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Da una decina d’anni è ripreso l’interesse dei ricercatori per i processi di P. Lévy, considerati tanto 
dal punto di vista teorico che da quello applicativo. Tra le applicazioni una posizione preminente 

spetta alla Finanza matematica: uno sviluppo moderno delle antiche discipline Matematica 
finanziaria e Matematica attuariale. L’attuale Seminario riguarda una modalità di presentazione dei 
processi stocastici di Lévy che li mette in relazione con i ben noti processi di passeggiata aleatoria e 

con i processi di Markov – Feller. Gli aspetti strutturali riguardano in particolare due teoremi di 
approssimazione dei processi di Lévy e dei processi di Markov – Feller: il primo teorema risale ai 
lavori di B. de Finetti del biennio 1929 – 1930 e sostanzialmente coincide con un primo teorema di 

rappresentazione per le distribuzioni infinitamente divisibili. Il Seminario affronta anche alcuni 
problemi di inferenza statistica su un particolare tipo di processi di Lévy, i processi di Poisson 
composto; vengono considerati sia il noto approccio inferenziale classico che quello bayesiano.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

           DE FINETTI - LEVY  STOCHASTIC  PROCESSES 
 
{Z(t)} has stationary and independent increments Z(t) – Z(s) , 
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- the Gamma process; α – stable process; etc.  

 
As they have stationary and independent increments :  
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1) Poisson process {N(t); 0t  } 
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2) Compound-Poisson process {X(t); 0t  }: it is a random walk kS   
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b) It is a Lévy process characterized by  ( ) . ( ), ( ) . ( )t YE X t t E Y dx t F dx     
 
Approximation theorem  (1) 
 
3) Pseudo-Poisson process X(t) = . ( )nS N t n : it is a Markov 

chain{ }kS  with transition times given by the random walk process { }nW .   
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      Approximation theorem (2) 
 

1) Exponential formula of semi-group of contractions theory 
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COMPOUND-POISSON process     
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An example: 
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 Maximum likelihood inferential procedure about the parameters λ and β  
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 m     number of the unitary periods of observation, 
 

kn   number of arrivals in the k-th period of observation, 
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PSEUDO-POISSON process   X(t) 
( )

( )

discrete time Markov chain K

Poisson process t

 



 

 

             ( )

0

( )
( ) / ( ) ( , ) . ( , )

!

n
t n

t
n

t
P X t s X s x Q x e K x

n
 





       ,  

      
( ) ( 1) (1)( , ) ( , ). ( , ), 1; ( , ) ( , )n n

R

K x K x dy K y n K x K x        . 

                                      ( , ) ( , ) ( , )t t

R

Q x Q x dy Q y      

 

As an example we may consider a particle travelling at uniform speed 
through homogeneous matter occasionally scoring a collision. Each 
collision produces a change of energy regulated by a stochastic kernel K. 
The transition probabilities have the above expression if the number of 
collisions obeys a Poisson process. It is usually assumed that the fraction 
of energy lost at each collision is independent of the initial amount. Let us 
first assume that the fraction of energy lost is uniformly distributed: 
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More generally:    
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Theoretical hypothesis: if the initial energy may be considered infinitely 
large, then the total energy loss in [0,t], X(t), has a compound-Poisson 
distribution.  

 



 
                      APPROXIMATION THEOREM (1) 
 
Lemma: there is a one-to-one correspondence between Lévy processes 
{ ( )}X t  and infinitely divisible distributions { }  through (1) ( ) ( )XF dx dx . 
The process corresponding to   is unique up to identity in law. 
  
Theorem: every infinitely divisible distribution (Lévy process) is the limit 
                  of a sequence of compound-Poisson distributions (processes).  
 
A short hint (B. de Finetti – Teoria delle Probabilità, II vol., p. 444): 
  
1) let ( )  be the characteristic function of an infinitely divisible 
    distribution and ( )dx  the Lévy measure of the Lévy process 
   corresponding to ( )  → 1/ ( )n   is a characteristic function for each n; 
 
2) 1/exp{ .[ ( ) 1]}nn    is the characteristic function of a compound-Poisson 
     distribution for each n; 
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Theorem (W. Feller): The following classes of prob. distr.s are identical 
 

1) Infinitely divisible distributions 
2) Distributions of the increments in Lévy processes 
3) Limits of sequences of compound-Poisson distributions 
4) Limits of sequences of infinitely divisible distributions 
5) Limit distributions of row sums in triangular arrays  ,k nX where the 

variables ,k nX  of the n-th row are i.i.d. 
 



CONTINUOUS SEMI-GROUPS OF TRANSITION OPERATORS 
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b) unbounded A  →  it does not exists the exponential representation 
 
                                  as for a general Feller – Markov process, but 
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   Transition operator of the pseudo-Poisson process      
 
 



                   APPROXIMATION   THEOREMS 
 

1)      (1)( ); 0 ( )i XX t t Lévy process with E e          
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pseudo-Poisson process    ( ); 0hX t t   with transition operator ( )h t : 
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It can be proved that: 
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Some inferential aspects 
 
Compound-Poisson processes 
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1. Maximum likelihood inferential procedure about the parameters α and β  
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 m  ~  number of the unitary periods of observation, 
 

kn   number of arrivals in the k-th period of observation, 
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  Maximum likelihood estimates 

1

1 1 1

/

/
k

m

k
k

nm m

k jk
k k j

n m

n y











  






 




   

 

 



 

2. Bayesian inference about the parameters α and β. 
 

Observables:       S(t)  =  X(t) – X(t-1)  = 
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where           tjY  is the j-th effect in the time interval [t-1, t] . 
 

From a Bayesian viewpoint, when the parameters α and β are unknown: 
 

1) the random effects jY  and the increments of the Poisson process have 
to be considered exchangeable, that is independent conditional on 
every values of α and β ; moreover the two processes are to be 
considered mutually independent conditional on every values of α 
and β; 

  
2) every information which is available prior to observe the data has to 

be expressed by means of  a joint distribution ( , / )G H  , where H 
denotes such an information; 

 
3) the pooling of the prior and the data information, which we will 

denote by K , has to take place through the application of the Bayes 
theorem: 

                 ( , / ) ( , / ) ( , / )dG H K K dG H         .      
 
We will consider two different situations: 
 

a) the statistician has no reason to assume that the effects 

process ; 1jY j   and the Poisson count process  ( ); 0N t t   are 

connected in some way so that he assume   and   to be 
stochastically independent: 1 2( , / ) ( / ). ( / );G H G H G H     

   
b) the statistician believes that there is some connection between 

the two processes so that he assume   and   to be 

stochastically dependent: 1 2( , / ) ( / ). ( / ).G H G H G H     
 



 

In the first case, sub a): 
 

       
1

1 2
2

( / ) ( / , )
( , / ) ( / ). ( / )

( / ) ( / , )

G H a b
G H G H G H

G H c d

 
   

 
 

   
   

 

      
1 . 1 .

1 2( , / ) ( / ). ( / ) . . .a b c dg H g H g H e e                   . 

      
Data: 
 
m    number of the unitary periods of observation, 

kn   number of arrivals in the k-th period of observation → 
1

m

k
k

n n


   

*

1

kn

k jk
j

y y


   cumulative effect in the k-th period of observation → * *

1

m

k
k

y y


   

  
 
                   ( , / )g H K     ( , / ). ( , / )K g H      
 

             * 1 1( . ) .exp . . . . .exp ( . . )n a cm y b d                 

 

                       
*1 ( ) 1 ( ). . .a n b m c n d ye e                 

 

Bayesian estimates:   /
a n

E H K
b m

 
 

   and     *
/

c n
E H K

d y
 

 
  . 

 
Obviously, a full exploitation of the posterior joint distribution is given by 
the determination of the expectations of given integrable functions of the 
two parameters: 
 

                 
2

( , ) / ( , ). ( , / )
R

E f H K f g H K d d           . 

 
 
 



In the second case, sub b):    1 2( , / ) ( / ). ( / )G H G H G H     
 

      
1 1

( , / ) . ( / , ). ( / , ) ; 0, 1
k k

i i i i i i i
i i

g H u a b c d u u   
 

      , 

Suppose k = 2:  

       2 21 1 2 2 1 2 2 1
1 1 2 2 1 2

1 1 2 2 1 2 2 1

( , / ) . . . . . . .
a c a c a c a c

Cov H u u u u u u
b d b d b d b d

 
 

      
 

, 

so that the correlation between α, β may be either positive or negative.  
 
For simplicity, we assume: 
 

1 2b b b   , 1 2d d d   , 2 1a a r  , 2 1c c s  ;   ,r s R ,     

                            1 2( , / ) . . .
r s

Cov H u u
b d

    .  

 
It can be proved that the correlation between the parameters implies a 

correlation between the effects process  ; 1jY j   and the Poisson count 

process  ( ); 0N t t  ; more precisely we have 

                     
2

, / ( , / )
( )k kj

d
Cov N Y H Cov H

c c s
  

  . 

 
The opinion which is expressed by means of the preceding assumptions 
corresponds to a compound-Poisson scheme constituted by a partially-
exchangeable process, that is by the exchangeable processes  ; 1jY j   and 

 ; 0kN k   which are mutually correlated. By the Bayes theorem: 
 
                  ( , / ) ( , / ). ( , / )g H K g H K         

             . ( ; , ). ( ; , )i i i i i
i

u a b c d  
    
 .

*

( . ) .n m ye          

                 1 1. . . . .i i i ia b c d
i

i

u e e      
   


*

( . ) .n m ye          

                      *1 ( ) 1 ( )' . . . .i i i ia n b m c n d y
i

i

u e e           
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