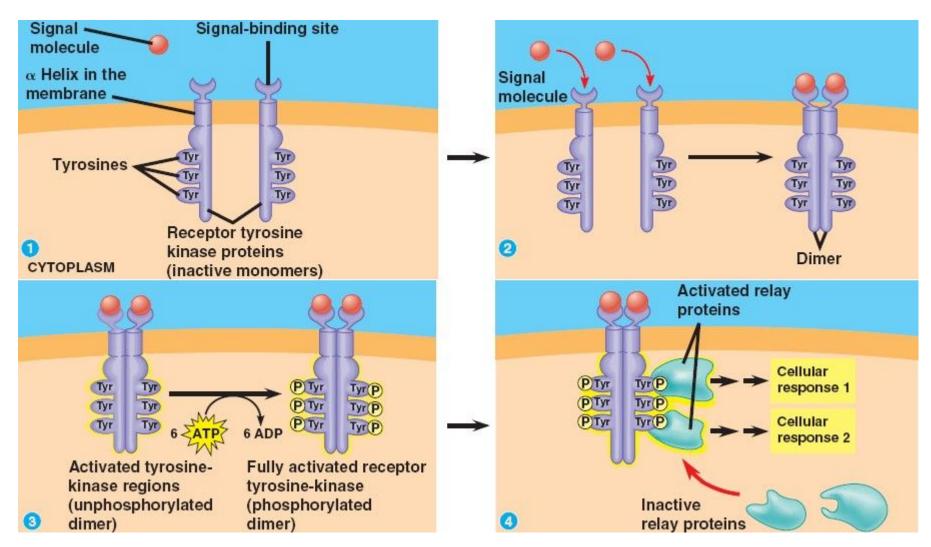

Recettori per i fattori di crescita

- Categoria eterogenea di recettori coinvolti in molti processi cellulari:
 - Proliferazione
 - Differenziamento
 - Sopravvivenza...
- Caratterizzati da attività tirosin-chinasica
- Sono recettori per:
 - Ormoni
 - Fattori di crescita:
 - EGF
 - PDGF
 - NGF
 - FGF
 - VEGF...
 - Efrine

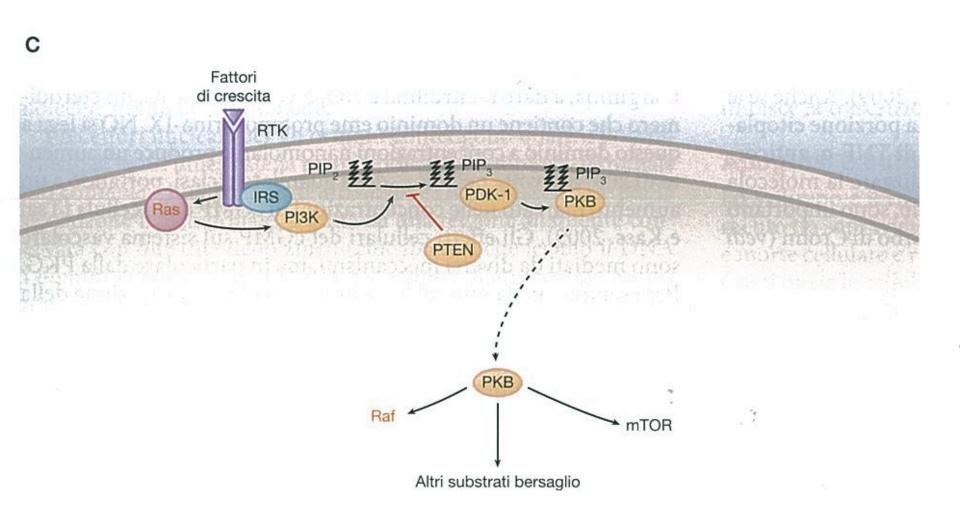
Recettori per i fattori di crescita

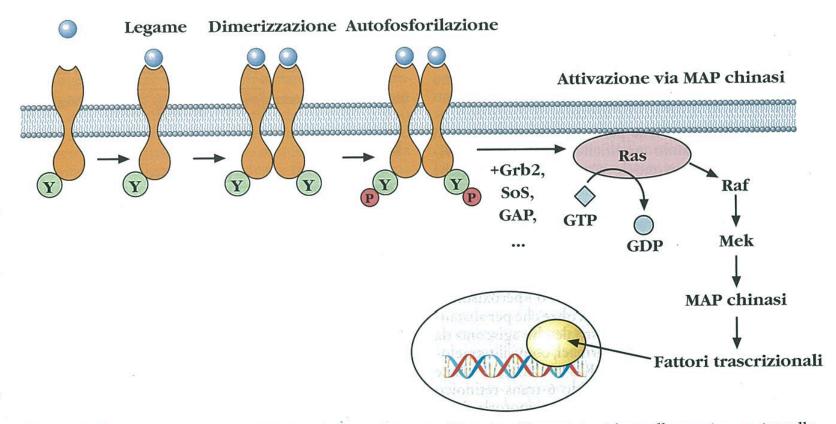


○ FIG. 2.7. Caratteristiche strutturali di alcuni recettori per fattori di crescita.

Dimerizzazione

- Omodimeri
- Eterodimeri → famiglia ErbB1-4
- Stechiometria 1:2 → EPOR:2 EPO
- Recettore per insulina → dimero che tetramerizza
- FGF:FGFR + molecole accessorie




- I traduttori intracitoplasmatici si legano per mezzo di specifici domini contenuti all'interno della loro sequenza:
- SH2 (Src Homology region 2)
 - Proteine che possiedono attività enzimatica propria:
 - PLC-γ
 - pp60src
 - SHP1 e SHP2
 - GAP
 - STAT
 - Proteine che regolano altre molecole che hanno attività enzimatica:
 - Grb2
 - Shc
 - PI3K
- PTB (Phospho-Tyrosine Binding)

Attivazione delle proteine che sono substrati dei recettori tirosin-chinasici

- Mediante traslocazione in membrana:
 PDGF che attiva PI3K → PKB → mTOR o Bad
- Mediante alterazioni conformazionali:
 PDGF che attiva c-Src
- Mediante fosforilazione di residui di tirosina:
 EGF, PDGF, FGF & PLC-γ

La via di Ras

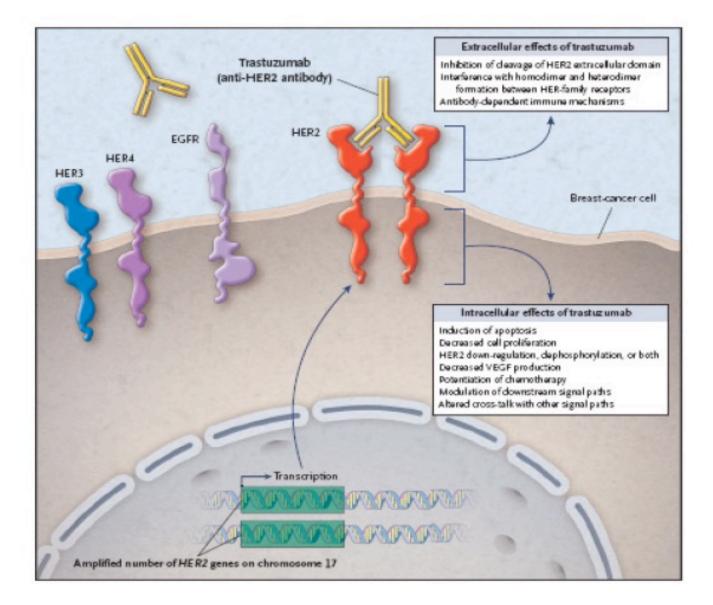
Figura 2.15. Attivazione dei recettori ad attività tirosino-chinasica. L'agonista si lega alla porzione extracellulare del recettore, determinandone la dimerizzazione e l'attivazione della sua funzione enzimatica, con conseguente autofosforilazione del recettore stesso. Tale processo consente ad alcune proteine adattatrici di legarsi al recettore fosforilato, attraverso moduli strutturali specifici. Tra queste, le proteine adattatrici tipo Grb2 e SoS, nonché proteine favorenti lo scambio GDP-GTP quali la GAP, determinano la conversione di Ras nella sua forma attiva legata al GTP, seguita dall'attivazione di Raf, la prima di una lunga catena di proteine ad attività chinasica su residui di serina/treonina (Mek, MAPKK), che porta all'attivazione della MAP chinasi (chinasi attivata da mitogeni). Questa chinasi fosforila numerosi fattori trascrizionali determinandone l'attivazione, che trasducono così il segnale al nucleo della cellula.

MEK inhibitors

- Trametinib
- Dabrafenib
- Cobimetinib
- Vemurafenib

• Melanoma BRAF mutato

○ FIG. 2.8. Esempio delle vie di trasduzione associate a recettori per fattori di crescita.


Interesse farmacologico

 Patologie neoplastiche: l'inibizione di questi recettori può contrastare la crescita incontrollata

 Patologie neurodegenerative: il potenziamento del segnale differenziativo può compensare la perdita funzionale **TABELLA 2.I.** Esempi di anticorpi monoclonali diretti contro recettori tirosino-chinasici e di inibitori dell'attività chinasica, e loro indicazioni cliniche principali.

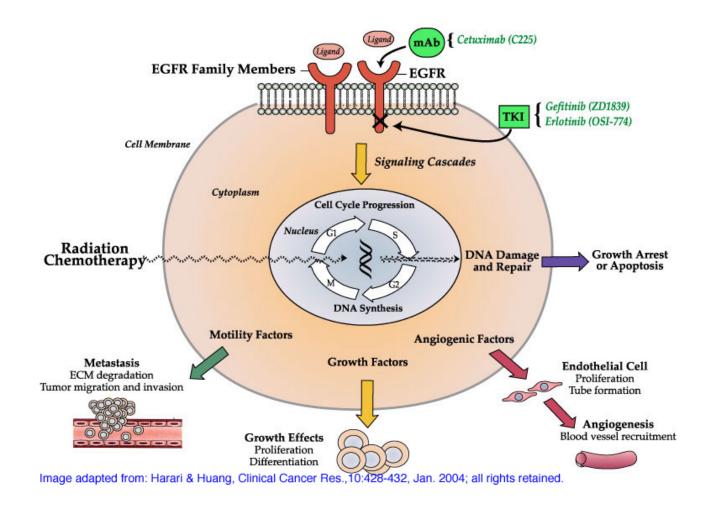
	Nome commerciale	Bersaglio molecolare	Principali indicazioni cliniche		
Anticorpi					
Bevacizumab	Avastin	VEGF (anticorpo anti ligando)	Carcinoma colon-retto, mammario, ovarico		
Ranibizumab	Lucentis	VEGF (anticorpo anti ligando)	i (Degenerazione maculare)		
Trastuzumab	Herceptin	ErbB2 (HER2)	Carcinoma mammario, gastrico		
Cetuximab	Erbitux	ErbB1	Carcinoma a cellule squamose, tumore al polmone, colon-retto		
Panitumumab	Vectibix	ErbB1	Tumore metastatico del colon-retto		
Pertuzumab	Omnitarg	ErbB2 (HER2)	Carcinoma della prostata, mammario e dell'ovaio		
Ramucirumab	Cyramza	VEGFR-2	Carcinoma gastrico		
Robatumumab	in sperimentazione	IGF1-R	In sperimentazione per uso in oncologia		
Seribantumab	in sperimentazione	ErbB3	In sperimentazione per uso in oncologia		
Zatuximab	in sperimentazione	ErbB1	In sperimentazione per uso in oncologia		
Zalutumumab	in sperimentazione	ErbB1	In sperimentazione per tumori testa-collo		

ERBB2/HER2/neu & Trastuzumab (Herceptin[™])

ERBB2/HER2/neu & Trastuzumab (Herceptin[™])

HER2:

> Sovraespresso in $\frac{1}{4}$ delle pazienti con carcinoma mammario


- I livelli di HER2 correlano con la patogenesi e la prognosi della malattia
- Il livello di HER2 nelle cellule neoplastiche è molto + alto che nelle cellule dei tessuti normali
- È presente in un'elevata percentuale di cellule tumorali
 L'iperespressione si trova sia sul tumore primario che nelle metastasi

ERBB2/HER2/neu & Trastuzumab (Herceptin[™])

Herceptin™

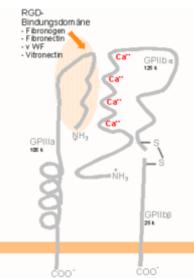
- >Anticorpo umanizzato
- > Blocca il sito di legame del recettore
- > Attivo da solo ed in combinazione:
 - > 15% di risposte in pazienti pre-trattate
 - > 23% risposte come trattamento di prima linea, con 6% di risposte complete
 - in combinazione con i taxani 42% di risposta con durata di 10,5 mesi vs 15% e 4,5 mesi dei taxani da soli

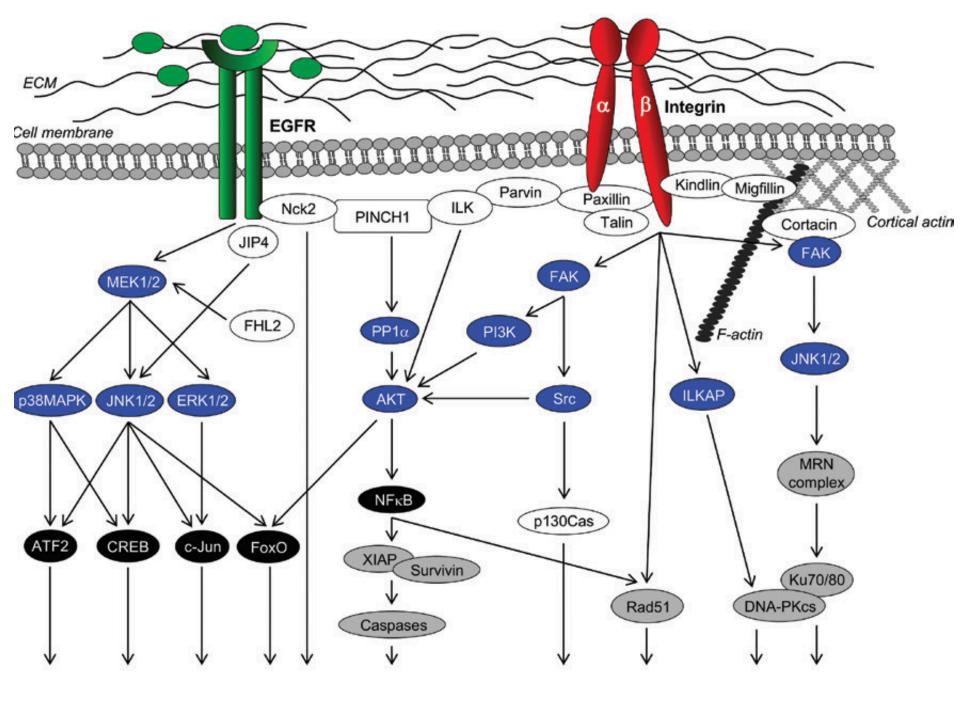
Recettori della famiglia EGFR

Inibitori dell'attività d	hinasica				
Imatinib mesilato Gleevec		ABL, c-KIT, PDGFR	CML (Ph+), ALL, GIST		
Dasatinib -	Sprycel	SFK, ABL	CML, ALL		
Nilotinib	Tasigna	ABL	CML		
Bosutinib	Bosulif	SFK, ABL	CML		
Gefitinib	Iressa	ErbB1	NSCLC		
Erlotinib	Tarceva	ErbB1	Carcinoma polmonare		
Lapatinib	Tykerb	ErbB1, ErbB2	Carcinoma mammario		
Vandetanib	Caprelsa	ErbB1, VEGFR, RET	Carcinoma midollare della tiroide		
Crizotinib	Xalkory	EML4-ALK	NSCLC		
Sunitinib	Sutent	VEGFR, PDGFR, c-KIT,FLT-3	GIST, carcinoma renale		
Sorafenib	Nexavar	B-Raf, VEGFR, PDGFR	Carcinoma renale, epatocellulare, prostatico		
Pazopanib	Votrient	VEGFR, c-KIT, PDGFR	Carcinoma renale, sarcomi dei tessuti molli		
Regorafenib	Stivarga	VEGFR, TIE2, PDGFR, RET, c-KIT, RAF	Carcinoma del colon-retto		
Cabozantinib	Cometriq	VEGFR, RET, MET, TRKB, TIE2	Carcinoma midollare della tiroide		
Afatinib	Giotriq	ErbB1-4 (legame covalente irreversibile)	NSCLC		

ABL: Abelson kinase; PDGFR: recettore del fattore di crescita piastrinico; SFK: famiglia Src Kinases; ErbB1-4: recettore del fattore di crescita dell'epidermide 1-4; VEGFR: famiglia del recettore del fattore di crescita vascolare endoteliale; ALL: leucemia linfoblastica acuta; CML: leucemia mieloide cronica; Ph⁺ CML: leucemia mieloide cronica cromosoma Philadelphia positiva; GIST: tumore stromale gastrointestinale; NSCLC: carcinoma polmonare non a piccole cellule.

Patologie neurodegenerative

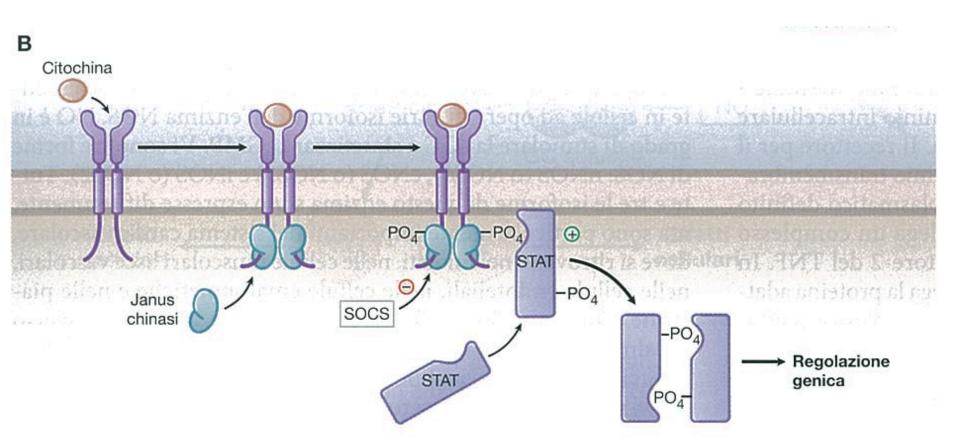

- Osservazioni *in vitro* e *in vivo* in modelli sperimentali:
 - Parkinson
 - SLA...
- Neurotrofine in studio:
 - NGF
 - BDNF
 - FGF
 - GDNF...


Recettori per l'adesione cellulare

- Ligando e recettore su due cellule diverse
- Meccanismo di comunicazione intercellulare
- Adesione:
 - Cellula-cellula (omofilica o eterofilica)
 - Cellula-substrato (eterofilica)
- Cell Adhesion Molecules (CAMs):
 - Proliferazione
 - Differenziamento
 - Motilità
 - Morfologia cellulare

Recettori per l'adesione cellulare

- Sono classificati in superfamiglie:
- IgCAMs: regioni simili a domini presenti nelle immunoglobuline
- Integrine: eterodimeri formati da subunità α e
 β legate in maniera non covalente
- Caderine: stabiliscono interazioni cellula-cellula tramite legami omofilici

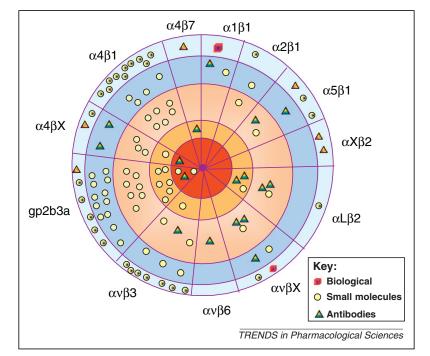

CAMs come bersagli farmacologici

- Abciximab: anticorpo monoclonale diretto verso GPIIb/IIIa delle piastrine
- Tirofiban: peptidomimetico antagonista del recettore GPIIb/IIIa
- Eptifibatide: peptide inibitore di GPIIb/IIIa

 Natalizumab: anticorpo monoclonale che previene il legame tra α4β1 e VCAM

Recettori per le citochine

- Recettori ematopoietinici di classe I: recettori per IL-3, IL-5, GM-CSF...
- Recettori ematopoietinici di classe II: trasducono il segnale attraverso la via Jak/STAT
- Fenomeno dei "decoy receptors"
- Anakinra: peptide ricombinante antagonista del recettore per IL-1
- Basiliximab: anticorpo diretto contro il recettore per IL-2



Integrins as therapeutic targets

Simon L. Goodman¹ and Martin Picard²

¹ Department of Cellular Pharmacology – Oncology Platform, Merck KGaA, Frankfurterstrasse 250, 64271 Darmstadt, Germany ² Global Clinical Development Unit – Oncology, Merck KGaA, Frankfurterstrasse 250, 64271 Darmstadt, Germany

Figure 1. The current distribution of integrins as therapeutic targets and the stages of related clinical trials. If targeting affects all α chains (' α x') or all β chains (' β x') the trial is classified accordingly (e.g., intetumumab affects all α v integrins independently of associated β chains – and is classed under $\alpha v\beta x$). Trials discontinued (light blue); at Phase I (dark blue); at Phase II (pale orange); at Phase III (mid orange); or approved drugs (brown). Symbols: small molecules and peptides (circles yellow); antibodies (triangles); biologicals (cubes). Symbols with black centers represent discontinued trials.

Clinical phase	Indication ^b	Target	Drug	Synonyms	Drug class	Status	Refs.
Approved	MS	a4bx ^c	Natalizumab	Tysabri, Antegren, AN-100226, BG-00002	Hu-mAb	L	[18]
	Thrombosis	gpllbllla	Abciximab	ReoPro, Clotinab, CentoRx	Chi-mAb-Fab	L	[23,61
	Thrombosis	gpllbllla	Tirofiban	L-700462, MK-383, Aggrastat	SM	L	[25]
	Thrombosis	gpllbllla	Intrifiban	Eptifibatide, SB-1, Sch-60936, Integrelin	сРер	L	[62]
Phase III	IBD, UC, Crohn's	a4bx	AJM-300		oSM	А	[63]
	UC, Crohn's	a4b7	Vedolizumab	MLN-02, LDP-02	Chi-mAb	А	[64]
	Dry eye, conjunctivitis	aLb2	SAR-1118		SM	А	[22]
	Immunosuppression	aLb2	Odulimomab		Chi-mAb	ndr	
	Stroke, ischemia	aLb2	Rovelizumab	23F2G, LeukArrest	Chi-mAb	ndr	
	Thrombosis	gpllbllla	Alnidofibatide	RPR-109891, Klerval	Pep-der	А	[65]
	Thrombosis	gpllbllla	Orbofiban	SC-57099B, CS-511	SM	А	[66]
	Diagnostics	gpllbllla	DMP-444 (Tc99m)	RP-444	Diag	ndr	
	Thrombosis	gpllbllla	Lefradafiban	BIBU-104	SM	ndr	
	Cancer	avb3, avb5	Cilengitide	EMD 121974, EMD 85189, NSC-707544	сРер	А	[44]
Phase II	Arthritis	a4b1	MDL-819767	HMR-1031	SM	А	[67]
	Crohn's	a4bx	TRK-170		oSM	А	[68]
	IBD, MS, RA, asthma, Crohn's	a4bx	firategrast	SB-683699, T-0047	oSM	A	[69]
	Arthritis, asthma	a4bx	RO-27-0608	Valategrast, R411	SM	А	[70]
	Ulcerative colitis	a4b7, aEb7	Etrolizumab	Pro-145223, RG-7413	hu-Mab	А	[17]
	Asthma, rhinitis	a4b1	RBx-7796	RBx-4638, clafrinast	SM	ndr	
	HIV infection	aLb2	Cytolin		hu-mAb	А	[71]
	IS, psoriasis	aLb2	BMS-587101		oSM	ndr	
	Thrombosis	gpllbllla	MK-0852	L-367073	cPep	А	[72]
	AP, stroke, thrombosis	gpllbllla	Cromafiban	CT-50352	SM	ndr	
	Restenosis, thrombosis	gpllbllla	FK-633	FR-144633	SM	ndr	
	Thrombosis	gpllbllla	Elarofiban	RWJ-53308	SM	ndr	
	Thrombosis	gpllbllla	SR-121787		SM	ndr	
	Cancer, Crohn's	a5b1	ATN-161		Рер	А	[50]
	Cancer, AMD	a5b1	Volociximab	M-200, EOS-200-4	mAb	А	[39]
	Arthritis, cancer, osteoporosis, psoriasis, restenosis, RA	avb3	Etaracizumab	MED-522, hLM609, Vitaxin-2, Abegrin	mAb	A	[32]
	Cancer	avbx	Intetumumab	CNTO-95	mAb	А	[52]
	Cancer: diagnostics	avb3, avb5	Fluciclatide (¹⁸ F)	GE-135, [¹⁸ F]-AH-111585	Diag	А	[58]
	Cancer: diagnostics	avb3	⁹⁹ mTc-Maraciclatide	NC100692	Diag	А	[57]
	Kidney TR, PF	avb6	STX-100	3G9	hu-mAb	А	[42]
	Cancer	avbx	EMD-525797	DI17E6	hu-mAb	А	[51]
	Osteoporosis	avb3	MRL-123		SM	ndr	
	AMD, diabetic retinopathy	avbx, a5b1	AGR-1001		cPep	А	[73]

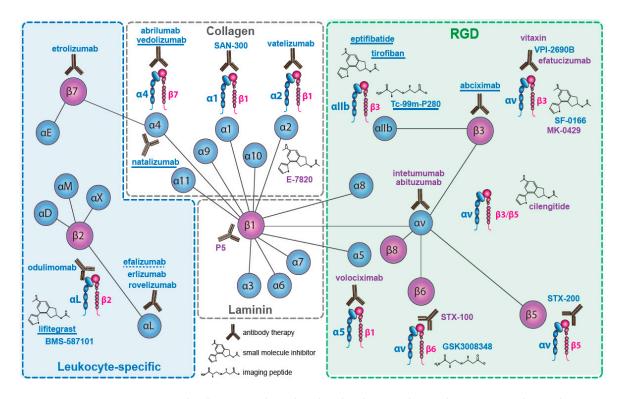
Table 2. Integrin inhibitors in late-stage (Phase III or Phase II) clinical studies^a

^aCitations are provided for all projects reported currently active in clinic.

^bAbbreviations: A, trials active; AP, angina pectoris; cPep, cyclic peptide; Chi-mAb-Fab, chimeric monoclonal antibody, Fab' fragment; Diag, diagnostic reagent; HIV, human immunodeficiency virus; Hu-mAb, humanized monoclonal antibody; IS, ischemic stroke; L, launched/drug approved for clinical use; mAb, monoclonal antibody; ndr, no development reported, drug not discontinued, but trials not apparently active; oSM, orally available small molecule; Pep-der, peptide derivative; PF, pulmonary fibrosis; RA, rheumatoid arthritis; SM, small molecule; TR, transplant rejection.

 ^{c}bx indicates that all associated β chains are targeted.

Integrins as Therapeutic Targets: Successes and Cancers


Sabine Raab-Westphal¹, John F. Marshall² and Simon L. Goodman^{3,*}

- ¹ Translational In Vivo Pharmacology, Translational Innovation Platform Oncology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; sabine.raab@merckgroup.com
- ² Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; j.f.Marshall@qmul.ac.uk
- ³ Translational and Biomarkers Research, Translational Innovation Platform Oncology, Merck KGaA, 64293 Darmstadt, Germany
- * Correspondence: simgoo@gmx.net; Tel.: +49-6155-831931

Academic Editor: Helen M. Sheldrake Received: 22 July 2017; Accepted: 14 August 2017; Published: 23 August 2017

Abstract: Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGF β , they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US\$3.5 billion, mainly from inhibitors of α 4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.

Keywords: integrin; therapy; clinical trial; efficacy; health care economics

Figure 1. Integrins targeted in late stage clinical trials. The chains or heterodimers targeted, together with symbols indicating the type of drug used as mentioned in text are shown. Drugs named in violet have been used in cancer trials. Non-cancer drugs are named in blue. Marketed drugs are underlined; withdrawn drug indicated with broken underline.