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MAXIMUM LIKELIHOOD REGRESSION

Observations (xi , ti), i = 1, . . . ,N

M + 1 Generalised basis functions φj : R
n → R, with φ0(x) = 1

(polynomials, Radial Basis Functions, sigmoids)

Gaussian noise: t = y(x,w) + ε, ε ∼ N(0, β−1)

Likelihood is p(t|X,w, β) =
∏N

i=1N(ti |wTφ(xi), β
−1)

Maximum likelihood solution computable in closed form

Regularization by penalising large weights (Lasso and Ridge
regression)140 3. LINEAR MODELS FOR REGRESSION
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ϵ (3.7)

where ϵ is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean
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AN EXAMPLE (BISHOP)

Max likelihood solution for different max degree of
monomial M 1.1. Example: Polynomial Curve Fitting 7
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.
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REGULARIZATION
1.1. Example: Polynomial Curve Fitting 9

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.

ing polynomial function matches each of the data points exactly, but between data
points (particularly near the ends of the range) the function exhibits the large oscilla-
tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible
polynomials with larger values of M are becoming increasingly tuned to the random
noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the
data set is varied, as shown in Figure 1.6. We see that, for a given model complexity,
the over-fitting problem become less severe as the size of the data set increases.
Another way to say this is that the larger the data set, the more complex (in other
words more flexible) the model that we can afford to fit to the data. One rough
heuristic that is sometimes advocated is that the number of data points should be
no less than some multiple (say 5 or 10) of the number of adaptive parameters in
the model. However, as we shall see in Chapter 3, the number of parameters is not
necessarily the most appropriate measure of model complexity.

Also, there is something rather unsatisfying about having to limit the number of
parameters in a model according to the size of the available training set. It would
seem more reasonable to choose the complexity of the model according to the com-
plexity of the problem being solved. We shall see that the least squares approach
to finding the model parameters represents a specific case of maximum likelihood
(discussed in Section 1.2.5), and that the over-fitting problem can be understood as
a general property of maximum likelihood. By adopting a Bayesian approach, theSection 3.4
over-fitting problem can be avoided. We shall see that there is no difficulty from
a Bayesian perspective in employing models for which the number of parameters
greatly exceeds the number of data points. Indeed, in a Bayesian model the effective
number of parameters adapts automatically to the size of the data set.

For the moment, however, it is instructive to continue with the current approach
and to consider how in practice we can apply it to data sets of limited size where we
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Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w⋆.
The lasso gives a sparse solution in
which w⋆

1 = 0.

w1

w2

w⋆

w1

w2

w⋆

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =

N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑

n=1

∥∥tn − WTφ(xn)
∥∥2

. (3.33)
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1

2

N∑

n=1

{y(xn,w) − tn}2
+

λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w⋆ for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w⋆

0 0.35 0.35 0.13
w⋆

1 232.37 4.74 -0.05
w⋆

2 -5321.83 -0.77 -0.06
w⋆

3 48568.31 -31.97 -0.05
w⋆

4 -231639.30 -3.89 -0.03
w⋆

5 640042.26 55.28 -0.02
w⋆

6 -1061800.52 41.32 -0.01
w⋆

7 1042400.18 -45.95 -0.00
w⋆

8 -557682.99 -91.53 0.00
w⋆

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.
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THE BAYESIAN APPROACH

Regularisation works by biasing
One way to bias estimators is to have prior beliefs and
being Bayesian
Gaussian prior for regression weights: w ∼ N(0, αI)
Compute posterior by by Bayes theorem:

p(w|X, t, α, β) =
p(t|X,w, α, β)p(w|α)

p(t|X, α, β)

Predictive distribution:

p(t |t, α, β) =
∫

p(t |t,w, α, β)p(w|t, α, β)dw
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POSTERIOR UPDATE 3.3. Bayesian Linear Regression 155

Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.
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EXAMPLE

3.3. Bayesian Linear Regression 157
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2πx) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.
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Figure 3.9 Plots of the function y(x,w) using samples from the posterior distributions over w corresponding to
the plots in Figure 3.8.

If we used localized basis functions such as Gaussians, then in regions away
from the basis function centres, the contribution from the second term in the predic-
tive variance (3.59) will go to zero, leaving only the noise contribution β−1. Thus,
the model becomes very confident in its predictions when extrapolating outside the
region occupied by the basis functions, which is generally an undesirable behaviour.
This problem can be avoided by adopting an alternative Bayesian approach to re-
gression known as a Gaussian process.Section 6.4

Note that, if both w and β are treated as unknown, then we can introduce a
conjugate prior distribution p(w, β) that, from the discussion in Section 2.3.6, will
be given by a Gaussian-gamma distribution (Denison et al., 2002). In this case, theExercise 3.12
predictive distribution is a Student’s t-distribution.Exercise 3.13
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MARGINAL LIKELIHOOD

The marginal likelihood or evidence is p(t|α, β).
It can be used to identify good hyperparameters α and β
If we have more models, e.g. M1 andM2, the evidence
p(t|Mj) can be used for Bayesian model comparison (via
Bayes factors) or to compute posterior model support
p(Mj |t)
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EFFECTIVE NUMBER OF PARAMETERS γ
170 3. LINEAR MODELS FOR REGRESSION

Figure 3.15 Contours of the likelihood function (red)
and the prior (green) in which the axes in parameter
space have been rotated to align with the eigenvectors
ui of the Hessian. For α = 0, the mode of the poste-
rior is given by the maximum likelihood solution wML,
whereas for nonzero α the mode is at wMAP = mN . In
the direction w1 the eigenvalue λ1, defined by (3.87), is
small compared with α and so the quantity λ1/(λ1 + α)
is close to zero, and the corresponding MAP value of
w1 is also close to zero. By contrast, in the direction w2

the eigenvalue λ2 is large compared with α and so the
quantity λ2/(λ2+α) is close to unity, and the MAP value
of w2 is close to its maximum likelihood value.

u1

u2

w1

w2

wMAP

wML

3.5.3 Effective number of parameters
The result (3.92) has an elegant interpretation (MacKay, 1992a), which provides

insight into the Bayesian solution for α. To see this, consider the contours of the like-
lihood function and the prior as illustrated in Figure 3.15. Here we have implicitly
transformed to a rotated set of axes in parameter space aligned with the eigenvec-
tors ui defined in (3.87). Contours of the likelihood function are then axis-aligned
ellipses. The eigenvalues λi measure the curvature of the likelihood function, and
so in Figure 3.15 the eigenvalue λ1 is small compared with λ2 (because a smaller
curvature corresponds to a greater elongation of the contours of the likelihood func-
tion). Because βΦTΦ is a positive definite matrix, it will have positive eigenvalues,
and so the ratio λi/(λi + α) will lie between 0 and 1. Consequently, the quantity γ
defined by (3.91) will lie in the range 0 ! γ ! M . For directions in which λi ≫ α,
the corresponding parameter wi will be close to its maximum likelihood value, and
the ratio λi/(λi + α) will be close to 1. Such parameters are called well determined
because their values are tightly constrained by the data. Conversely, for directions
in which λi ≪ α, the corresponding parameters wi will be close to zero, as will the
ratios λi/(λi +α). These are directions in which the likelihood function is relatively
insensitive to the parameter value and so the parameter has been set to a small value
by the prior. The quantity γ defined by (3.91) therefore measures the effective total
number of well determined parameters.

We can obtain some insight into the result (3.95) for re-estimating β by com-
paring it with the corresponding maximum likelihood result given by (3.21). Both
of these formulae express the variance (the inverse precision) as an average of the
squared differences between the targets and the model predictions. However, they
differ in that the number of data points N in the denominator of the maximum like-
lihood result is replaced by N − γ in the Bayesian result. We recall from (1.56) that
the maximum likelihood estimate of the variance for a Gaussian distribution over a
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KERNELS AND DUAL FORMULATION

Dual variables a are defined via input data projection:

w =
N∑

j=1

ajφ(xj)

The kernel is k(xi,xj) := φ(xi)
Tφ(xj)

The Gram matrix K is Kij = k(xi,xj)

The dual regression problem

Ed(a) + λEW (a) =
N∑

i=1

(ti − aT Ki)2 + λaT Ka

has also closed form solution
The kernel trick avoids direct reference to basis functions.
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