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1 Linear regression
We start by introducing Maximum Likelihood linear regression, to fix notation and
recap basic ML concepts.

1.1 Generalised Basis Functions
• Suppose our inputs are real vectors, and outputs are real numbers, and we have

observations (xi, yi), i = 1, . . . ,N.

• We consider a set of M basis functions φ j : Rn → R, and write

φ(x) = (φ0(x), . . . , φM−1(x)).

By convention, φ0 ≡ 1.

• We consider the linear model

y(x,w) = wTφ(x) =
M−1∑
j=0

w jφ j(x)

• y(x,w) is linear in the parameters w, but can be non-linear in the input state x.140 3. LINEAR MODELS FOR REGRESSION
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Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ϵ (3.7)

where ϵ is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean
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Basis functions can, and usually are, non-linear functions of the inputs. Examples
are

• Polynomials up to degree d. In 1 dimension, 1, x, x2, . . . , xd

• Gaussian basis functions: φ j = exp
{
−

(x−µ j)2

2s2

}
, where µ j is the location and s is

the lengthscale of the Gaussian.

• Sigmoid functions φ j = σ
( x−µ j

s

)
, with σ(a) = 1

1+exp(−a)

1.2 Maximum Likelihood Regression
• Assume Gaussian noise: t = y(x,w) + ε, ε ∼ N(0, β−1). Hence

p(t|x,w, β) = N(y(x,w), β−1)

• Given observations X, t: (xi, ti)i=1,...,N , the likelihood is then

p(t|X,w, β) =
N∏

i=1

N(yi|wTφ(xi), β−1)

giving a log likelihood of
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will be simply

E[t|x] =

∫
tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =

N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =

N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1

2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =

N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)

• The gradient w.r.t. w of the log-likelihood is
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Setting this gradient to zero gives

0 =

N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T

)
. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =

⎛
⎜⎜⎝

φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

⎞
⎟⎟⎠ . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1

2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1

N

N∑

n=1

tn, φj =
1

N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1

βML

=
1

N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)

• Looking for the ML solution of the precision β, we get
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1.2.1 Bias Term

• The parameter w0 is known also as bias term.
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1.2.2 Multiple Outputs

• What if we have a vector of d-outputs rather than a single one, i.e. what if observations
X,T are (xi, ti)I=1,...,N?

• If we use separate weights for each output dimension, W = (wi j), then the model is

y(x,W) =WTφ(x)

which is easily seen to factorise in the different outputs, so that we need to solve d inde-
pendent ML problems, giving

WML = (ΦTΦ)−1ΦT T

• Generalise to the case in which some coefficients of W are shared among outputs (i.e.,
constrained to be equal).

1.2.3 An Example (Bishop)

• As an example, consider data generated by the model t = sin(2πx) + ε, from which we
generate few observations:

4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.
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detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function

• We want to fit a polynomial model of degree M, where M is to be chosen:

y(x,w) = w0 x0 + w1 x1 + . . . + wM xM

• Max likelihood solution for different M

4



1.1. Example: Polynomial Curve Fitting 7
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

• For M = 9 we face the problem of overfitting: the model is too complex - ML explains
noise rather than data.

• To validate a model, we need test data, different from the train data. Then we can com-
pute the root mean square error on test (and train) data.

ERMS =
√

2ED(wML)/N
8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .
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For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w⋆) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w⋆ obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w⋆ for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w⋆

0 0.19 0.82 0.31 0.35
w⋆

1 -1.27 7.99 232.37
w⋆

2 -25.43 -5321.83
w⋆

3 17.37 48568.31
w⋆

4 -231639.30
w⋆

5 640042.26
w⋆

6 -1061800.52
w⋆

7 1042400.18
w⋆

8 -557682.99
w⋆

9 125201.43

• Overfitting depends also on how many observations: the more observations, the less over-
fitting: 1.1. Example: Polynomial Curve Fitting 9
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.

ing polynomial function matches each of the data points exactly, but between data
points (particularly near the ends of the range) the function exhibits the large oscilla-
tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible
polynomials with larger values of M are becoming increasingly tuned to the random
noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the
data set is varied, as shown in Figure 1.6. We see that, for a given model complexity,
the over-fitting problem become less severe as the size of the data set increases.
Another way to say this is that the larger the data set, the more complex (in other
words more flexible) the model that we can afford to fit to the data. One rough
heuristic that is sometimes advocated is that the number of data points should be
no less than some multiple (say 5 or 10) of the number of adaptive parameters in
the model. However, as we shall see in Chapter 3, the number of parameters is not
necessarily the most appropriate measure of model complexity.

Also, there is something rather unsatisfying about having to limit the number of
parameters in a model according to the size of the available training set. It would
seem more reasonable to choose the complexity of the model according to the com-
plexity of the problem being solved. We shall see that the least squares approach
to finding the model parameters represents a specific case of maximum likelihood
(discussed in Section 1.2.5), and that the over-fitting problem can be understood as
a general property of maximum likelihood. By adopting a Bayesian approach, theSection 3.4
over-fitting problem can be avoided. We shall see that there is no difficulty from
a Bayesian perspective in employing models for which the number of parameters
greatly exceeds the number of data points. Indeed, in a Bayesian model the effective
number of parameters adapts automatically to the size of the data set.

For the moment, however, it is instructive to continue with the current approach
and to consider how in practice we can apply it to data sets of limited size where we

5



• The fine-tuning of model to data reflects usually in large coefficients.

8 1. INTRODUCTION
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1.3 Regularised Maximum Likelihood
• One way to avoid overfitting is to penalise solutions with large values of coefficients w.

• This can be enforced by introducing a regularisation term on the error function to be
minimised:

ED(w) + λEW (w)

• λ > 0 is the regularisation coefficient, and governs how strong is the penalty.

• A common choice is
EW (w) =

1
2

wT w =
1
2

∑
j

w2
j

known as ridge regression, with solution

wRR = (λI +ΦTΦ)−1ΦT t

• A more general form of the penalty term is

EW (w) =
1
2

∑
j

|w j|
q

• q = 2 is the ridge regression, while q = 1 is the lasso regression.

• Lasso regression has the property that it produces sparse models as some coefficients tend
to be set to zero. However, it has no analytic solution.146 3. LINEAR MODELS FOR REGRESSION

Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w⋆.
The lasso gives a sparse solution in
which w⋆

1 = 0.

w1

w2

w⋆

w1

w2

w⋆

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =

N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑

n=1

∥∥tn − WTφ(xn)
∥∥2

. (3.33)
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1.3.1 Example

• Let’s consider the sine example, and fit the model of degree M = 9 by ridge regression,
for different λ′s.

10 1. INTRODUCTION
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Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1

2

N∑

n=1

{y(xn,w) − tn}2
+

λ

2
∥w∥2 (1.4)

where ∥w∥2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

• If we compute the RMSE on a test set, we can see how the error changes with λ

1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w⋆ for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w⋆

0 0.35 0.35 0.13
w⋆

1 232.37 4.74 -0.05
w⋆

2 -5321.83 -0.77 -0.06
w⋆

3 48568.31 -31.97 -0.05
w⋆

4 -231639.30 -3.89 -0.03
w⋆

5 640042.26 55.28 -0.02
w⋆

6 -1061800.52 41.32 -0.01
w⋆

7 1042400.18 -45.95 -0.00
w⋆

8 -557682.99 -91.53 0.00
w⋆

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.
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1.4 Train, Validation, and Test data
• The regularisation coefficient λ is a method parameter. But how can we set it?
• Ideally, we should divide our data in a train set, a test set, and a validation set, which can

be used to set method’s parameters.
• Often, we do not have all such data, hence we can resort to cross-validation
• n-fold cross-validation: split data set in n blocks, use in turn each block for validation

and the rest for training, average the error on the n runs.
• leave one out cross-validation: validate in tuns on a single data point left out from the

training set and average.

1.5 Expected loss
• If we have a model p(x, t) of input-output, one way to make a prediction (choose t∗ given

x∗) is by minimising an expected loss functional
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independent, so that

p(xI,xB|Ck) = p(xI|Ck)p(xB|Ck). (1.84)

This is an example of conditional independence property, because the indepen-Section 8.2
dence holds when the distribution is conditioned on the class Ck. The posterior
probability, given both the X-ray and blood data, is then given by

p(Ck|xI,xB) ∝ p(xI,xB|Ck)p(Ck)

∝ p(xI|Ck)p(xB|Ck)p(Ck)

∝ p(Ck|xI)p(Ck|xB)

p(Ck)
(1.85)

Thus we need the class prior probabilities p(Ck), which we can easily estimate
from the fractions of data points in each class, and then we need to normalize
the resulting posterior probabilities so they sum to one. The particular condi-
tional independence assumption (1.84) is an example of the naive Bayes model.Section 8.2.2
Note that the joint marginal distribution p(xI,xB) will typically not factorize
under this model. We shall see in later chapters how to construct models for
combining data that do not require the conditional independence assumption
(1.84).

1.5.5 Loss functions for regression
So far, we have discussed decision theory in the context of classification prob-

lems. We now turn to the case of regression problems, such as the curve fitting
example discussed earlier. The decision stage consists of choosing a specific esti-Section 1.1
mate y(x) of the value of t for each input x. Suppose that in doing so, we incur a
loss L(t, y(x)). The average, or expected, loss is then given by

E[L] =

∫∫
L(t, y(x))p(x, t) dxdt. (1.86)

A common choice of loss function in regression problems is the squared loss given
by L(t, y(x)) = {y(x) − t}2. In this case, the expected loss can be written

E[L] =

∫∫
{y(x) − t}2p(x, t) dxdt. (1.87)

Our goal is to choose y(x) so as to minimize E[L]. If we assume a completely
flexible function y(x), we can do this formally using the calculus of variations toAppendix D
give

δE[L]

δy(x)
= 2

∫
{y(x) − t}p(x, t) dt = 0. (1.88)

Solving for y(x), and using the sum and product rules of probability, we obtain

y(x) =

∫
tp(x, t) dt

p(x)
=

∫
tp(t|x) dt = Et[t|x] (1.89)

• The solution for the square loss functional is the conditional expectation
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Our goal is to choose y(x) so as to minimize E[L]. If we assume a completely
flexible function y(x), we can do this formally using the calculus of variations toAppendix D
give

δE[L]

δy(x)
= 2

∫
{y(x) − t}p(x, t) dt = 0. (1.88)

Solving for y(x), and using the sum and product rules of probability, we obtain

y(x) =

∫
tp(x, t) dt

p(x)
=

∫
tp(t|x) dt = Et[t|x] (1.89)

• This can be seen by summing and subtracting E[t|x] inside the integral, getting
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Figure 1.28 The regression function y(x),
which minimizes the expected
squared loss, is given by the
mean of the conditional distri-
bution p(t|x).

t

xx0

y(x0)

y(x)

p(t|x0)

which is the conditional average of t conditioned on x and is known as the regression
function. This result is illustrated in Figure 1.28. It can readily be extended to mul-
tiple target variables represented by the vector t, in which case the optimal solution
is the conditional average y(x) = Et[t|x].Exercise 1.25

We can also derive this result in a slightly different way, which will also shed
light on the nature of the regression problem. Armed with the knowledge that the
optimal solution is the conditional expectation, we can expand the square term as
follows

{y(x) − t}2 = {y(x) − E[t|x] + E[t|x] − t}2

= {y(x) − E[t|x]}2 + 2{y(x) − E[t|x]}{E[t|x] − t} + {E[t|x] − t}2

where, to keep the notation uncluttered, we use E[t|x] to denote Et[t|x]. Substituting
into the loss function and performing the integral over t, we see that the cross-term
vanishes and we obtain an expression for the loss function in the form

E[L] =

∫
{y(x) − E[t|x]}2

p(x) dx +

∫
{E[t|x] − t}2p(x) dx. (1.90)

The function y(x) we seek to determine enters only in the first term, which will be
minimized when y(x) is equal to E[t|x], in which case this term will vanish. This
is simply the result that we derived previously and that shows that the optimal least
squares predictor is given by the conditional mean. The second term is the variance
of the distribution of t, averaged over x. It represents the intrinsic variability of
the target data and can be regarded as noise. Because it is independent of y(x), it
represents the irreducible minimum value of the loss function.

As with the classification problem, we can either determine the appropriate prob-
abilities and then use these to make optimal decisions, or we can build models that
make decisions directly. Indeed, we can identify three distinct approaches to solving
regression problems given, in order of decreasing complexity, by:

(a) First solve the inference problem of determining the joint density p(x, t). Then
normalize to find the conditional density p(t|x), and finally marginalize to find
the conditional mean given by (1.89).
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1.6 Bias variance decomposition
• If we do not have the full model, but only observe a datasetD, then we can try to find the

best approximant to the true conditional expectation, y(x,D).

• To test a method, we can try to generate many datasets and take the average ED w.r.t. the
dataset. After some computations, calling h(x) the true conditional expectation:

3.2. The Bias-Variance Decomposition 149

inside the braces, and then expand, we obtain

{y(x;D) − ED[y(x;D)] + ED[y(x;D)] − h(x)}2

= {y(x;D) − ED[y(x;D)]}2 + {ED[y(x;D)] − h(x)}2

+2{y(x;D) − ED[y(x; D)]}{ED[y(x; D)] − h(x)}. (3.39)

We now take the expectation of this expression with respect to D and note that the
final term will vanish, giving

ED
[
{y(x;D) − h(x)}2

]

= {ED[y(x;D)] − h(x)}2

︸ ︷︷ ︸
(bias)2

+ ED
[
{y(x;D) − ED[y(x;D)]}2

]
︸ ︷︷ ︸

variance

. (3.40)

We see that the expected squared difference between y(x;D) and the regression
function h(x) can be expressed as the sum of two terms. The first term, called the
squared bias, represents the extent to which the average prediction over all data sets
differs from the desired regression function. The second term, called the variance,
measures the extent to which the solutions for individual data sets vary around their
average, and hence this measures the extent to which the function y(x; D) is sensitive
to the particular choice of data set. We shall provide some intuition to support these
definitions shortly when we consider a simple example.

So far, we have considered a single input value x. If we substitute this expansion
back into (3.37), we obtain the following decomposition of the expected squared loss

expected loss = (bias)2 + variance + noise (3.41)

where

(bias)2 =

∫
{ED[y(x;D)] − h(x)}2p(x) dx (3.42)

variance =

∫
ED

[
{y(x;D) − ED[y(x;D)]}2

]
p(x) dx (3.43)

noise =

∫
{h(x) − t}2p(x, t) dxdt (3.44)

and the bias and variance terms now refer to integrated quantities.
Our goal is to minimize the expected loss, which we have decomposed into the

sum of a (squared) bias, a variance, and a constant noise term. As we shall see, there
is a trade-off between bias and variance, with very flexible models having low bias
and high variance, and relatively rigid models having high bias and low variance.
The model with the optimal predictive capability is the one that leads to the best
balance between bias and variance. This is illustrated by considering the sinusoidal
data set from Chapter 1. Here we generate 100 data sets, each containing N = 25Appendix A
data points, independently from the sinusoidal curve h(x) = sin(2πx). The data
sets are indexed by l = 1, . . . , L, where L = 100, and for each data set D(l) we

1.6.1 Example

Left: solutions for individual datasets; right: averages over datasets.
150 3. LINEAR MODELS FOR REGRESSION
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Figure 3.5 Illustration of the dependence of bias and variance on model complexity, governed by a regulariza-
tion parameter λ, using the sinusoidal data set from Chapter 1. There are L = 100 data sets, each having N = 25
data points, and there are 24 Gaussian basis functions in the model so that the total number of parameters is
M = 25 including the bias parameter. The left column shows the result of fitting the model to the data sets for
various values of ln λ (for clarity, only 20 of the 100 fits are shown). The right column shows the corresponding
average of the 100 fits (red) along with the sinusoidal function from which the data sets were generated (green).

• For the sine example, we can compute bias and variance as a function of the regularisation
coefficient. The trade off is evident.
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Figure 3.6 Plot of squared bias and variance,
together with their sum, correspond-
ing to the results shown in Fig-
ure 3.5. Also shown is the average
test set error for a test data set size
of 1000 points. The minimum value
of (bias)2 + variance occurs around
ln λ = −0.31, which is close to the
value that gives the minimum error
on the test data.

ln λ

−3 −2 −1 0 1 2
0
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0.06

0.09

0.12

0.15
(bias)2

variance

(bias)2 + variance
test error

fit a model with 24 Gaussian basis functions by minimizing the regularized error
function (3.27) to give a prediction function y(l)(x) as shown in Figure 3.5. The
top row corresponds to a large value of the regularization coefficient λ that gives low
variance (because the red curves in the left plot look similar) but high bias (because
the two curves in the right plot are very different). Conversely on the bottom row, for
which λ is small, there is large variance (shown by the high variability between the
red curves in the left plot) but low bias (shown by the good fit between the average
model fit and the original sinusoidal function). Note that the result of averaging many
solutions for the complex model with M = 25 is a very good fit to the regression
function, which suggests that averaging may be a beneficial procedure. Indeed, a
weighted averaging of multiple solutions lies at the heart of a Bayesian approach,
although the averaging is with respect to the posterior distribution of parameters, not
with respect to multiple data sets.

We can also examine the bias-variance trade-off quantitatively for this example.
The average prediction is estimated from

y(x) =
1

L

L∑

l=1

y(l)(x) (3.45)

and the integrated squared bias and integrated variance are then given by

(bias)2 =
1

N

N∑

n=1

{y(xn) − h(xn)}2 (3.46)

variance =
1

N

N∑

n=1

1

L

L∑

l=1

{
y(l)(xn) − y(xn)

}2
(3.47)

where the integral over x weighted by the distribution p(x) is approximated by a
finite sum over data points drawn from that distribution. These quantities, along
with their sum, are plotted as a function of lnλ in Figure 3.6. We see that small
values of λ allow the model to become finely tuned to the noise on each individual
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2 Bayesian linear regression
2.1 The Bayesian approach

• Regularisation works by biasing

• One way to bias estimators is to have prior beliefs and being Bayesian

• Let’s assume the regression weights have a Gaussian prior w ∼ N(0, αI) and that the bias
is zero

• The posterior is given by Bayes theorem:

p(w|X, t, α, β) =
p(t|X,w, α, β)p(w|α)

p(t|X, α, β)

2.2 The posterior distribution
• Hence, the log posterior is

log p(w|X, t, α, β) = −
β

2

N∑
j=1

[t j − wTφ(xj)]2 − αwT w + const

• As it is a quadratic function in w, it is the log of a Gaussian:

p(w|X, t, α, β) = N(w|mN,SN)

with mean and variance
mN = βSNΦ

T t

SN
−1 = αI + βΦTΦ

• Alternatively: use the formula for the product of two gaussians.

• In general, we can take a general Gaussian prior

p(w|m0,S0) = N(w|m0,S0)

• This will result in a Gaussian posterior p(w|X, t, α, β) = N(w|mN,SN) with

mN = SN[S0
−1m0 + βΦ

T t]

SN
−1 = S0

−1 + βΦTΦ

10



2.2.1 Example
3.3. Bayesian Linear Regression 155

Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.

2.3 The predictive distribution
• Given the posterior, one can find the MAP estimate. However, in a fully Bayesian treat-

ment, one makes predictions by integrating out the parameters via their posterior distri-
bution.

p(t|t, α, β) =
∫

p(t|t,w, α, β)p(w|t, α, β)dw

• The predictive distribution is still a Gaussian

p(t|t, α, β) = N(t|mN
Tφ(x), σ2

N(x))

with mean mN
Tφ(x) and variance

σ2
N(x) =

1
β
+ φ(x)T SNφ(x)

• It can be shown that σ2
N+1(x) ≤ σ2

N(x) and σ2
N(x)→ 1/β

11
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Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2πx) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.
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Figure 3.9 Plots of the function y(x,w) using samples from the posterior distributions over w corresponding to
the plots in Figure 3.8.

If we used localized basis functions such as Gaussians, then in regions away
from the basis function centres, the contribution from the second term in the predic-
tive variance (3.59) will go to zero, leaving only the noise contribution β−1. Thus,
the model becomes very confident in its predictions when extrapolating outside the
region occupied by the basis functions, which is generally an undesirable behaviour.
This problem can be avoided by adopting an alternative Bayesian approach to re-
gression known as a Gaussian process.Section 6.4

Note that, if both w and β are treated as unknown, then we can introduce a
conjugate prior distribution p(w, β) that, from the discussion in Section 2.3.6, will
be given by a Gaussian-gamma distribution (Denison et al., 2002). In this case, theExercise 3.12
predictive distribution is a Student’s t-distribution.Exercise 3.13

2.4 Marginal likelihood
• The marginal likelihood p(t|α, β), appearing at the denominator in Bayes theorem, can be

used to identify good α and β, known as hyperparameters.

• Intuitively, we can place a prior distribution over α and β, compute their posterior, and
use this in a fully Bayesian treatment of the regression:

p(α, β|t) ∝ p(t|α, β)p(α, β)

12



• If we assume the posterior is peaked around the mode, then we can take the MAP as an
approximation of the full posterior for α and β. If the prior is flat, this will boil down to
the ML solution.

• Hence we need to optimise the marginal likelihood, which can be computed as:

log p(t|α, β) =
M
2

logα +
N
2

log β − E(mN) −
1
2

log |SN
−1| −

N
2

log 2π

with
E(mN) =

β

2
||t −ΦmN||

2 +
α

2
mN

T mN

• This optimisation problem can be solved with any optimisation routine, or with spe-
cialised methods.

2.4.1 Optimising the marginal likelihood

• We will present a fix-point algorithm: we will write the gradient equations equal to zero
as fix-point equations and iterate until convergence.

• In taking the derivative w.r.t α or β, the most challenging term is the log of the determinant
of SN

−1 = αI + βΦTΦ.

• To deal with it, let λi be the eigenvalues of βΦTΦ, so that |SN
−1| =

∏M−1
i=0 (α + λi).

• We then have that
∂ log |SN

−1|/∂α =
∑

i

1
α + λi

• Moreover, λi are proportional to β, so that ∂λi/∂β = λi/β

• Now, define

γ =
∑

i

λi

α + λi

(which measures the number of well determined parameters)

• By deriving the log-marginal w.r.t. α and setting derivative to zero, we obtain:

α =
γ

mN
T mN

= gα(α, β)

• By deriving the log-marginal w.r.t. β and setting derivative to zero, we obtain:

1
β
=

1
N − γ

∑
n=1

N[tn −mN
Tφ(xn)]2 =

1
gβ(α, β)

• We start from an initial value α0 and β0 and iterate αn+1 = gα(αn, βn), βn+1 = gβ(αn, βn)
until convergence.

2.5 Bayesian model comparison
• ConsiderM1 andM2 two different models, which one is the best to explain the dataD?

• In a Bayesian setting, we may place a prior p(M j) on the models, and compute the pos-
terior p(M j|D) = p(D|M j)p(M j)∑

j p(D|M j)p(M j)
.

• As we typically have additional parameters w, the term p(D|M j) is the model evidence/
marginal likelihood.
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• The ratio p(D|M1)/p(D|M2) is known as Bayes Factor.

• In Bayesian model comparison, we can take two approaches.

• We can compute the predictive distribution for each model and average it by the posterior
model probability

p(t|D) =
∑

j

p(t|M j,D)p(M j|D)

• Alternatively, we can choose the model with larger Bayes Factor. This will pick the
correct model on average. In fact, the average log Bayes factor (assumingM1 is the true
model) is ∫

p(D|M1) log
p(D|M1)
p(D|M2)

> 0
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3 Dual representation and kernels
3.1 Dual representation

• Consider a regression problem with data (xi, yi), and a linear model wTφ(x).

• We can restrict the choice of w to the linear subspace spanned by φ(x1), . . . ,φ(xN), as any
w⊥ othogonal to this subspace will give a contribution w⊥Tφ(xi) = 0 on input points:

w =
N∑

j=1

a jφ(xj)

• a are known as the dual variables

• By defining the kernel k(xi, xj) := φ(xi)Tφ(xj), we can write

wTφ(xi) = aT Ki

Where Ki is the ith column of the Gram matrix K, Ki j = k(xi, xj).

3.2 Dual regression
• In the dual variables, we have to optimise the following regression equation

Ed(a) + λEW (a) =
N∑

i=1

(ti − aT Ki)2 + λaT Ka

• By deriving w.r.t a and setting the gradient to zero, we obtain the solution

â = (K + λI)−1t

• At a new input x∗, the prediction will then be

y(x∗) = k∗T (K + λI)−1t

with k∗T = (k(x∗, x1), . . . , k(x∗, xN))

3.3 The kernel trick
• The dual objective function depends only on the scalar product of input vectors

• We can replace the Euclidean scalar product with any (non-linear) scalar product

• This is usually obtained by giving directly a non-linear kernel function k(xi, x j) (kernel
trick)

• This enables us to work with more general set of basis functions, even countable. See
Gaussian processes.

• The same dual procedure applies to other algorithms, notably linear classification and
SVMs

• The computational cost to solve the primal problem is O(M3), while the dual costs O(N3).
They can be both prohibitive is N and M are large. In this case, one can optimise the log
likelihood directly, using gradient based methods.
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