
LESSON 8.

1. Dimension.

There are a few equivalent ways to give the definition of dimension for algebraic varieties.

In this section we will first see a topological definition, then an algebraic characterization.

In a later lesson, we will see a more geometrical interpretation.

Let X be a topological space.

Definition 1.1. The topological dimension of X is the supremum of the lengths of the

chains of distinct irreducible closed subsets of X, where by definiton the following chain has

length n:

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn.

The topological dimension of X is denoted by dimX. It is also called combinatorial or

Krull dimension.

Example 1.2. (1) dimA1 = 1: the maximal length chains have the form {P} ⊂ A1.

(2) dimAn: a chain of length n is

{0} = V (x1, . . . , xn) ⊂ V (x1, . . . , xn−1) ⊂ · · · ⊂ V (x1) ⊂ An.

Note that V (x1, . . . , xi) is irreducible for any i ≤ n, because the ideal 〈x1, . . . , xi〉
is prime. Indeed K[x1, . . . , xn]/〈x1, . . . , xi〉 ' K[xi+1, . . . , xn], which is an integral

domain. Therefore we get that dimAn ≥ n. We will see shortly that proving equality

is non trivial. We note also that, from every chain of irreducible closed subsets of

An, passing to their ideals, we get a chain of the same length of prime ideals in

K[x1, . . . , xn].

(3) Let X be irreducible. Then dimX = 0 if and only if X is the closure of every point

of it.

We prove now some useful relations between the dimensions of X and of its subspaces.

Proposition 1.3. 1. If Y ⊂ X, then dimY ≤ dimX. In particular, if dimX is finite, then

also dimY is finite. In this case, the number dimX − dimY is called the codimension of

Y in X.

2. If X =
⋃

i∈I Ui is an open covering, then dimX = supi{dimUi}.
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3. If X is noetherian and X1, . . . , Xs are its irreducible components, then dimX =

supi dimXi.

4. If Y ⊂ X is closed, X is irreducible, dimX is finite and dimX = dimY , then Y = X.

Proof. 1. Let Y0 ⊂ Y1 ⊂ · · · ⊂ Yn be a chain of irreducible closed subsets of Y . Then taking

closures we get the following chain of irreducible closed subsets of X: Y0 ⊆ Y1 ⊆ · · · ⊆ Yn.

Note that, for any index i, Yi ∩ Y = Yi, because Yi is closed into Y , so if Yi = Yi+1,

then Yi = Yi+1. Therefore the two chains have the same length and we can conclude that

dimY ≤ dimX.

2. Let X0 ⊂ X1 ⊂ · · · ⊂ Xn be a chain of irreducible closed subsets of X. Let P ∈ X0 be

a point: there exists an index i ∈ I such that P ∈ Ui. So ∀k = 0, . . . , n Xk ∩Ui 6= ∅: it is an

irreducible closed subset of Ui, irreducible because open in Xk which is irreducible. Consider

X0 ∩ Ui ⊂ X1 ∩ Ui ⊂ · · · ⊂ Xn ∩ Ui;

it is a chain of length n, because Xk ∩ Ui = Xk: in fact Xk ∩ Ui is open in Xk hence dense.

Therefore, for any chain of irreducible closed subsets of X, there exists a chain of the same

length of irreducible closed subsets of some Ui. So dimX ≤ sup dimUi. By 1., equality

holds.

3. Any chain of irreducible closed subsets of X is completely contained in an irreducible

component of X. The conclusion follows as in 2.

4. If Y0 ⊂ Y1 ⊂ · · · ⊂ Yn is a chain of maximal length in Y , then it is a maximal chain in

X, because dimX = dimY . Hence X = Yn ⊂ Y . �

Corollary 1.4. dimPn = dimAn.

Proof. The equality follows from Pn = U0 ∪ · · · ∪ Un, and the homeomorphism of Ui with

An for all i. �

If X is noetherian and all its irreducible components have the same dimension r, then

X is said to have pure dimension r. Note that the topological dimension is invariant by

homeomorphism. By definition, a curve is an algebraic set of pure dimension 1; a surface is

an algebraic set of pure dimension 2.

We want to study the dimensions of affine algebraic sets. The following definition results

to be very important.

Definition 1.5. Let X ⊂ An be an algebraic set. The coordinate ring of X is

K[X] := K[x1, . . . , xn]/I(X).
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It is a finitely generated reduced K–algebra, i.e. there are no non–zero nilpotents, because

I(X) is radical.

There is the canonical epimorphism K[x1, . . . , xn] → K[X] such that F → [F ]. The

elements of K[X] can be interpreted as polynomial functions on X: to a polynomial F , we

can associate the function f : X → K such that P (a1, . . . , an)→ F (a1, . . . , an).

Two polynomials F , G define the same function on X if, and only if, F (P ) = G(P ) for

every point P ∈ X, i.e. if F −G ∈ I(X), which means exactly that F and G have the same

image in K[X].

K[X] is generated as K–algebra by [x1], . . . , [xn]: they can be interpreted as coordinate

functions on X. We will denote them by t1, . . . , tn. In fact ti : X → K is the function which

associates to P (a1, . . . , an) the coordinate ai. Note that the function f can be interpreted as

F (t1, . . . , tn): the polynomial F evalued at the n– tuple of the coordinate functions.

In the projective space we can do an analogous construction. If Y ⊂ Pn is closed, then

the homogeneous coordinate ring of Y is

S(Y ) := K[x0, x1, . . . , xn]/Ih(Y ).

Also S(Y ) is a finitely generated reduced K–algebra, but its elements cannot be interpreted

as functions on Y . They are functions on the cone C(Y ).

We note that, from the fact that Ih(Y ) is homogeneous it follows that also S(Y ) is a graded

ring, with the graduation induced by the polynomial ring. Indeed, if F − G ∈ Ih(Y ), and

F = F0 + . . .+Fd, G = G0 + . . .+Ge are their decompositions in homogeneous components

then it follows that F0 −G0 ∈ Ih(Y ), F1 −G1 ∈ Ih(Y ), and so on.

Definition 1.6. Let R be a ring. The Krull dimension of R is the supremum of the lengths

of the chains of prime ideals of R

P0 ⊂ P1 ⊂ · · · ⊂ Pr.

Similarly, the heigth of a prime ideal P is the sup of the lengths of the chains of prime ideals

contained in P : it is denoted htP .

Proposition 1.7. Let K be an algebraically closed field. Let X be an affine algebraic set

contained in An. Then dimX = dimK[X]. In particular dimAn = dimK[x1, . . . , xn].

Proof. By the Nullstellensatz and by Proposition 1.6 of Lesson 7 the chains of irreducible

closed subsets of X correspond bijectively to the chains of prime ideals of K[x1, . . . , xn]

containing I(X), and therefore also to the chains of prime ideals of the quotient ring K[X] =

K[x1, . . . , xn]/I(X). �
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The dimension theory for commutative rings contains some important theorems about the

dimension of K–algebras. The following theorem states the basic properties in the case of

integral domains and the algebraic characterization of dimension for affine varieties.

Theorem 1.8. Let K be any field. Let A be a finitely generated K–algebra and an integral

domain.

1. dimA = tr.d.Q(A)/K, where Q(A) is the quotient field of A. In particular dimA is

finite.

2. Let P ⊂ A be any prime ideal. Then dimA = htP + dimA/P.

Proof. We postpone the proof to next lesson. It relies on the Normalization Lemma and on

the Cohen-Seidenberg theorems about the structure of prime ideals for integral extensions

of K-algebras. �

Corollary 1.9. Let K be an algebraically closed field.

1. dimAn = dimPn = n.

2. If X is an irreducible affine variety, then dimX = tr.d.K(X)/K, where K(X) denotes

the quotient field of K[X].

3. If X ⊂ An is an irreducible affine variety, then dimX = n− htI(X).

Proof. 1. dimK[x1, . . . , xn] = tr.d.K(x1, . . . , xn)/K = n.

2. follows immediately from Theorem 1.8, 1.

3. is Theorem 1.8, 2, applied to the case A = K[x1, . . . , xn] and P = I(X). �

Note that the homogeneous coordinate ring of Pn is K[x0, . . . , xn], whose dimension is

n + 1, strictly bigger than the dimension of Pn. Similarly, if Y is a projective algebraic

variety, then dimS(Y ) = dimC(Y ), the affine cone over Y .

Corollary 1.9 tells us how to compute the dimension of an affine irreducible variety. If X is

a reducible affine variety, and X = X1 ∪ · · · ∪Xr is its decomposition as union of irreducible

components, then dimX is the maximum of the dimensions dimXi.

The following is the characterization of the algebraic varieties of codimension 1 in An.

Proposition 1.10. Let X ⊂ An be an affine variety over an algebraically closed field. Then

X is a hypersurface if and only if X is of pure dimension n− 1.

Proof. Let X ⊂ An be a hypersurface, with I(X) = (F ) = (F1 . . . Fs), where F1, . . . , Fs are

the irreducible factors of F all of multiplicity one. Then V (F1),. . ., V (Fs) are the irreducible

components of X, whose ideals are (F1), . . ., (Fs). So it is enough to prove that ht(Fi) = 1,

for i = 1, . . . , s.
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If P ⊂ (Fi) is a prime ideal, then either P = (0) or there exists G ∈ P , G 6= 0. In the

second case, let A be an irreducible factor of G belonging to P : A ∈ (Fi) so A = HFi.

Since A is irreducible, either H or Fi is invertible; Fi is irreducible, so H is invertible, hence

(A) = (Fi) ⊂ P . Therefore either P = (0) or P = (Fi), and ht(Fi) = 1.

Conversely, assume that X is irreducible of dimension n − 1. Since X 6= An, there

exists F ∈ I(X), F 6= 0, with irreducible factorization F = F1 . . . Fs. Hence X ⊂ V (F ) =

V (F1) ∪ . . . ∪ V (Fs). By the irreducibility of X, some irreducible factor of F , call it Fi, also

vanishes along X. Therefore X ⊂ V (Fi), which is irreducible of dimension n−1, by the first

part. So X = V (Fi) (by Proposition 1.3, 4). �

This proposition does not generalise to higher codimension. There exist codimension 2

algebraic subsets of An whose ideal is not generated by two polynomials. An example in A3

is the curve X parametrised by (t3, t4, t5). It is possible to show that a system of generators

of I(X) is formed by the three polynomials x3 − yz, y2 − xz, z2 − x2y. One can easily show

that I(X) cannot be generated by two polynomials. For a proof and a discussion of this

example, and more generally of the ideals of the curves admitting a parametrization of the

form x = tn1 , y = tn2 , z = tn3 , see [Kunz], Chapter V.

Proposition 1.11. Let X ⊂ An, Y ⊂ Am be irreducible closed subsets. Then dimX × Y =

dimX + dimY .

Proof. Let r = dimX, s = dimY ; let t1, . . . , tn (resp. u1, . . . , um) be coordinate func-

tions on An (resp. Am). We can assume that t1, . . . , tr is a transcendence basis of Q(K[X])

and u1, . . . , us a transcendence basis of Q(K[Y ]). By definition, K[X × Y ] is generated

as K–algebra by t1, . . . , tn, u1, . . . , um: we want to show that t1, . . . , tr, u1, . . . , us is a tran-

scendence basis of Q(K[X × Y ]) over K. Assume that F (x1, . . . , xr, y1, . . . , ys) is a poly-

nomial which vanishes on t1, . . . , tr, u1, . . . , us, i.e. F defines the zero function on X × Y .

Then, ∀ P ∈ X, F (P ; y1, . . . , ys) is zero on Y , i.e. F (P ;u1, . . . , us) = 0. Since u1, . . . , us

are algebraically independent, every coefficient ai(P ) of F (P ; y1, . . . , ys) is zero, ∀ P ∈ X.

Since t1, . . . , tr are algebraically independent, the polynomials ai(x1, . . . , xr) are zero, so

F (x1, . . . , xr, y1, . . . , ys) = 0. So t1, . . . , tr, u1, . . . , us are algebraically independent. Since this

is certainly a maximal algebraically free set, it is a transcendence basis. �

Exercises 1.12. 1*. Prove that a proper closed subset of an irreducible curve is a finite set.

Deduce that any bijection between irreducible curves is a homeomorphism.

2*. Let X ⊂ A2 be the cuspidal cubic of equation: x3− y2 = 0, let K[X] be its coordinate

ring. Prove that all elements of K[X] can be written in a unique way in the form f(x)+yg(x),

where f, g are polynomial in the variable x. Deduce that K[X] is not isomorphic to a

polynomial ring.


