
LESSON 10.

1. Regular and rational functions.

1.1. Regular functions. In this lesson, we will define the regular functions on algebraic

varieties, not only on closed subsets of affine or projective space, but more in general on

locally closed subsets. This will allow to associate to any algebraic variety an algebraic

invariant, the ring of regular functions. An analogous construction will be given also for a

more general class of functions, rational functions, that will bring to a second invariant, the

field of rational functions.

Let X ⊂ Pn be a locally closed subset and P be a point of X. Let ϕ : X → K be a

function.

Definition 1.1. ϕ is regular at P if there exists a suitable neighbourhood of P in which

ϕ can be expressed as a quotient of homogeneous polynomials of the same degree; more

precisely, if there exist an open neighbourhood U of P in X and homogeneous polynomials F ,

G ∈ K[x0, x1, . . . , xn] with degF = degG, such that U∩VP (G) = ∅ and ϕ(Q) = F (Q)/G(Q),

for all Q ∈ U . Note that the quotient F (Q)/G(Q) is well defined.

ϕ is regular on X if ϕ is regular at every point P of X.

The set of regular functions on X is denoted by O(X): it contains K (identified with the set

of constant functions), and can be given the structure of a K–algebra, by the definitions:

(ϕ+ ψ)(P ) = ϕ(P ) + ψ(P )

(ϕψ)(P ) = ϕ(P )ψ(P ),

for P ∈ X. (Check that ϕ+ ψ and ϕψ are indeed regular on X.)

Proposition 1.2. Let ϕ : X → K be a regular function. Let K be identified with A1 with

Zariski topology. Then ϕ is continuous.

Proof. It is enough to prove that ϕ−1(c) is closed in X, ∀ c ∈ K. For all P ∈ X, choose

an open neighbourhood UP and homogeneous polynomials FP , GP such that ϕ|P = FP/GP .

Then

ϕ−1(c) ∩ UP = {Q ∈ UP |FP (Q)− cGP (Q) = 0} = UP ∩ VP (FP − cGP )

is closed in UP . The proposition then follows from:
1
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Lemma 1.3. Let T be a topological space, T = ∪i∈IUi be an open covering of T , Z ⊂ T be

a subset. Then Z is closed if and only if Z ∩ Ui is closed in Ui for all i.

Proof. Assume that Ui = X \ Ci and Z ∩ Ui = Zi ∩ Ui, with Ci and Zi closed in X.

Claim: Z =
⋂
i∈I(Zi ∪ Ci), hence it is closed.

In fact: if P ∈ Z, then P ∈ Z ∩ Ui for a suitable i. Therefore P ∈ Zi ∩ Ui, so P ∈ Zi ∪ Ci.
If P /∈ Zj ∩ Uj for some j, then P /∈ Uj so P ∈ Cj and therefore P ∈ Zj ∪ Cj.

Conversely, if P ∈
⋂
i∈I(Zi ∪ Ci), then ∀ i, either P ∈ Zi or P ∈ Ci. Since ∃j such that

P ∈ Uj, hence P /∈ Cj, so P ∈ Zj, so P ∈ Zj ∩ Uj = Z ∩ Uj. �

�

Corollary 1.4. 1. Let ϕ ∈ O(X): then ϕ−1(0) is closed. It is denoted V (ϕ) and called the

set of zeroes of ϕ.

2. Let X be a quasi–projective variety and ϕ, ψ ∈ O(X). Assume that there exists U ,

open non –empty subset such that ϕ|U = ψ|U . Then ϕ = ψ.

Proof. ϕ− ψ ∈ O(X) so V (ϕ− ψ) is closed. By assumption V (ϕ− ψ) ⊃ U , which is dense,

because X is irreducible. So V (ϕ− ψ) = X.

�

If X ⊂ An is locally closed, we can use on X both homogeneous and non–homogeneous

coordinates. In the second case, a regular function is locally represented as a quotient F/G,

with F and G ∈ K[x1, . . . , xn]. In particular all polynomial functions are regular, so, if X is

closed, K[X] ⊂ O(X).

If α ⊂ K[X] is an ideal, we can consider V (α) :=
⋂
ϕ∈α V (ϕ): it is closed into X. Note that

α is of the form α = α/I(X), where α is the inverse image of α in the canonical epimorphism,

it is an ideal of K[x1, . . . , xn] containing I(X), hence V (α) = V (α) ∩X = V (α).

If K is algebraically closed, from the Nullstellensatz it follows that, if α is proper, then

V (α) 6= ∅. Moreover the following relative form of the Nullstellensatz holds: if f ∈ K[X]

and f vanishes at all points P ∈ X such that g1(P ) = · · · = gm(P ) = 0 (g1, . . . , gm ∈ K[X]),

then f r ∈ 〈g1, . . . , gm〉 ⊂ K[X], for some r ≥ 1.

Theorem 1.5. Let K be an algebraically closed field. Let X ⊂ An
K be closed in the Zariski

topology. Then O(X) ' K[X]. It is an integral domain if and only if X is irreducible.

Proof. Let f ∈ O(X).

(i) Assume first that X is irreducible. For all P ∈ X fix an open neighbourhood UP of P

and polynomials FP , GP such that VP (GP )∩UP = ∅ and f |UP
= FP/GP . Let fP , gP be the

functions in K[X] defined by FP and GP . Then gPf = fP holds on UP , so it holds on X

(by Corollary 1.4 (2), because X is irreducible). Let α ⊂ K[X] be the ideal α = 〈gP 〉P∈X ;
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α has no zeros on X, because gP (P ) 6= 0, so α = K[X]. Therefore there exists hP ∈ K[X]

such that 1 =
∑

P∈X hPgP (sum with finite support). Hence in O(X) we have the relation:

f = f
∑
hPgP =

∑
hP (gPf) =

∑
hPfP ∈ K[X].

(ii) Let X be reducible: for any P ∈ X, there exists R ∈ K[x1, . . . , xn] such that R(P ) 6= 0

and R ∈ I(X \ UP ), so r ∈ O(X) is zero outside UP . So rgPf = fP r on X and we conclude

as above by replacing gP with gP r and fP with fP r.

�

The characterization of regular functions on projective varieties is completely different: we

will see later that, if X is a projective variety, then O(X) ' K, i.e. the unique regular

functions are constant.

This gives the motivation for introducing the following weaker concept.

1.2. Rational functions.

Definition 1.6. Let X be a quasi–projective variety. A rational function on X is a germ of

regular functions on some open non–empty subset of X.

Precisely, let K be the set {(U, f)|U 6= ∅, open subset of X, f ∈ O(U)}. The following

relation on K is an equivalence relation:

(U, f) ∼ (U ′, f ′) if and only if f |U∩U ′ = f ′|U∩U ′ .

Reflexive and symmetric properties are quite obvious. Transitive property: let (U, f) ∼
(U ′, f ′) and (U ′, f ′) ∼ (U ′′, f ′′). Then f |U∩U ′ = f ′|U∩U ′ and f ′|U ′∩U ′′ = f ′′|U ′∩U ′′ , hence

f |U∩U ′∩U ′′ = f ′′|U∩U ′∩U ′′ . U ∩ U ′ ∩ U ′′ is a non–empty open subset of U ∩ U ′′ (which is

irreducible and quasi–projective), so by Corollary 1.4 f |U ′∩U ′′ = f ′′|U ′∩U ′′ .

Let K(X) := K/ ∼: its elements are by definition rational functions on X. K(X) can be

given the structure of a field in the following natural way.

Let 〈U, f〉 denote the class of (U, f) in K(X). We define:

〈U, f〉+ 〈U ′, f ′〉 = 〈U ∩ U ′, f + f ′〉,

〈U, f〉〈U ′, f ′〉 = 〈U ∩ U ′, ff ′〉
(check that the definitions are well posed!).

There is a natural inclusion: K → K(X) such that c → 〈X, c〉. Moreover, if 〈U, f〉 6= 0,

then there exists 〈U, f〉−1 = 〈U \ V (f), f−1〉: the axioms of a field are all satisfied.

There is also an injective map: O(X)→ K(X) such that ϕ→ 〈X,ϕ〉.

Proposition 1.7. If X ⊂ An is affine, then K(X) ' Q(O(X)) = K(t1, . . . , tn), where

t1, . . . , tn are the coordinate functions on X.
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Proof. The isomorphism is as follows:

(i) ψ : K(X)→ Q(O(X))

If 〈U,ϕ〉 ∈ K(X), then there exists V ⊂ U , open and non–empty, such that ϕ |V = F/G,

where F,G ∈ K[x1, . . . , xn] and V (G) ∩ V = ∅. We set ψ(〈U,ϕ〉) = f/g.

(ii) ψ′ : Q(O(X))→ K(X)

If f/g ∈ Q(O(X)), we set ψ′(f/g) = 〈X \ V (g), f/g〉.
It is easy to check that ψ and ψ′ are well defined and inverse each other. �

Corollary 1.8. If X is an affine variety, then dimX is equal to the transcendence degree

over K of its field of rational functions.

Proposition 1.9. If X is quasi–projective and U 6= ∅ is an open subset, then K(X) ' K(U).

Proof. We have the maps: K(U) → K(X) such that 〈V, ϕ〉 → 〈V, ϕ〉, and K(X) → K(U)

such that 〈A,ψ〉 → 〈A ∩ U, ψ |A∩U〉: they are K–homomorphisms inverse each other. �

Corollary 1.10. If X is a projective variety contained in Pn, if i is an index such that

X ∩ Ui 6= ∅ (where Ui is the open subset where xi 6= 0), then dimX = dimX ∩ Ui =

tr.d.K(X)/K.

Proof. By Proposition 1.3, Lesson 8, dimX = sup dim(X ∩ Ui). By Corollary 1.8 and

Proposition 1.9, if X ∩ Ui is non–empty, dim(X ∩ Ui) = tr.d.K(X ∩ Ui)/K = tr.d.K(X)/K

is independent of i. �

If 〈U,ϕ〉 ∈ K(X), we can consider all possible representatives of it, i.e. all pairs 〈Ui, ϕi〉
such that 〈U,ϕ〉 = 〈Ui, ϕi〉. Then U =

⋃
i Ui is the maximum open subset of X on which ϕ

can be seen as a function: it is called the domain of definition (or of regularity) of 〈U,ϕ〉, or

simply of ϕ. It is sometimes denoted domϕ. If P ∈ U , we say that ϕ is regular at P.

We can consider the set of rational functions on X which are regular at P : it is denoted

by OP,X . It is a subring of K(X) containing O(X), called the local ring of X at P . In fact,

OP,X is a local ring, whose maximal ideal, denoted MP,X , is the set of rational functions ϕ

such that ϕ(P ) is defined and ϕ(P ) = 0. To see this, observe that an element of OP,X can

be represented as 〈U, F/G〉: its inverse in K(X) is 〈U \VP (G), G/F 〉, which belongs to OP,X
if and only if F (P ) 6= 0. We will see in §1.3 that OP,X is the localization K[X]IX(P ).

As in Proposition 1.9 for the fields of rational functions, also for the local rings of points it

can easily be proved that, if U 6= ∅ is an open subset of X containing P , then OP,X ' OP,U .

So the ring OP,X only depends on the local behaviour of X in the neighbourhood of P .
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The residue field of OP,X is the quotient OP,X/MP,X : it is a field which results to be

naturally isomorphic to the base field K. In fact consider the evaluation map OP,X → K

such that ϕ goes to ϕ(P ): it is surjective with kernel MP,X , so OP,X/MP,X ' K.

Example 1.11.

1. Let Y ⊂ A2 be the curve V (x31 − x22). Then F = x2, G = x1 define the function

ϕ = x2/x1 which is regular at the points P (a1, a2) such that a1 6= 0. Another representation

of the same function is: ϕ = x21/x2, which shows that ϕ is regular at P if a2 6= 0. If

ϕ admits another representation F ′/G′, then G′x2 − F ′x1 vanishes on an open subset of

X, which is irreducible (see Exercise 2, Lesson 8), hence G′x2 − F ′x1 vanishes on X, and

therefore G′x2 − F ′x1 ∈ 〈x31 − x22〉. This shows that there are essentially only the above two

representations of ϕ. So ϕ ∈ K(X) and its domain of regularity is Y \ {0, 0}.

2. The stereographic projection.

Let X ⊂ P2 be the curve VP (x21+x
2
2−x20). Let f := x1/(x0−x2) denote the germ of the regular

function defined by x1/(x0−x2) on X\VP (x0−x2) = X\{[1, 0, 1]} = X\{P}. On X we have

x21 = (x0− x2)(x0 + x2) so f is represented also as (x0 + x2)/x1 on X \ VP (x1) = X \ {P,Q},
where Q = [1, 0,−1]. If we identify K with the affine line VP (x2) \ VP (x0) (the points of

the x1–axis lying in the affine plane U0), then f can be interpreted as the stereographic

projection of X centered at P , which takes A[a0, a1, a2] to the intersection of the line AP

with the line VP (x2). To see this, observe that AP has equation a1x0+(a2−a0)x1−a1x2 = 0;

and AP ∩ VP (x2) is the point [a0 − a2, a1, 0].

1.3. The algebraic characterization of the local ring OP,X. Let us recall the construc-

tion of the ring of fractions of a ring A with respect to a multiplicative subset S.

Let A be a ring and S ⊂ A be a multiplicative subset. The following relation in A× S is

an equivalence relation:

(a, s) ' (b, t) if and only if ∃u ∈ S such that u(at− bs) = 0.

Then the quotient A× S/' is denoted S−1A or AS and [(a, s)] is denoted a
s
. AS becomes a

commutative ring with unit with operations a
s

+ b
t

= at+bs
st

and a
s
b
t

= ab
st

(check that they are

well–defined). With these operations, AS is called the ring of fractions of A with respect to

S, or the localization of A in S.

There is a natural homomorphism j : A → S−1A such that j(a) = a
1
, which makes S−1A

an A–algebra. Note that j is the zero map if and only if 0 ∈ S. More precisely if 0 ∈ S

then S−1A is the zero ring: this case will always be excluded in what follows. Moreover j

is injective if and only if every element in S is not a zero divisor. In this case j(A) will be

identified with A.
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Example 1.12.

1. Let A be an integral domain and set S = A \ {0}. Then AS = Q(A): the quotient field

of A.

2. If P ⊂ A is a prime ideal, then S = A \ P is a multiplicative set and AS is denoted AP
and called the localization of A at P .

3. If f ∈ A, then the multiplicative set generated by f is

S = {1, f, f 2, . . . , fn, . . .} :

AS is denoted Af .

4. If S = {x ∈ A | x is regular}, then AS is called the total ring of fractions of A: it is the

maximum ring in which A can be canonically embedded.

It is easy to verify that the ring AS enjoys the following universal property:

(i) if s ∈ S, then j(s) is invertible;

(ii) if B is a ring with a given homomorphism f : A → B such that if s ∈ S, then f(s)

is invertible, then f factorizes through AS, i.e. there exists a unique homomorphism f such

that f ◦ j = f .

We will see now the relations between ideals of AS and ideals of A.

If α ⊂ A is an ideal, then αAS = {a
s
| a ∈ α} is called the extension of α in AS and

denoted also αe. It is an ideal, precisely the ideal generated by the set {a
1
| a ∈ α}.

If β ⊂ AS is an ideal, then j−1(β) =: βc is called the contraction of β and is clearly an

ideal.

We have:

Proposition 1.13. 1. ∀α ⊂ A : αec ⊃ α;

2. ∀β ⊂ AS : β = βce;

3. αe is proper if and only if α ∩ S = ∅;
4. αec = {x ∈ A | ∃s ∈ S such that sx ∈ α}.

Proof. 1. and 2. are straightforward.

3. if 1 = a
s
∈ αe, then there exists u ∈ S such that u(s − a) = 0, i.e. us = ua ∈ S ∩ α.

Conversely, if s ∈ S ∩ α then 1 = s
s
∈ αe.

4.

αec = {x ∈ A | j(x) =
x

1
∈ αe} =

= {x ∈ A | ∃a ∈ α, t ∈ S such that
x

1
=
a

t
} =

= {x ∈ A | ∃a ∈ α, t, u ∈ S such that u(xt− a) = 0}.
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Hence, if x ∈ αec, then: (ut)x = ua ∈ α. Conversely: if there exists s ∈ S such that

sx = a ∈ α, then x
1

= a
s
, i.e. j(x) ∈ αe. �

If α is an ideal of A such that α = αec, α is called saturated with S. For example, if P is

a prime ideal and S ∩P = ∅, then P is saturated and Pe is prime. Conversely, if Q ⊂ AS is

a prime ideal, then Qc is prime in A.

Therefore: there is a bijection between the set of prime ideals of AS and the set of prime

ideals of A not intersecting S. In particular, if S = A \ P, P prime, the prime ideals of AP
correspond bijectively to the prime ideals of A contained in P, hence AP is a local ring with

maximal ideal Pe, denoted PAP , and residue field AP/PAP . Moreover dimAP = htP .

In particular we get the characterization of OP,X . Let X ⊂ An be an affine variety, let P

be a point of X and I(P ) ⊂ K[x1, . . . , xn] be the ideal of P . Let IX(P ) := I(P )/I(X) be

the ideal of K[X] formed by regular functions on X vanishing at P . Then we can construct

the localization

O(X)IX(P ) = {f
g
|f, g ∈ O(X), g(P ) 6= 0} ⊂ K(X) :

it is canonically identified with OP,X . In particular: dimOP,X = ht IX(P ) = dimO(X) =

dimX.

There is a bijection between prime ideals of OP,X and prime ideals of O(X) contained in

IX(P ); they also correspond to prime ideals of K[x1, . . . , xn] contained in I(P ) and containing

I(X).

If X is affine, it is possible to define the local ring OP,X also if X is reducible, simply as

localization of K[X] at the maximal ideal IX(P ). The natural map j from K[X] to OP,X is

injective if and only if K[X]\IX(P ) does not contain any zero divisor. A non-zero function f

is a zero divisor in K[X] if there exists a non-zero g such that fg = 0, i.e. X = V (f)∪ V (g)

is an expression of X as union of proper closed subsets. For j to be injective it is required

that every zero divisor f belongs to IX(P ), which means that all the irreducible components

of X pass through P .

Exercises 1.14. 1. Prove that the affine varieties and the open subsets of affine varieties

are quasi–projective.

2. Let X = {P,Q} be the union of two points in an affine space over K. Prove that O(X)

is isomorphic to K ×K.


