
LESSON 9.

1. Dimension of K-algebras.

The purpose of this lesson is to prove Theorem 1.8 of Lesson 8. In reality we will not give

a complete proof of it, but we will only enunciate the Cohen-Seidenberg theorems and then

we will see how, from these and from the Normalization Lemma, the theorem follows.

1.1. Prime ideals of integral extensions. Let R ⊂ T be rings, R subring of T . We are

interested in relations between the prime ideals of R and those of T . We are principally

concerned with the case where T is integral over R, but we formulate the definitions in

greater generality.

We list four properties that might hold for a pair R ⊂ T .

(LO) Lying over. For any prime ideal P in R there exists a prime ideal Q in T with

Q∩R = P .

(GU) Going up. Given prime ideals P ⊂ P0 in R and Q in T with Q∩R = P , there exists

Q0 in T satisfying Q ⊂ Q0 and Q0 ∩R = P0.

(GD) Going down. The same with ⊂ replaced by ⊃.

(INC) Incomparable. Two different prime ideals in T with the same contraction in R cannot

be comparable.

Next Theorem 1.3 states conditions on the pair of rings that ensure the validity of the

above properties. We first need some definitions.

Proposition 1.1. Let R ⊂ T . The set R of all elements of T that are integral over R is a

subring of T .

Proof. It relies on Theorem 1.1 of Lesson 5. If x, y ∈ R, R[x, y] is a finite R-module.

Therefore x + y, x− y, xy are integral over R, because they all belong to R. �

Definition 1.2. R is called the integral closure of R in T . R is called integrally closed in

T if R = R. An integral domain that is integrally closed in its field of fractions is called

normal.

Theorem 1.3. Let R ⊂ T be rings with T integral over R. Then:

(1) the pair R ⊂ T satisfies LO, INC and GU;

(2) if moreover R and T are integral domains and R is normal, then also GD is satisfied.
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Proof. For a proof, see for instance [Atiyah-MacDonald] or [C. Peskine, An algebraic

introduction to Complex Projective Geometry, Cambridge University Press]. �

1.2. Length of chains of prime ideals in K-algebras. Next Theorem 1.5 is the key to

prove Theorem 18.8 of Lesson 8. First we need to state some more properties of integral

extensions.

Proposition 1.4. Let R ⊂ T be integral domains, T integral over R. Then T is a field if

and only if R is a field.

Proof. Suppose R is a field, let y ∈ T, y 6= 0. Let

yn + r1y
n−1 + · · ·+ rn = 0, ri ∈ R

be an equation of integral dependence for y of smallest possible degree. Since T is an integral

domain we have rn 6= 0, so y−1 = −r−1n (yn−1 + r1y
n−2 + · · ·+ rn−1) ∈ T . Hence T is a field.

Conversely, suppose that T is a field; let x ∈ R, x 6= 0. Then x−1 ∈ T , so it is integral

over R, so that we have an equation

x−m + s1x
−m+1 + · · ·+ sm = 0, si ∈ R.

It follows that x−1 = −(s1 + s2x + · · ·+ smx
m−1) ∈ R, therefore R is a field. �

Theorem 1.5. Let K be a field, let A be a finitely generated K-algebra, integral extension

of K[z1, . . . , zn], with z1, . . . , zn algebraically independent over K. Then:

a) Every chain of prime ideals of A: P0 ⊂ P1 ⊂ · · · ⊂ Pl has length l ≤ n;

b) Assume that the chain is non-extendable, then l = n if and only if

P0 ∩K[z1, . . . , zn] = (0).

Proof. By induction on n.

If n = 0, then we claim that every prime ideal of A is maximal; indeed, first observe

that also A/P is integral extension of K, because, if a ∈ A, from an equation of algebraic

dependence for a over K, passing to the quotient we get a similar equation for [a] over K.

So by Proposition 1.4 it follows that A/P is a field, and we conclude that P is maximal. So

l = 0.

Let n ≥ 1, and let P0 ⊂ P1 ⊂ · · · ⊂ Pl be a chain of prime ideals in A. Let Qi =

Pi ∩K[z1, . . . , zn]. Then, by Theorem 1.3, INC, Q0 ⊂ · · · ⊂ Ql is a chain of prime ideals in

K[z1, . . . , zn]. If l = 0 we are done, so assume l ≥ 1. Then Q1 contains a non-zero element,

and, since Q1 is prime and K[z1, . . . , zn] is a UFD, there exists f ∈ Q1 irreducible. So we

have a chain of length l − 1 in K[z1, . . . , zn]/(f), which is an integral domain:

Q1/(f) ⊂ · · · ⊂ Ql/(f).
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By the Normalization Lemma, K[z1, . . . , zn]/(f) is an integral extension of a polynomial ring

K[y1, . . . , yn−1. Hence, by the induction hypothesis, we have l − 1 ≤ n− 1, i.e. l ≤ n. This

proves part a).

Assume now that the chain P0 ⊂ P1 ⊂ · · · ⊂ Pl is not extendable. Assume Q0 =

P0 ∩ K[z1, . . . , zn] = (0). Let A′ = A/P0, P ′i = Pi/P0 for any i. The composite map

K[z1, . . . , zn] ↪→ A→ A/P0 is injective becauseQ0 = (0), so A/P0 is integral over K[z1, . . . , zn].

We can apply Theorem 1.3 GD to this extension of rings, as follows. We have Q0 ( Q1. As

before there exists f ∈ Q1 irreducible, generating a prime ideal with Q0 ( (f) ⊂ Q1. We

have also Q1 = P ′1 ∩K[z1, . . . , zn], so by GD property there exists a prime ideal N ⊂ P ′1 of

A′ such that N ∩K[z1, . . . , zn] = (f). But the chain P ′0 ⊂ P ′1 is not extendable and P ′0 = (0),

hence N = P ′1, and (f) = Q1. It follows that K[z1, . . . , zn]/(f) is a subring of A/P1 and this

is an integral extension. Again by Normalization Lemma, K[z1, . . . , zn]/(f) is integral over

a polynomial ring K[y1, . . . , yn−1]. Since (0) = P1/P1 ⊂ · · · ⊂ Pl/P1 is a non-extendable

chain of prime ideals of A/P1, such that (0)∩K[y1, . . . , yn−1] = (0), by inductive assumption

we have l − 1 = n− 1.

If Q0 6= 0, let g ∈ Q0 non 0. The ring K[z1, . . . , zn]/(g) is integral over a polynomial ring

in n− 1 variables, so the chain Q0/(g) ⊂ · · · ⊂ Ql/(g) has length at most n− 1 and l < n.

�

1.3. Consequences. The following series of Corollaries of Theorem 1.5 proves the desired

results and more.

Corollary 1.6. Let A be an integral domain finitely generated as K-algebra. Let n =

tr.d.Q(A)/K. Then

(1) all non-extendable chains of prime ideals of A have length n.

(2) The Krull dimension of A is finite and equal to n.

(3) Let Q ⊂ P be two prime ideals of A. If

Q = P0 ⊂ P1 ⊂ · · · ⊂ Pl = P

is a non-extendable chain of prime ideals between Q and P, then l = tr.d.Q(A/Q)/K−
tr.d.Q(A/P)/K.

(4) Every maximal ideal of A has height n.

Proof. By the Normalization Lemma there exist n algebraically independent elements

z1, . . . , zn ∈ A, such that A is integral over K[z1, . . . , zn]. Since A is a domain, for any

non-extendable chain of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pl, we have P0 = (0), hence Q0 =

P0 ∩K[z1, . . . .zn] = (0). The proof of (1) follows by Theorem 1.5. (2), (3), (4) follow form

(1). �
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Corollary 1.7. Let P ⊂ K[x1, . . . , xn] be a prime ideal of the polynomial ring in n variables.

Then dimA/P = n− ht(P).

Proof. Let

(1) P ⊂ · · · ⊂ M

be a non-extendable chain of prime ideals in K[x1, . . . , xn] starting with P and ending with

a maximal ideal. The length of the chain is tr.d.Q(A/P)/K − tr.d.K/K = tr.d.Q(A/P)/K

by Corollary 1.6 (3) applied to A/P , and it is equal to dimA/P by Corollary 1.6 (2). By

Corollary 1.6 (1) we can extend the chain (1) to a chain of maximal length n, of the form

(0) = P0 ⊂ . . .P ⊂ · · · ⊂ M.

The subchain (0) = P0 ⊂ · · · ⊂ P has length htP , so the thesis follows. �

If A is any integral domain, the property that all non-extendable chains of prime ideals

of A have the same length does not hold in general. There are even examples (not easy

to construct) of noetherian domains whose Krull dimension is not finite or where there are

non-extendable chains of prime ideals of different lengths. The rings where the property in

Corollary 1.6 (3) holds are called catenary rings.


