Statistical Machine Learning
Bayesian Linear Regression

Luca Bortolussi

Data Science and Scientific Computing

1 Linear regression

We start by introducing Maximum Likelihood linear regression, to fix notation and
recap basic ML concepts.

1.1 Generalised Basis Functions

e Suppose our inputs are real vectors, and outputs are real numbers, and we have
observations (X;,y;),i = 1,...,N.

e We consider a set of M basis functions ¢; : R” — R, and write
#(x) = (do(X),...., py-1(X)).
By convention, ¢y = 1.

e We consider the linear model
M-1
Y& W) = W) =) wii(x)
=0

e y(x,w) is linear in the parameters w, but can be non-linear in the input state x.

1

0.5 / 0.75 0.75

of > Z 05 0.5
0

051/ 0.25 0.25

1/
I,

-1

-1

0

1

1 ‘ 1

0
-1

Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

Basis functions can, and usually are, non-linear functions of the inputs. Examples
are

e Polynomials up to degree d. In 1 dimension, 1, x, x2, ..., x?
—11;)? . . .
o Gaussian basis functions: ¢; = exp {—%}, where y; is the location and s is

the lengthscale of the Gaussian.

s

e Sigmoid functions ¢; = o-(w !), with o(a) = m

1.2 Maximum Likelihood Regression

o Assume Gaussian noise: ¢ = y(x, W) + €, € ~ N(0,57!). Hence
plx, w.B) = N(y(x,w),™")

e Given observations X, t: (Xj, ;)i=1..._~, the likelihood is then

,,,,,

N
pX,w,B) = [[Noiw ¢x),87)
i=1

giving a log likelihood of

N
Inp(tfw,8) = > IN(ta|w d(x,), 57"

n=1

glnﬁ — %ln(%’) — BEp(w) (3.11)

where the sum-of-squares error function is defined by

N
Ep(w) = % St — W h(xa) 1. (3.12)

n=1

e The gradient w.r.t. w of the log-likelihood is

N
Vinp(tiw,8) = {tn — W o (xn)} (xn)". (3.13)
n=1

Setting this gradient to zero gives

N N
0=> tadp(x,)" —w" (Z ¢<xn>¢<xn)T> : (3.14)

n=1 n=1
Solving for w we obtain
war = (878) ' 3"t (3.15)

which are known as the normal equations for the least squares problem. Here @ is an
N x M matrix, called the design matrix, whose elements are given by ®,,; = ¢;(x,,),

so that
Go(x1) di(x1) -0 dm-1(x1)
P — %(:XQ) ¢1(:x2) W_:l(xﬁ . (3.16)
¢o(;(N) o (QCN) EE ¢>M—1.(XN)
The quantity

3" = (a7T®) 37 (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix ® (Rao and Mitra,

e Looking for the ML solution of the precision 3, we get

BML NZ{t — Wb (x,)}? (3.21)

1.2.1 Bias Term

e The parameter wy is known also as bias term.

At this poiht, we can gaiﬁ some insight into the role of the bias parameter wq. If
we make the bias parameter explicit, then the error function (3.12) becomes

1 N M-1
=5 D {tn —wo = Y w;d;(xn)}. (3.18)
n=1 j=1

Setting the derivative with respect to w, equal to zero, and solving for wg, we obtain

M-1

wo=1— Y w;g, (3.19)
=1
where we have defined

I 1
=~ Zz‘ 9=+ ;%—(xn). (3:20)

Thus the bias w, compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

1.2.2

1.2.3

Multiple Outputs

What if we have a vector of d-outputs rather than a single one, i.e. what if observations
X, T are (xi, ti)r=1,..n7?

If we use separate weights for each output dimension, W = (w;;), then the model is
y(x, W) = W (%)

which is easily seen to factorise in the different outputs, so that we need to solve d inde-
pendent ML problems, giving

Wi = (@ ®) '@’ T

Generalise to the case in which some coefficients of W are shared among outputs (i.e.,
constrained to be equal).

An Example (Bishop)

As an example, consider data generated by the model ¢ = sin(2rx) + €, from which we
generate few observations:

1 o
o o
t
o
o
o
ol o
° o
e
—1F
0 L 1

We want to fit a polynomial model of degree M, where M is to be chosen:
y(x,w) = wox” + wix! .+ wyaM

Max likelihood solution for different M

0 1 0 1

T @

e For M = 9 we face the problem of overfitting: the model is too complex - ML explains
noise rather than data.

e To validate a model, we need test data, different from the train data. Then we can com-
pute the root mean square error on test (and train) data.

Erus = V2Ep(WmL)/N

—©— Training
—O©— Test

e Overfitting depends also on how many observations: the more observations, the less over-
fitting:

1.3

e The fine-tuning of model to data reflects usually in large coefficients.

M=0 M=1 M=6 M =9
wgy 0.19 0.82 0.31 0.35
wy -1.27 7.99 232.37
wh -25.43 -5321.83
w} 17.37 48568.31
wy -231639.30
wh 640042.26
wg -1061800.52
wh 1042400.18
w§ -557682.99
w 125201.43

Regularised Maximum Likelihood

One way to avoid overfitting is to penalise solutions with large values of coefficients w.

This can be enforced by introducing a regularisation term on the error function to be
minimised:

Ep(w) + AEw (W)
A > 0 is the regularisation coefficient, and governs how strong is the penalty.

A common choice is | |
_tor 1 2
Ey(w) = 2w w = sz:wj

known as ridge regression, with solution
Wrr = (AL + ®T @) '@t

A more general form of the penalty term is
— l q
Ew(w) = 5 E,- |Wj|

q = 2 is the ridge regression, while g = 1 is the lasso regression.

Lasso regression has the property that it produces sparse models as some coefficients tend
to be set to zero. However, it has no analytic solution.

wa).

D &

w1

1.3.1

1.4

1.5

Example

Let’s consider the sine example, and fit the model of degree M = 9 by ridge regression,
for different A’s.

1 o—0 InA=0

2

0 . 1 0 P

If we compute the RMSE on a test set, we can see how the error changes with A
1

Training
Test

Erus
=]
G

[

=35 =30 =25 =20

In A

Train, Validation, and Test data

The regularisation coefficient A is a method parameter. But how can we set it?

Ideally, we should divide our data in a train set, a test set, and a validation set, which can
be used to set method’s parameters.

Often, we do not have all such data, hence we can resort to cross-validation

n-fold cross-validation: split data set in n blocks, use in turn each block for validation
and the rest for training, average the error on the 7 runs.

leave one out cross-validation: validate in tuns on a single data point left out from the
training set and average.

Expected loss

If we have a model p(x, 7) of input-output, one way to make a prediction (choose #* given
x") is by minimising an expected logs functional

E[L] = /{y(x) —t}2p(x,) dx dt. (1.87)
The solution for the square logs functional is the conditional expectation
]tp(x, t)dt
y(x) = ———— = [tp(t|x)dt = E;[t|x (1.89)
0 = S = [ttt de = Bl

This can be seen by summing and subtracting E[#[x] inside the integral, getting

E[L] = / {(x) — Elt}} plax) dx + / (Bt -)?p(x)dx. (1.90)

1.6 Bias variance decomposition

e If we do not have the full model, but only observe a dataset D, then we can try to find the
best approximant to the true conditional expectation, y(X, D).

e To test a method, we can try to generate many datasets and take the average Ey w.r.t. the
dataset. After some computations, calling 4(x) the true conditional expectation:

expected loss = (bias)? 4 variance + noise (3.41)

where
(ins)? = [{Enly(xiD)] - h60)p(x) e (342
variance = /ED [{y(x; D) — Eply(x; D)]}?] p(x) dx (3.43)

noise = /{h(x) —t}?p(x,t) dx dt (3.44)

1.6.1 Example

Left: solutions for individual datasets; right: averages over datasets.

InA=26

o
=Y

o

e For the sine example, we can compute bias and variance as a function of the regularisation
coefficient. The trade off is evident.

0.15

(bias)”
0.12 variance
(bias)2 + variance
0.09 ¢ i—/
0.06
0.03 ¢
0
-3 -2 -1 0 1

2 Bayesian linear regression

2.1 The Bayesian approach

e Regularisation works by biasing
e One way to bias estimators is to have prior beliefs and being Bayesian

e Let’s assume the regression weights have a Gaussian prior w ~ N(0, I) and that the bias
is zero

e The posterior is given by Bayes theorem:

p(UX, w, a, B)p(wla)
p(tX, a,B)

WX, t,a,B) =

2.2 The posterior distribution

e Hence, the log posterior is
B N
log p(WIX, t,@,8) = -3 Z[z_,- - wT())(xj)]2 — aw' W + const
j=1
e Asitis a quadratic function in w, it is the log of a Gaussian:
P(W|Xs tv avﬁ) = N(wlva SN)

with mean and variance
my = ﬁSN(DTt

Sy = ol + g0’ @
e Alternatively: use the formula for the product of two gaussians.

e In general, we can take a general Gaussian prior
p(wimg, So) = N(wimy, So)

e This will result in a Gaussian posterior p(w|X, t, @, 8) = N(wmy, Sy) with
my = Sx[So"'mg + BP"t]

S =87+ o’ @

10

2.2.1 Example

likelihood prior/posterior data space
1

=
&

o
I3

o
S

o
g
S
e
S

2.3 The predictive distribution

e Given the posterior, one can find the MAP estimate. However, in a fully Bayesian treat-
ment, one makes predictions by integrating out the parameters via their posterior distri-
bution.

pllt,a,p) = f pit, w, @, B)p(Wit, @, B)dw
e The predictive distribution is still a Gaussian
plit, @, B) = N(rimy" $(x), 07(x))

with mean my” ¢(x) and variance
1
N0 = 5 + ()" Sng(x)

e It can be shown that 03, (x) < 03(X) and 03(x) — 1/B8

11

2.3.1 Example

1 1
t t
0 ® 0
-1 -1
0 T 1 0 T !
1 1
t t
0 0
-1 -1
0 z 1 0 T !
1 1
t t
0 0
-1 -1
0 - 1 0 . 1
1 1
t t
0 0
-1 -1
0 x 1 0 T !

2.4 Marginal likelihood

e The marginal likelihood p(t|e, B), appearing at the denominator in Bayes theorem, can be
used to identify good @ and 8, known as hyperparameters.

e Intuitively, we can place a prior distribution over @ and 3, compute their posterior, and
use this in a fully Bayesian treatment of the regression:

pla,Blt) o p(tla, B)p(a. B)

12

24.1

2.5

If we assume the posterior is peaked around the mode, then we can take the MAP as an
approximation of the full posterior for @ and S. If the prior is flat, this will boil down to
the ML solution.

Hence we need to optimise the marginal likelihood, which can be computed as:

M N 1 N
log p(tla, B) = > loga + 3 log8 — E(my) — 3 log|Sx7!| - 3 log 2n
with 5
[07
E(my) = 5”t - dmy|* + EmNTmN

This optimisation problem can be solved with any optimisation routine, or with spe-
cialised methods.

Optimising the marginal likelihood
We will present a fix-point algorithm: we will write the gradient equations equal to zero
as fix-point equations and iterate until convergence.

In taking the derivative w.r.t @ or 8, the most challenging term is the log of the determinant
of Sy~ = ol + DT ®.

To deal with it, let ; be the eigenvalues of S®T ®, so that [Sy~!| = Hf‘ﬁg' (a+).
We then have that

dlog|Sx~"/da = |

i

a+ A

Moreover, A; are proportional to 3, so that d4;/08 = A;/8

%
YZZCH—/I,-

(which measures the number of well determined parameters)

Now, define

By deriving the log-marginal w.r.t. @ and setting derivative to zero, we obtain:

v= —L— =g @p

mNTmN

By deriving the log-marginal w.r.t. 8 and setting derivative to zero, we obtain:

L LS NIt~ myT g =
B-N-y& T TN T T @)

We start from an initial value a and Sy and iterate @1 = go(@n.Bn), Brs1 = &8(An,Bn)
until convergence.

Bayesian model comparison

Consider M; and M, two different models, which one is the best to explain the data D?

In a Bayesian setting, we may place a prior p(M;) on the models, and compute the pos-

.)
terior p(M;|D) = 3, PO

As we typically have additional parameters w, the term p(D|M;) is the model evidence/
marginal likelihood.

13

The ratio p(DIM,)/ p(DIM,) is known as Bayes Factor.

In Bayesian model comparison, we can take two approaches.

We can compute the predictive distribution for each model and average it by the posterior
model probability

PAD) = 3" pUIM;, D)p(M;|D)
J

Alternatively, we can choose the model with larger Bayes Factor. This will pick the
correct model on average. In fact, the average log Bayes factor (assuming M, is the true
model) is

p(OIM,)

D log ————
fp(IM;)log P(DIM)

14

3 Dual representation and kernels

3.1

3.2

3.3

Dual representation

Consider a regression problem with data (x;, ;), and a linear model w” ¢(x).

We can restrict the choice of w to the linear subspace spanned by ¢(x1), . . ., ¢(Xn), as any
w, othogonal to this subspace will give a contribution w, 7 ¢(x;) = 0 on input points:

N
W= Z Llj¢(Xj)
j=1

a are known as the dual variables
By defining the kernel k(x;, X;) := @#(x;)” ¢(X;), we can write
wp(xi) =a'K!

Where K is the ith column of the Gram matrix K, K;; = k(x;, X;).

Dual regression

In the dual variables, we have to optimise the following regression equation

N
E4(a) + AEy(a) = Z(t,- —a’K')? + 1a’Ka

i=1
By deriving w.r.t a and setting the gradient to zero, we obtain the solution
a=K+a)'t
At a new input x*, the prediction will then be
yx) = kK + D't

withk,” = (k(x",x1), ..., k(X*, X))

The kernel trick

The dual objective function depends only on the scalar product of input vectors

We can replace the Euclidean scalar product with any (non-linear) scalar product

This is usually obtained by giving directly a non-linear kernel function k(x;, x;) (kernel
trick)

This enables us to work with more general set of basis functions, even countable. See

Gaussian processes.

The same dual procedure applies to other algorithms, notably linear classification and
SVMs

The computational cost to solve the primal problem is O(M?), while the dual costs O(N?).
They can be both prohibitive is N and M are large. In this case, one can optimise the log
likelihood directly, using gradient based methods.

15

