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DAL PROCESSO DI POISSON AL PROCESSO PSEUDO-
POISSONIANO: ASPETTI PROBABILISTICI E STATISTICI

Riassunto

Da una decina d’anni ¢ ripreso ’interesse dei ricercatori per i processi di P. Lévy, considerati tanto
dal punto di vista teorico che da quello applicativo. Tra le applicazioni una posizione preminente
spetta alla Finanza matematica: uno sviluppo moderno delle antiche discipline Matematica
finanziaria e Matematica attuariale. L’attuale Seminario riguarda una modalita di presentazione dei
processi stocastici di Lévy che li mette in relazione con i ben noti processi di passeggiata aleatoria e
con i processi di Markov — Feller. Gli aspetti strutturali riguardano in particolare due teoremi di
approssimazione dei processi di Lévy e dei processi di Markov — Feller: il primo teorema risale ai
lavori di B. de Finetti del biennio 1929 — 1930 e sostanzialmente coincide con un primo teorema di
rappresentazione per le distribuzioni infinitamente divisibili. Il Seminario affronta anche alcuni
problemi di inferenza statistica su un particolare tipo di processi di Lévy, i processi di Poisson
composto; vengono considerati sia il noto approccio inferenziale classico che quello bayesiano.



DE FINETTI - LEVY STOCHASTIC PROCESSES

{Z(t)} has stationary and independent increments Z(t) — Z(s) ,
{Z(t)} — limPr{|Z(s)-Z(1)|> £} =0 and Z(0)=0.

Some examples:

Gaussian pr.s with cont. trajectories
E[Z(t)]=0, Cov[Z(s),Z(t)]=min(s,?)
(11)"

n!
N (D) { N(t) = Poisson(At)

the Wiener process {

the Poisson process: P[Z(1)=n]=exp{-A}.

the compound-Poisson pr.: Z()=> U,

j=1

U,/IN(t)=n =iid.

the Gamma process; a — stable process; etc.
As they have stationary and independent increments :

n
5

1) Z(t) ~ infinitely divisible distribution: Vn, Pz (&)= [(Dn (S )]

2) ¢Z(t+s)(§) = ¢Z(t)(§)-¢z(s)(§) — ¢z(t)(§) =exp ity (S)} ;

3) 0,0(E) =E| " |=exp {ibtf —% +1. l (5 —1- ifx.l(l,l)(x)}/(dx)}
if v({O}) =0 and I(‘x‘z /\l)v(dx) <o . (Dz(t)(g) < (b,c,v)

4) ZW)=mO)+Z,(+Z,0), Z.0) || Z,@).
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Let W,=).T, ,where T, ~iid.—Neg.exp(1) be a random walk process.
=

1) Poisson process {N(t); :>0}
a) N(0)=0 and N(t)=n iff W <t<W, —
N P{N(Z‘) - n} =e M. (A)" /n! D, (&)= exp{/lt(eié _1)} ;

b) It is a Lévy process characterized by E[N(t)]= At and v, (dx)= A1, (dx)

2) Compound-Poisson process {X(t);:>0}: it is a random walk S, =

k
=YY, with transition times given by the random walk process {/,} .
=

N(t)
a) X()=) Y, = S |N(@t)=n| where Y,/ N(t)=n~iid.—F,(dy) —
Jj=1 nx1

L F@=e* Y oy, @ =ep a0, @)-1]);

n>0

b) It is a Lévy process characterized by E[X(¢)]=At.E(Y), v,(dx) = At.F,(dx)

Approximation theorem (1)

3) Pseudo-Poisson process X(t) = D.S,.|N(t)=n|: it is a Markov

chain {S,} with transition times given by the random walk process {#,} .
p(H=e" i (;;—t')npl’] where [pﬂ =P".
n=0 .
P{X(t +s5)el’'/ X(s)= x} =0.(x,I) = e_it.i(/i—t')nl((”)(x,lﬂ),
n=0 .
K" (x,T) = [ K (x,dy) K" (3,1)
R

Approximation theorem (2)

1) Exponential formula of semi-group of contractions theory

O*(f) = e/l't~i(/1’:l—t')n(T *)” _ e/l.t(T*J) : (T *)(n) u(x) = jK(")(x, dy)u(y).



N(t) = Poisson process (At)

k
COMPOUND-POISSON process () | random walk S, =),

Vn, Y,/N@{t)=n=~iid.
An example:

KOI=TUBZ fro ()= 3 PINO =1} f 100000 = Z[%jf @),

where f;" (x)=T(n, ), and this implies E[X()]=E[N(D)].E(Y,)= At/
and Var[X(t)]=24t/ B

Maximum likelihood inferential procedure about the parameters A and 3

m Ny

U4, B/ data) < (1.5)" -GXP{—m-ﬂ—ﬂ-zzyfk} , Wwhere

k=1 j=1
m ~ number of the unitary periods of observation,

1, ® number of arrivals in the k-th period of observation,

Z Y ® cumulative effect in the k-th period of observation.
Jj=1

A=) n/m
J k=1
Maximum likelithood estimates | » & m_
B=)n/ Z Vi
k=1 k=1 j=1




discrete —time Markov chain (K)

PSEUDO-POISSON process X(t)
Poisson process (at)

P{X(z‘ +s5)el’'/ X(s)= x} =0,(x,I') = e‘“’.g%K(”)(x,F),
K" (x,T) = j K(x,d) K" (y,T), n>1;  KYxT)=K(xT)

0,..(x,1)=[0,(x,d0.(»,T)

As an example we may consider a particle travelling at uniform speed
through homogeneous matter occasionally scoring a collision. Each
collision produces a change of energy regulated by a stochastic kernel K.
The transition probabilities have the above expression if the number of
collisions obeys a Poisson process. It is usually assumed that the fraction
of energy lost at each collision is independent of the initial amount. Let us
first assume that the fraction of energy lost is uniformly distributed:

n-1
k) =1z, x>0, = k"(y)=—— | | ye@uy
(n)x{ vy

1 n-1 .
Ixm( ?j » 1=

0 ()= ajti[a.t.ln(x/y)] o f)= atz[atln(l/r)]
Y€ =0 pl T(n+2) € 0 p! T(n+2)

r=2x /)=

B ) 2" A-1 x n-1
More generally: k(x,))=4y""/x, = k" (x,y)= o (1n—j ;

rem" "y
_ —at /11\/.— (x/2)2n+1
9= 1 (2NAatinxl ) ) Lx) = Z T

Theoretical hypothesis: if the initial energy may be considered infinitely
large, then the total energy loss in [0,t], X(t), has a compound-Poisson
distribution.




APPROXIMATION THEOREM (1)

Lemma: there is a one-to-one correspondence between Lévy processes
{X(t)} and infinitely divisible distributions {x} through F, (dx) = u(dx).

The process corresponding to x is unique up to identity in law.

Theorem: every infinitely divisible distribution (Lévy process) is the limit
of a sequence of compound-Poisson distributions (processes).

A short hint (B. de Finetti — Teoria delle Probabilita, II vol., p. 444):

1) let ®(<) be the characteristic function of an infinitely divisible
distribution and v(dx) the Lévy measure of the Lévy process

corresponding to ®(&) — @""(¢) is a characteristic function for each n;

2) exp{n.[®""(£)—1]} is the characteristic function of a compound-Poisson
distribution for each n;

3) exp{n[@"" (&)1} —=25®(&) as n(x""-1)—=>Inx

4) exp{n.[®""(£)~1]} = exp {J.(eigx -1) ”-Fl/n(dx)} and it can be proved that

R

¥V bounded,continuous f(x): I f(x) n.F, (dx)—> _[ S (x)v(dx)

Theorem (W. Feller): The following classes of prob. distr.s are identical

1) Infinitely divisible distributions

2) Distributions of the increments in Lévy processes
3) Limits of sequences of compound-Poisson distributions
4) Limits of sequences of infinitely divisible distributions
5) Limit distributions of row sums in triangular arrays {x,

n

} where the

variables X, of the n-th row are 1.1.d.



CONTINUOUS SEMI-GROUPS OF TRANSITION OPERATORS

Continuous-time Markov process — P {X (t+s)el’/ X(s)= x} =D,(x,I')
(1) = j D, (x,dy)D,(y.T).

V' = real valued bounded continuous functions with ||u(x)|| = SUP|“(X)| :

y_A0 . A(t)u(x):J-u(y)Dt(x,dy)ZE{M[X(t+T)]/X(T)=x}

R

-

A(0) =

AP 150 A(s+1) = A(s)A(2)
Continuous semi-group of contractions: B 20; ||A(t)u|| < ||u||

At)—22 5 3

Generator A of {A(t);t >0} : Au(x)= 133)1 A(t)“(xt) —u(x)

)= i t" A"u(x)

n=0

a) bounded A — A®)u(x)= exp[t A u(x

Compound — Poisson process

Some examples
Pseudo — Poisson process

b) unbounded A — it does not exists the exponential representation

as for a general Feller — Markov process, but

A, (1) = e‘”h.i (¢ /n }:)n A(nh) = exp {%[Ah —s]} 0 A

Transition operator of the pseudo-Poisson process



APPROXIMATION THEOREMS

1) {X(t);tZO}zLévy process with E[ei‘fX(l)}:CD(f)
O(E) ~inf.div. = @""(E) = characteristic function

comp.Poisson {X, (t);t>0}~ @, (&) =exp {n.[d)l/"(f) = 1]}

It can e proved that:

exp{n[@""(5)~1]} —— ©(&)

2) {X(t);t > O} = Feller — Markov pr. with {Dt (x,I);t > O}

( A0)=3
A(s+1)=A(s)A(2)
@] < u|

At)—22 53

A()u(x) = j u(»)D,(x,dy) = E{u[ X (1 +7)]/ X (7) = x};

R

u(x)=1.(x) - AW (x)=D,(x,L)=Pr{X(t+7)el'/ X(r)=x}

pseudo-Poisson process {X (0)38 2 0} with transition operator A, (?) :
on~a (/T h)"
Ah (t) =e t/hz(n—')A(nh) )
n=0 .

It can be proved that:

A1) = e—””i &/ }:)n A(nh) = exp {%[Ah —s]} SRETENNG)

n=0 n:



Some inferential aspects

Compound-Poisson processes

NG N(t) = Poisson(At)
X(t) ~ compound Poisson pr. if = X()= Z Y, £, =1, B)
y ~ )

J=1

fX(z)(x) ZP N(t) n]fX(t)/N(t)n(x) i(%ﬂ) Yn*(x)’

E[X(O)]=E[N®).E(Y,)= A1/ B

n* F
r (=) { Var[ X ()| =24t/ 5

1. Maximum likelihood inferential procedure about the parameters o and 3

Ua, B/ data) = (. ﬁ);"k exp {—m.a -y Z Vi }

k=1 j=1
m ~ number of the unitary periods of observation,

n, ~ number of arrivals in the k-th period of observation,

Zk: v, = cumulative effect in the k-th period of observation.

J=1

<

Maximum likelihood estimates | 2 & m
B = Z n,/ Z




2. Bavyesian inference about the parameters a and P.

N(t)-N(t-1)

Observables: S(t) = X(t) — X(t-1) = Z Y,

J=1

where Y, is the j-th effect in the time interval [t-1, t] .

From a Bayesian viewpoint, when the parameters a and 3 are unknown:

1) the random effects v, and the increments of the Poisson process have

to be considered exchangeable, that is independent conditional on
every values of a and B ; moreover the two processes are to be

considered mutually independent conditional on every values of o
and f3;

2) every information which is available prior to observe the data has to
be expressed by means of a joint distribution G(a, 8/ H), where H
denotes such an information;

3) the pooling of the prior and the data information, which we will
denote by «, has to take place through the application of the Bayes
theorem:

dG(a,p/HAK)x<cl(a, B/ K) dG(a, B/ H) .
We will consider two different situations:

a) the statistician has no reason to assume that the effects
process{Y_,-;j 2 1} and the Poisson count process {N ()12 0} are

connected in some way so that he assume « and g to be
stochastically independent: G(a,8/H) =G (a/H).G,(B/H);

b) the statistician believes that there is some connection between
the two processes so that he assume « and g to be

stochastically dependent: G(«,8/H) = G (a/H).G,(B/H).



In the first case, sub a):

G (a/H)~T(a/a,b)
G(a, f/ H)=G,(a/H).G,(B/H) {G (B/H)~T(B/c.d)

gla,f/H)=g/(a/H).g,(BIH)oc[a e ][ e’ ] .
Data:

m ~ number of the unitary periods of observation,

n, ~ number of arrivals in the k-th period of observation — n=>n,

k=1

Vi = Z v, ~ cumulative effect in the k-th period of observation — »" =)y,

j=1 k=1

gla,pIHAK)x l(a,B/K).g(a,/ H)x
o (a.B)" . exp{-ma -y} [a" p T exp{-(ba+dp)}|=

_ |:aa+n—l .e—a(b+m)j|.|:ﬂc+n—l .e_ﬂ(d+y*):|

c+n

d+y* )

at+n

Bayesian estimates: E(Ol/H/\K)=b+m and E(B/HAK)=

Obviously, a full exploitation of the posterior joint distribution is given by
the determination of the expectations of given integrable functions of the
two parameters:

E{f(a,)/HAK}= ”f(a,ﬂ).g(a,ﬂ/H/\K)dadﬂ ,



In the second case, sub b): G(a,8/H) =G (a/H).G,(S/H)

k
gla, fIH)=D u,T(ax/a,b)T(Blc,d) ; u;20, Y u=1
i=1 ]
Suppose k =2:

Cov(a, B/ H)=u, —u} g WY YR Y B NEPPRPRY (s W i M
(ﬂ )(1 l)bldl(z 2) lzbd bd

so that the correlation between a, f may be either positive or negative.

For simplicity, we assume:

b=b=b d=d,=d a,=a+r c,=c+5; r,seR, o
—, Cov(a,B/H)=u,u re
1772 b d .
It can be proved that the correlation between the parameters implies a
correlation between the effects process {Yj;j 2 1} and the Poisson count

process {N (¢);t 2 0} ; more precisely we have

Cov(Nk,ij/H):— Cov(a,p/H)

c(c+5s)

The opinion which is expressed by means of the preceding assumptions
corresponds to a compound-Poisson scheme constituted by a partially-

exchangeable process, that is by the exchangeable processes {YJ Jjz2 1} and

{N,;k >0} which are mutually correlated. By the Bayes theorem:
gla,pIHAK)x g(a,B/H)la,!K)
oc {Z uI(a;a.,b)I(f; cl.,dl.)} . [(a.ﬂ)”.e_m“_y*ﬁ} oC
. {zui.(aa-—l ) (e )}. (@)
o« Zl/l ( a;+n-1 —a(bi+m)).(ﬂci+n—l.e—ﬁ(dj+y*))
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