are ready to give a stability result for the centered difference/forward

difference method.

Theorem 3 If
ρ (R (kc∆h)) ≤ 1,

then
max

m∈{0,...,M}
‖em‖h ≤ T max

i∈{1,...,M}
‖εi‖h.

Proof. By using the norm ‖ · ‖h on L (Ωh) in (6), we have, for m ∈ {0, . . . ,M},

‖em‖h =

∥∥∥∥∥k
m∑
i=1

R (kc∆h)
m−i

(−εi)

∥∥∥∥∥
h

≤ k
m∑
i=1

∥∥∥R (kc∆h)
m−i

(−ε)i)
∥∥∥
h

≤ k

m∑
i=1

‖R (kc∆h) ‖m−i‖εi‖h.

Under the assumption ρ (R (kc∆h)) ≤ 1, the previous Lemma 2, as applied to
the function S(z) = R(kcz), says that

‖R (kc∆h) ‖ ≤ 1

and then

‖em‖h ≤ k
m∑
i=1

‖εi‖h ≤ km max
i∈{1,...,m}

‖εi‖h.

Now,
max

m∈{0,...,M}
‖em‖h ≤ kM︸︷︷︸

=T

max
i∈{1,...,M}

‖εi‖h

follows.

The condition
ρ (R (kc∆h)) ≤ 1
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in the previous theorem means

|R (kcλn,h)| = |1 + kcλn,h| =
∣∣∣∣1− 4kc

h2
sin2

(
πnh

2

)∣∣∣∣ ≤ 1

for all n ∈ {1, . . . , N − 1}

i.e.

−1 ≤ 1− 4kc

h2
sin2

(
πnh

2

)
≤ 1

for all n ∈ {1, . . . , N − 1}

i.e.

4kc

h2
sin2

(
πnh

2

)
≤ 2

for all n ∈ {1, . . . , N − 1} .

This holds for all positive integer N if and only if

4kc

h2
≤ 2 i.e. λ =

kc

h2
≤ 1

2
.

So the centered difference/forward difference method is stable if λ ≤ 1
2 . We

have seen that the same result holds for the L∞ norm on L(Ωh).

Next theorem explores the situation λ > 1
2 .

Theorem 4 Let β > 1
2 . Consider discretizations with λ ≥ β. There exists a

consistency error
(
ε1, . . . , εM

)
such that

lim
M,N→∞

max
m∈{0,...,M}

‖em‖h

max
i∈{1,...,M}

‖εi‖h
= +∞.

Proof. We have, for n ∈ {1, . . . , N − 1},

R (kcλn,h) = 1− 4kc

h2
sin2

(
πnh

2

)
= 1− 4λ sin2

(
πnh

2

)
≤ 1− 4β sin2

(
πnh

2

)
.

Thus, fixed γ > 1
2 such that γ < β, for N sufficiently large, we obtain

β sin2

(
πnh

2

)
≥ γ

for some n ∈ {1, . . . , N − 1} and so

R (kcλn,h) ≤ 1− 4γ < −1.

14



Then, for N sufficiently large, we have

ρ (R (kc∆h)) ≥ 4γ − 1 > 1.

Observe that

ρ (R (kc∆h)) = |R (kcλN−1,h) | if ρ (R (kc∆h)) > 1.

In fact, since
λN−1,h < · · · < λ1,h < 0

and R(x) = 1 + x is an increasing function of x, we have

R(kcλN−1,h) < · · · < R(kcλ1,h) < 1 = R(0).

Therefore, if ρ (R (kc∆h)) > 1, the maximum modulus among R(kcλn,h), n ∈
{1, . . . , N − 1}, is obtained for a negative R(kcλn,h) and then for the most
negative R(kcλN−1,h).

For a consistency error such that

−εi =

{
αφN−1,h if i = 1
0 if i ∈ {2, . . . ,M},

where α ∈ R, we have, for m ∈ {1, . . . ,M},

em = k

m∑
i=1

R (kc∆h)
m−i

(−εi) = kR (kc∆h)
m−1

αφN−1,h

= kR (kcλN−1,h)
m−1

αφN−1,h = kR (kcλN−1,h)
m−1 (−ε1

)
.

Then

‖em‖h = k|R (kcλN−1,h) |m−1‖ε1‖h
≥ k (4γ − 1)

m−1 ‖ε1‖h
= k (4γ − 1)

m−1
max

i∈{1,...,M}
‖εi‖h

and then

max
m∈{0,...,M}

‖em‖h ≥ ‖eM‖h ≥ k︸︷︷︸
= T

M

(4γ − 1)
M−1

max
i∈{1,...,M}

‖εi‖h.

Thus, we have

lim
M,N→∞

max
m∈{0,...,M}

‖em‖h

max
i∈{1,...,M}

‖εi‖h
= +∞.
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We conclude that a stability estimate cannot be given when we consider
discretizations such that λ ≥ β, where β > 1

2 : we cannot have a bound

max
m∈{0,...,M}

‖em‖h ≤ C max
i∈{1,...,M}

‖εi‖h

where C is a constant independent of the discretization, valid for any consistence
error

(
ε1, . . . , εM

)
.

So the centered difference/forward difference method is stable if and only if
λ ≤ 1

2 .
Exercise. Prove that the ” only if ” part also holds for the L∞ norm on

L(Ωh).

We can give another interpretation of our stability analysis. The formula

em = k

m∑
i=1

R (kc∆h)
m−i (−εi) , m ∈ {0, . . . ,M} ,

shows that every consistency error εi, i ∈ {1, . . . ,M}, is propagated to the
convergence error ei+p, p ∈ {0, 1, . . . ,M − i}, by

R (kc∆h)
p (−kεi) .

By considering the discrete Fourier series of

εi =

N−1∑
n=1

anφn,h,

we obtain

R (kc∆h)
p (−kεi) =

N−1∑
n=1

R (kcλn,h)
p

(−kanφn,h).

So, we see that the term anφn,h, n ∈ {1, . . . , N − 1}, in the discrete Fourier
series of εi is propagated to the convergence error ei+p by

R (kcλn,h)
p

(−kanφn,h).

We can observe that:

• The terms

anφn,h, n ∈ {1, . . . , N − 1} such that |R (kcλn,h)| > 1,

propagate to ei+p by an exponential growth with p. Since R (kcλn,h) =
1 + kcλn,h < 1 and |R (kcλn,h)| > 1, we have R (kcλn,h) negative and so
the exponential growth is oscillatory, as we have seen in the numerical test
in case of instability.
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• The terms

anφn,h, n ∈ {1, . . . , N − 1} such that |R (kcλn,h)| ≤ 1,

does not grow with p and the terms

anφn,h, n ∈ {1, . . . , N − 1} such that |R (kcλn,h)| < 1,

are exponentially damped with p, in the propagation to ei+p.

• If

ρ(R(kc∆h)) > 1, i.e. |R (kcλn,h)| > 1 for some n ∈ {1, . . . , N − 1},

then, for a large p the propagation of aN−1φN−1,h dominates (whenever
aN−1φN−1,h 6= 0) the propagation of anφn,h, n ∈ {1, . . . , N − 2}. In fact,
the maximum of |R (kcλn,h)|, n ∈ {1, . . . , N−1}, is obtained for n = N−1.

Under the condition λ ≤ 1
2 , we have the following convergence result for the

centered difference/forward difference method: we have

max
m∈{0,...,M}

‖em‖h ≤ T max
m∈{1,...,M}

‖εm‖h ≤ T max
m∈{1,...,M}

‖εm‖L∞(Ωh)

and then (recall (2))

max
m∈{0,...,M}

‖em‖h

≤ T

(
c

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2 +
1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k
)
.

Observe that the same bound has been obtained for max
m∈{0,...,M}

‖em‖L∞(Ωh) (see

(4)).

Exercise. Assume λ = ck
h2 = 1

2 . Suppose that numbers A and B such that

max
(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣ ≤ A and max
(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ ≤ B
are known. Use the previous result for determining a spatial stepsize h such
that

max
m∈{0,...,M}

‖em‖h ≤ TOL,

where TOL is a given tolerance. Then, give an estimate of the number of flops
(i.e arithmetic operations) for obtaining the discrete solution.
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3 The centered difference/backward difference
method

We consider now a different time discretization for the heat equation, namely
we consider the backward Euler method, rather than the forward Euler method,
for solving the system of ODEs of the method of lines.

Consider the full discretization of the heat equation

Um+1
n − Umn

k
= c

Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2
+ fm+1

n ,

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
Umn = 0, n ∈ {0, N} and m ∈ {0, . . . ,M}
U0
n = u0 (nh) , n ∈ {1, . . . , N − 1} .

This full discretization is called the centered difference/backward difference method
since, in

∂u

∂t
(nh, (m+ 1)k) = c

∂2u

∂x2
(nh, (m+ 1)k) + f (nk, (m+ 1)k) ,

we are approximating the spatial derivative ∂2u
∂x2 (nh, (m + 1)k) by the centered

difference
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2

and the time derivative ∂u
∂t (nh, (m+ 1)k) by the backward difference

Um+1
n − Umn

k
=
Umn − Um+1

n

−k
.

By using the notation

Um :=
(
Um1 , . . . , U

m
N−1

)
and fm :=

(
fm1 , . . . , f

m
N−1

)
, m ∈ {0, . . . ,M},

we can write the full discretization

Um+1
n − Umn

k
= c

Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2
+ fm+1

n

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}

as

Um+1
n = Umn + k

(
c
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2
+ fm+1

n

)
n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
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and then in compact form as

Um+1 = Um + k
(
c∆hU

m+1 + fm+1
)

m ∈ {0, . . . ,M − 1} .

We see that the centered difference/backward difference method is the backward
Euler method as applied to the system (1) of the method of lines: the backward
Euler method for

y′(t) = F (t, y(t)) = c∆hy(t) + (f(h, t), . . . , f((N − 1)h, t))

is

Um+1 = Um + kF ((m+ 1)k, Um+1) = Um + k
(
c∆hU

m+1 + fm+1
)
.

Since the backward Euler method is an implicit method for ODEs, a linear
system has to be solved to obtain Um+1 from the vector Um, m ∈ {0, . . . ,M−1}.
The vector Um+1 is obtained from Um by solving the tridiagonal linear system
of dimension d = N − 1:

−λUm+1
n−1 + (1 + 2λ)Um+1

n − λUm+1
n+1 = Umn + kfm+1

n , n ∈ {1, . . . , N − 1} ,

where λ = ck
h2 and Um+1

0 = Um+1
N = 0. These equations are obtained by

rewriting the equations

Um+1
n = Umn + k

(
c
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2
+ fm+1

n

)
n ∈ {1, . . . , N − 1} .

Since the matrix of this system is strictly diagonally dominant, it is non-
singular and so existence and uniqueness for the solution Um+1 is proved.

Since the matrix of the system is tridiagonal, the amount of flops for solving
this system of dimension d = N−1 by gaussian elimination is O(d) = O (N − 1).

In the two-dimensional case, the matrix of the system is not tridiagonal, but
a band matrix with bandwidth w = O (N − 1). So, the amount of flops for
solving this system of dimension d = (N − 1)2 by gaussian elimination is not

O(d) = O
(

(N − 1)
2
)

, but O
(
dw2

)
= O

(
(N − 1)

4
)

.

Exercise. What about the amount of flops for solving the system by gaussian
elimination in the three-dimensional case?

3.1 Error Analysis

We define the consistency error as

εm+1
n :=

um+1
n − umn

k
− c

um+1
n−1 − 2um+1

n + um+1
n+1

h2
− fm+1

n ,

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1} .

19



where the u-values are the values of the exact solution.
Let n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}. The centered difference

scheme satisfies

um+1
n−1 − 2um+1

n + um+1
n+1

h2
− ∂2u

∂x2
(nh, (m+ 1)k)

=
1

24

(
∂4u

∂x4
(α, (m+ 1)k) +

∂4u

∂x4
(β, (m+ 1)k)

)
h2,

where α ∈ ((n− 1)h, nh) and β ∈ (nh, (n+ 1)h). So, we have∣∣∣∣∣um+1
n−1 − 2um+1

n + um+1
n+1

h2
− ∂2u

∂x2
(nh, (m+ 1)k)

∣∣∣∣∣ ≤ 1

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2.

Exercise. Given a sufficiently smooth function v(t) of one real variable t and
k > 0, a finite difference approximating the first derivative v′ (t) is the backward
difference

v′ (t) ≈ v (t)− v (t− k)

k
=
v (t− k)− v (t)

−k
.

Prove that

v (t)− v (t− k)

k
= v′ (t)− 1

2
v′′ (γ) k,

where γ ∈ (t− k, t). Then, prove that∣∣∣∣um+1
n − umn

k
− ∂u

∂t
(nh, (m+ 1)k)

∣∣∣∣ ≤ 1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k.
Now, since

εm+1
n =

um+1
n − umn

k
− c

um+1
n−1 − 2um+1

n + um+1
n+1

h2
− fm+1

n

=
um+1
n − umn

k
− ∂u

∂t
(nh, (m+ 1) k)

−c

(
um+1
n−1 − 2um+1

n + um+1
n+1

h2
− ∂2u

∂x2
(nh, (m+ 1) k)

)

+
∂u

∂t
(nh, (m+ 1) k)− c∂

2u

∂x2
(nh, (m+ 1) k)− fm+1

n︸ ︷︷ ︸
=0

,

we obtain

|εm+1
n | ≤ c

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2 +
1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k.
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So, as in case of the centered difference/forward difference method, we obtain
for the centered difference/backward difference method

max
n∈{1,...,N−1}
m∈{1,...,M}

|εmn | ≤
c

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2 +
1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k.

Now, we consider the convergence error

emn = Umn − unm, n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M} .

Since

Um+1
n − Umn

k
= c

Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2
+ fm+1

n

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
Um0 = 0 and UmN = 0, m ∈ {0, . . . ,M} ,
U0
n = u0 (nh) , n ∈ {1, . . . , N − 1} ,

um+1
n − umn

k
= c

um+1
n−1 − 2um+1

n + um+1
n+1

h2
+ fm+1

n + εm+1
n

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
um0 = 0 and umN = 0, m ∈ {0, . . . ,M} ,
u0
n = u0 (nh) , n ∈ {1, . . . , N − 1} ,

we obtain the full discrete problem

em+1
n − emn

k
= c

em+1
n−1 − 2em+1

n + em+1
n+1

h2
− εm+1

n

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
em0 = 0 and emN = 0, m ∈ {0, . . . ,M} ,
e0
n = 0, n ∈ {1, . . . , N − 1} .

By using
em =

(
em1 , . . . , e

m
N−1

)
, m ∈ {0, . . . ,M} ,

and
εm+1 =

(
εm+1

1 , . . . , εm+1
N−1

)
, m ∈ {0, . . . ,M − 1} ,

we can rewrite this full discrete problem as

em+1 = em + kc∆he
m+1 − kεm+1, m ∈ {0, . . . ,M − 1} ,

i.e.
(I − kc∆h) em+1 = em − kεm+1, m ∈ {0, . . . ,M − 1} ,
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i.e.
em+1 = R (kc∆h) em − kR (kc∆h) εm+1, m ∈ {0, . . . ,M − 1} ,

where
R (kc∆h) = (I − kc∆h)

−1
. (7)

Observe that the linear operator R (kc∆h) has the eigenvalues

R (kcλn,h) =
1

1− kcλn,h
, n ∈ {1, . . . , N − 1} ,

and since the eigenvalues λn,h, n ∈ {1, . . . , N − 1}, of ∆h are negative, we have

0 < R (kcλn,h) < 1, n ∈ {1, . . . , N − 1} .

Exercise. Explain why I − kc∆h (whose inverse appears in (7)) is invertible.

Exercise. Prove the stability result for the centered difference/backward
difference method

max
m∈{0,...,M}

‖em‖h ≤ T max
i∈{1,...,M}

‖εi‖h,

which is valid without any assumption of a relation between h and k. For this
reason, the centered difference/backward difference method is called uncondi-
tionally stable.

By using the previous unconditional stability result, we have the uncondi-
tional convergence result for the centered difference/backward difference method

max
m∈{0,...,M}

‖em‖h ≤ T max
i∈{1,...,M}

‖εi‖h ≤ T max
i∈{1,...,M}

‖εi‖L∞(Ωh)︸ ︷︷ ︸
= max
n∈{1,...,N−1}
m∈{1,...,M}

|εmn |

≤ T

(
c

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2 +
1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k
)
.

Exercise. Use the previous convergence result for determining stepsizes h
and k such that

max
m∈{0,...,M}

‖em‖h ≤ TOL,

where TOL is a given tolerance. Put both spatial error bound

T
c

12
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣h2

and time error bound

T
1

2
max

(x,t)∈Ω×[0,T ]

∣∣∣∣∂2u

∂t2
(x, t)

∣∣∣∣ k
equal to TOL

2 . Then, give an estimate O(TOL−p) of the number of flops for
obtaining the discrete solution.
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4 The Crank-Nicolson method

If we use the trapezoidal rule to discretize in time the system of ODEs of the
method of lines, we get the Crank-Nicolson method :

Um+1
n − Umn

k
= c

1

2

(
Umn−1 − 2Umn + Umn+1

h2
+
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2

)

+
1

2

(
fmn + fm+1

n

)
=

1

2

 c
Umn−1 − 2Umn + Umn+1

h2
+ fmn︸ ︷︷ ︸

Centered difference/forward difference method

+ c
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2
+ fm+1

n︸ ︷︷ ︸
Centered difference/backward difference method


n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1} ,
Umn = 0, n ∈ {0, N} and m ∈ {0, . . . ,M} ,
U0
n = u0 (nh) , n ∈ {1, . . . , N − 1} .

This full discretization is also called the centered difference/centered differ-
ence method since, in

∂u

∂t

(
nh,

(
m+

1

2

)
k

)
= c

∂2u

∂x2

(
nh, (m+

1

2
)k

)
+ f

(
nk,

(
m+

1

2

)
k

)
,

we are approximating:

• ∂2u
∂x2

(
nh, (m+ 1

2 )k
)

by the average

1

2

(
Umn−1 − 2Umn + Umn+1

h2
+
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2

)

of the centered difference approximations of ∂
2u
∂x2 (nh,mk) and ∂2u

∂x2 (nh, (m+
1)k);

• ∂u
∂t

(
nh,

(
m+ 1

2

)
k
)

by the centered difference

Um+1
n − Umn

k
;

• f
(
nh,

(
m+ 1

2

)
k
)

by the average

1

2

(
fm+1
n + fmn

)
of the values f (nh,mk) and f (nh, (m+ 1) k).
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By using the usual notation

Um :=
(
Um1 , . . . , U

m
N−1

)
and fm :=

(
fm1 , . . . , f

m
N−1

)
, m ∈ {0, . . . ,M},

we can write the full discretization

Um+1
n − Umn

k
= c

1

2

(
Umn−1 − 2Umn + Umn+1

h2
+
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2

)

+
1

2

(
fmn + fm+1

n

)
n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}

as

Um+1
n = Umn + k

1

2

(
c
Umn−1 − 2Umn + Umn+1

h2
+ fmn

+c
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2
+ fm+1

n

)
n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}

and then in compact form as

Um+1 = Um + k
1

2

(
c∆hU

m + fm + c∆hU
m+1 + fm+1

)
m ∈ {0, . . . ,M − 1} .

We see that the centered difference/centered difference method (the Crank-
Nicolson method) is the trapeziodal rule as applied to the system (1) of the
method of lines: the trapezoidal rule for

y′(t) = F (t, y(t)) = c∆hy(t) + (f(h, t), . . . , f((N − 1)h, t))

is

Um+1 = Um + k
1

2

(
F (mk,Um) + F ((m+ 1)k, Um+1)

)
= Um + k

1

2

(
c∆hU

m + fm + c∆hU
m+1 + fm+1

)
.

Since the trapezoidal rule is an implicit method for ODEs, a linear system
has to be solved to obtain Um+1 from Um, m ∈ {0, . . . ,M − 1}. The vector
Um+1is obtained from the vector Um by solving the tridiagonal linear system

−1

2
λUm+1

n−1 + (1 + λ)Um+1
n − 1

2
λUm+1

n+1

=
1

2
λUmn−1 + (1− λ)Umn +

1

2
λUmn+1 +

1

2
k
(
fmn + fm+1

n

)
n ∈ {1, . . . , N − 1} .
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where λ = ck
h2 and Um+1

0 = Um+1
N = 0. These equations are obtained by

rewriting the equations

Um+1
n = Umn + k

1

2

(
c
Umn−1 − 2Umn + Umn+1

h2
+ fmn

+c
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2
+ fm+1

n

)
n ∈ {1, . . . , N − 1} .

The matrix of this system is strictly diagonally dominant. So, it is non-
singular and so existence and uniqueness for the solution Um+1 is proved.

4.1 Error Analysis

The consistency error is given by

εm+1
n :=

um+1
n − umn

k
− c1

2

(
umn−1 − 2umn + umn+1

h2
−
um+1
n−1 − 2um+1

n + um+1
n+1

h2

)

−1

2

(
fmn + fm+1

n

)
n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1} .

For n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}, we have

εm+1
n =

um+1
n − umn

k
− c1

2

(
umn−1 − 2umn + umn+1

h2
+
um+1
n−1 − 2um+1

n + um+1
n+1

h2

)

−1

2

(
fm+1
n + fmn

)
=
um+1
n − umn

k
− ∂u

∂t

(
nh,

(
m+

1

2

)
k

)
−c1

2

(
umn−1 − 2umn + umn+1

h2
− ∂2u

∂x2
(nh,mk)

)
−c1

2

(
um+1
n−1 − 2um+1

n + um+1
n+1

h2
− ∂2u

∂x2
(nh, (m+ 1)k)

)

−c
(

1

2

(
∂2u

∂x2
(nh,mk) +

∂2u

∂x2
(nh, (m+ 1) k)

)
− ∂2u

∂x2

(
nh,

(
m+

1

2

)
k

))
−
(

1

2

(
fmn + fm+1

n

)
− f

(
nh,

(
m+

1

2

)
k

))
+
∂u

∂t

(
nh,

(
m+

1

2

)
k

)
− c∂

2u

∂x2

(
nh,

(
m+

1

2

)
k

)
− f

((
nh,

(
m+

1

2

)
k

))
︸ ︷︷ ︸

=0

.
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Exercise. Given a sufficiently smooth function v(t) of one real variable t and
k > 0, a finite difference approximating the first derivative v′ (t) is the central
difference

v′ (t) ≈ v (t+ k)− v (t− k)

2k
.

Prove that

v (t+ k)− v (t− k)

2k
= v′ (t) +

1

12
(v′′′ (γ) + v′′′ (δ)) k2,

where γ ∈ (t, t+ k) and δ ∈ (t− k, t). Then, prove that

max
n∈{1,...,N−1}
m∈{1,...,M}

|εmn | ≤ Ch2 +Dk2

for some constants C,D ≥ 0 which depends on the maximum absolute values
on Ω× [0, T ] of partial derivates of u and f .

So, unlike the centered difference/forward difference method and the cen-
tered difference/backward difference method, the Crank-Nicolson method has
consistency order two with respect to time stepsize k, as the consistency order
with respect to the spatial stepsize h.

Now, we consider the convergence error

emn = Umn − unm, n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M} .

Since

Um+1
n − Umn

k
= c

1

2

(
Umn−1 − 2Umn + Umn+1

h2
+
Um+1
n−1 − 2Um+1

n + Um+1
n+1

h2

)

+
1

2

(
fmn + fm+1

n

)
n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1} ,
Um0 = 0 and UmN = 0, m ∈ {0, . . . ,M}
U0
n = u0 (nh) , n ∈ {1, . . . , N − 1} ,

um+1
n − umn

k
= c

1

2

(
umn−1 − 2umn + umn+1

h2
+
um+1
n−1 − 2um+1

n + um+1
n+1

h2

)

+
1

2

(
fmn + fm+1

n

)
+ εm+1

n

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
um0 = 0 and umN = 0, m ∈ {0, . . . ,M}
u0
n = u0 (nh) , n ∈ {1, . . . , N − 1} ,
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we have the full discrete problem

em+1
n − emn

k
= c

1

2

(
emn−1 − 2emn + emn+1

h2
+
em+1
n−1 − 2em+1

n + em+1
n+1

h2

)
− εm+1

n

n ∈ {1, . . . , N − 1} and m ∈ {0, . . . ,M − 1}
em0 = 0 and emN = 0, m ∈ {0, . . . ,M}
e0
n = 0, n ∈ {1, . . . , N − 1} .

By using
em =

(
em1 , . . . , e

m
N−1

)
, m ∈ {0, . . . ,M} ,

and
εm+1 =

(
εm+1

1 , . . . , εm+1
N−1

)
, m ∈ {0, . . . ,M − 1} ,

we can rewrite this full discrete problem as

em+1 = em +
1

2
kc
(
∆he

m + ∆he
m+1

)
− kεm+1, m ∈ {0, . . . ,M − 1} ,

i.e.(
I − 1

2
kc∆h

)
em+1 =

(
I +

1

2
kc∆h

)
em − kεm+1, m ∈ {0, . . . ,M − 1} ,

i.e.

em+1 = R (kc∆h) em − k
(
I − 1

2
kc∆h

)−1

εm+1, m ∈ {0, . . . ,M − 1} ,

where

R (kc∆h) =

(
I − 1

2
kc∆h

)−1(
I +

1

2
kc∆h

)
.

The linear operator R (kc∆h) has the eigenvalues

R (kcλn,h) =
1 + 1

2kcλn,h

1− 1
2kcλn,h

, n ∈ {1, . . . , N − 1} .

Exercise. Prove that

|R (kcλm,h)| ≤ 1, m ∈ {1, . . . , N − 1} .

Exercise. Prove the stability result for the Crank-Nicolson method

max
m∈{0,...,M}

‖em‖h ≤ T max
i∈{1,...,M}

‖εi‖h,

which is valid without any assumption of a relation between h and k. The
Crank-Nicolson method is unconditionally stable.
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By using the previous unconditional stability result, we have the uncondi-
tional convergence result for the Crank-Nicolson method

max
m∈{0,...,M}

‖em‖h ≤ T max
i∈{1,...,M}

‖εi‖h ≤ T max
i∈{1,...,M}

‖εi‖L∞(Ωh)︸ ︷︷ ︸
= max
n∈{1,...,N−1}
m∈{1,...,M}

|εmn |

≤ T
(
Ch2 +Dk2

)
.

The order of convergence of the Crank-Nicolson method is two, both in space
and time.

Exercise. Use the previous convergence result for determining stepsizes h
and k such that

max
m∈{0,...,M}

‖em‖h ≤ TOL,

where TOL is a given tolerance. Put both spatial error bound TCh2 and time
error bound TDk2 equal to TOL

2 . Then, give an estimate O(TOL−p) of the
number of flops for obtaining the discrete solution.

Exercise. For the two and three-dimensional cases and for the centered dif-
ference/forward difference, centered difference/backward difference and Crank-
Nicolson methods, give estimates O(TOL−p) of the number of flops for obtaining
a discrete solution such that

max
m∈{0,...,M}

‖em‖h ≤ TOL.

In all situations considers stepsizes h and k such that both spatial error bound
and time error bound are equal to TOL

2 .

5 The three numerical methods for the heat equa-
tion: a summary

In the next tables, we give the basic information about the three methods that
we have introduced for the heat equation.

The first column of each table contains the stencil of the finite difference,
namely a picture with the values of the discrete solution involved in the equation
for the space index n and the time index m (j in the tables and in the figure
below). Here is the stencil for the Crank-Nicolson method:
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These values are geometrically arranged in a space-time grid with the vertical
axis as space and the horizontal axis as time. Points that are involved in a finite
difference in space are vertically connected and points that are involved in a
finite difference in time are horizontally connected.

Centered difference/forward difference method

Stencil Explicit/Implicit Order Stability

Explicit O
(
h2
)

+O (k) conditionally stable: ck
h2 ≤ 1

2

Centered difference/backward difference method

Stencil Explicit/Implicit Order Stability

Implicit O
(
h2
)

+O (k) unconditionally stable
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Crank-Nicolson method (centered difference/centered difference method)

Stencil Explicit/Implicit Order Stability

Implicit O
(
h2
)

+O
(
k2
)

unconditionally stable
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