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Probability Bayes 1

Bayesian Econometrics I

Bayesian econometrics is based on a few simple rules of probability.

All the things an econometrician is interested in, such as estimate the
parameters of a model, compare different models or obtain a
prediction from a model, involve the same rules of probability.

Bayesian methods are thus universal and can be used any time a
researcher is interested in using data to learn about a phenomenon.

In particular, at the heart of Bayesian econometrics lies the Bayes’
theorem
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Probability Bayes 1

Probability: Bayes’ theorem I

Bayes’ theorem is a rule to compute conditional probabilities.

In other words, it links probability measures on different spaces of
events: given two events E and H, the probability of H conditional
on E is the probability given to H knowing that, or better, assuming
that E is true (i.e. E is the new universe (Ω)).

More precisely,
I I’ve given a probability measure on E , H and the algebra over E and H,
I I am told that E has occurred,
I how do I change (if I change) my opinion on H:

P(H)→ P(H|E ) =?
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Probability Bayes 1

Probability: Bayes’ theorem II

Theorem

Bayes’ theorem (for events):Let E and H be two events, assume
P(E ) 6= 0, then

P(H|E ) =
P(H ∩ E )

P(E )
=

P(H)P(E |H)

P(E )
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Probability Bayes 1

Probability: Bayes’ theorem III
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Probability Bayes 1

Probability: Bayes’ theorem IV

Theorem

Bayes’ theorem (for events):Let E and H be two events, assume
P(E ) 6= 0, then

P(H|E ) =
P(H ∩ E )

P(E )
=

P(H)P(E |H)

P(E )
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Probability Bayes 1

Probability: Bayes’ theorem V
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Probability Bayes 2

Bayes’ theorem: continuous variables I

We have considered Bayes’ theorem for events, we now extend it to
continuous random variables.

Theorem

Bayes’ theorem: If
(i) π(θ) probability density function
(ii) f (y |θ) probability density function of y given θ

then

π(θ|y) =
π(θ)f (y |θ)∫

Θ f (y |θ)π(θ)dθ
∝ π(θ)f (y |θ)

Note that
∫

Θ π(θ|y)dθ = 1.
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Probability Bayes 2

Bayesian paradigm I

Consider a (parametric) model, i.e. a family of probability distributions
indexed by a parameter θ ∈ Θ such that within this family it is assumed to
lie the distribution of y :

f (y |θ), θ ∈ Θ.

This way to proceed it is not different from the classical paradigm, but
here distributions are defined conditional on the value of the parameter.
Notice that a parameter is not a r.v. in the classical setting, whereas here
all unknown quantities are treated as r.v. The likelihood

L(θ; y) ∝ f (y |θ),

is defined as in the classical paradigm.
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Probability Bayes 2

Bayesian paradigm II

A prior distribution is set on the parameter θ,

π(θ)

which is independent of observations (it is called prior since it comes
before seeing the data: this is the new thing!).

Prior information and likelihood are combined using Bayes’ theorem to
obtain the posterior distribution

π(θ|y) =
π(θ)f (y |θ)∫

Θ f (y |θ)π(θ)dθ
∝ π(θ)f (y |θ) ∝ π(θ)L(θ; y)

which sums up all the information we have on the parameter θ.
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Probability Bayes 2

Inference

Within the classical inferential paradigm we distinguish the following
procedures

point estimate;

interval estimate;

hypotheses testing;

These distinctions are less substantial in Bayesian inference, where

THE result of inference IS
the posterior distribution
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Probability Comparison

The two approaches, a brief comparison I

A statistical problem is faced when, given observations, we want to
assess what random mechanism generated them In other words,

there are two or more probability distributions which may have
generated the observations;

analyzing the data we want to infer the actual distribution (or some
property of it) which generated the data.
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Probability Comparison

The two approaches, a brief comparison II

In CLASSICAL INFERENCE

the conclusion is not directly derived from the rules of probability
calculus (in fact, these rules are used, but the conclusion is not a
direct consequence of them)

the likelihood and the probability distribution of the sample are used;

the parameter is treated as a constant.

In BAYESIAN INFERENCE

the reasoning and the conclusion is an immediate consequence of
probability calculus rules (specifically of Bayes’ theorem);

the likelihood and the prior distribution are used;

the parameter is a random variable.
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Probability Subjective

Bayesian statistics and subjective probability I

It should be clear by now that Bayesian statistics is an application of
probability calculus.

In the following we will adopt the most general definition of
probability, i.e. the definition of subjective probability.

The subjective approach to probability is based on the idea that probability
is not an objective property of a phenomenon but rather it has to do with
the personal opinion of an individual

Def. of Subjective probability: for an individual, the probability of an
event corresponds to his degree of belief on the occurrence of it.
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Probability Exchangeability

Since probability is defined as a subjective degree of belief, it depends
upon the information available to the individual, and following this
line of reasoning it is clear that by random we mean not known for
lack of information.

Therefore the subjective definition of probability seems to be well
suited to the Bayesian paradigm, in which:

I the parameter to be estimated is a well specified quantity but not
known for lack of information and so it is treated as a r.v.

I a probability distribution is (subjectively) specified for the parameter to
be estimated, this is called the prior distribution

I having observed the experimental results, the probability distribution on
the parameter is updated using Bayes’ theorem to combine
experimental results (likelihood) and prior distribution to obtain the
posterior distribution.

G. Carmeci (DEAMS) 17 / 83



Probability Exchangeability

Exchangeability (B. de Finetti’s representation theorem)

Key hypothesis in many statistical analyses: the observed quantities
y1, . . . , yn, are exchangeable, i.e. their joint probability distribution is
invariant to any permutation of indices

p(y1, . . . , yn) = p(yi1 , . . . , yin)

The exchangeability hypothesis is equivalent to affirm that conditionally on
a parameter vector θ, the random variables y1, . . . , yn are independently
and identically distributed (de Finetti’s theorem)

Notice that unconditionally the random variables are stochastically
dependent!

G. Carmeci (DEAMS) 17 / 83



Models

Outline of the talk

1 Preliminaries on probability calculus
Bayes’ theorem
Bayes’ theorem: continuous variables
Classical and Bayesian inference
An important detail, which probability?
de Finetti’s representation theorem

2 Models
Beta-Binomial
Normal-normal
Normal-normal, known variance
Interval estimate
Normal-normal, known mean, unknown variance
Normal-normal, two unknowns

3 Prediction
4 Multivariate normal
5 Multivariate t

G. Carmeci (DEAMS) 18 / 83



Models

Bayesian inference in brief

1 Specify a model, that is
I the conditional distribution p(y |θ) associating to each state of nature

a probability law of the sample
I the set of states of nature: parameter space, Θ

In the end we have
{p(y |θ), θ ∈ Θ}

2 specify a distribution on the parametric space based on pre
experimental opinions: the prior distribution, π(θ) (a minimum
requirement is that supp(π) = Θ);

3 combine the prior distribution and the likelihood according to Bayes’
theorem to obtain the posterior distribution

π(θ|y) ∝ p(y |θ)π(θ)

4 derive conclusions from the posterior distribution (point or interval
estimates, hypotheses testing, prediction, . . .)
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Models

Scheme of inference

determine the states of nature, that is the param-
eter space

Θ

specify a distribution on the parametric space based
on pre experimental opinions: the prior distribution

π(θ)
(supp(π) = Θ)

specify the likelihood function associating to each
state of nature a probability law of the sample

p(y |θ)
(supp(p) = Y)

combine the prior distribution and the likelihood
according to Bayes’ theorem,

π(θ|y) ∝ p(y |θ)π(θ)

the posterior distribution is then obtained
π(θ|y)

(supp(π(·|y) = Θ)
from the posterior distribution we can derive point
estimates, interval estimates or perform hypotheses
testing.

E(θ|y)
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Models

Some models

In the following we’ll discuss some simple examples of Bayesian models.

They will serve the purpose of exemplifying some aspects of Bayesian
inference;

They are particularly useful since inference can be done without
recurse to simulation algorithms (which instead is the rule in Bayesian
econometrics).
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Models Binomial

Model for dichotomic data I

Dichotomic data arise, for example, when you want to estimate the
proportion of a population which possesses a given characteristic
using a random sample of individuals,

That is, n individuals are drawn at random from the population
(assume the drawings are performed with replacement if the
population is finite) and the possession or not of the given
characteristic is recorded (this is called a success or a failure,
respectively).

Examples include the vote in a referendum, the fact of having a given
gene or to be unemployed and so on.

Bayesian inference for dichotomic data was considered by Laplace,
who wanted to estimate the proportion of female births in a human
population.
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Models Binomial

Model for dichotomic data

Sample: n IID replications of a dichotomic phenomenon

Y1, . . . ,Yn

Yi |θ ∼ i .i .d . Bernoulli(θ) where pr(Yi = 1|θ) = θ

Parameter space: Θ = [0, 1]

Prior distribution: Any distribution with [0, 1] support; for the moment we
choose, for mathematical convenience,

θ ∼ Beta(α, β)
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Models Binomial

The Beta distribution

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

where 0 < θ < 1 and α, β > 0,

E (θ) =
α

α + β
V (θ) =

αβ

(α + β)2(α + β + 1)
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Models Binomial

Model for dichotomic data: likelihood

The likelihood is given by

L(θ) = pθ(y) = θ
∑

i yi (1− θ)n−
∑

i yi

θ

L(
θ)

0 x = θ̂ 1

0

L(θ̂) = maxL(θ)
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Models Binomial

Model for dichotomic data: the posterior distribution

The posterior distribution is easily obtained

π(θ|y) ∝ L(θ)π(θ)

∝ θ
∑

i yi (1− θ)n−
∑

i yi θα−1(1− θ)β−1

∝ θα+
∑

i yi−1(1− θ)β+n−
∑

i yi−1

⇓

π(θ|y) = Γ(α+β+n)
Γ(α+

∑
i yi )Γ(β+n−

∑
i yi )

θα+
∑

i yi−1(1− θ)β+n−
∑

i yi−1

This is a Beta distribution with parameters (α +
∑

i yi ) and
(β + n −

∑
i yi ).
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Models Binomial

Point estimate

In many cases we may be interested in summarizing the posterior
distribution, either

I because we want to highlight some features of it or
I because the posterior distribution as a whole may be too difficult to

analyse (this may occur even for a simple posterior like this one,
depending on who do we need to communicate with).

a very brute summary is a point estimate which may be thought as a
guess on the parameter;

the posterior expectation, E (θ|y), is the typical choice;

the posterior median or posterior mode are valid alternatives;

their interpretation is clear.
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Models Binomial

Posterior expectation I

Let us synthesize the posterior distribution using the expectation

E (θ|y) =

∫
θπ(θ|y)d(θ)

Being π(θ|y) a Beta distribution, the posterior mean results to be

=
α +

∑
i yi

α + β + n

=
α + β

(α + β + n)

α

α + β
+

n

α + β + n

∑
i yi
n

=
α + β

α + β + n
E (θ) +

n

α + β + n
θ̂
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Models Binomial

Posterior expectation II

E (θ|y) =
α + β

α + β + n
E (θ)︸︷︷︸

prior mean

+
n

α + β + n
θ̂︸︷︷︸

MLestimate

The posterior mean is a weighted average of the prior expectation and the
ML estimate, where

ML estimate prevails if n is large;

ML estimate prevails if α and β are small (the variance of the prior
distribution is large). It is worth noting that α + β can be interpreted
as the equivalent number of observations of the prior distribution.

Looking at the whole distribution...
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Models Binomial

Posterior distribution

Let us consider the posterior distribution as a whole.The posterior is, in a

sense, a compromise between the prior and the likelihood, where

the likelihood prevails if
I n is large;
I α and β are small (the prior is diffuse)
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Models Binomial

Effect of the prior
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Models Binomial

Effect of the likelihood
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Models Binomial

Note: prior and posterior distribution have the same
functional form

The posterior like the prior is a Beta distribution

Likelihood Prior Posterior

L(θ; y) π(θ) π(θ|y)

Binomial Beta(α, β) Beta(α +
∑

i yi , β + n −
∑

i yi )

This property (discussed in the following) is called conjugacy.
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Models Binomial

Laplace example

As noted previously this model was considered by Laplace for estimating
the proportion θ of female birth in a population.He considered data on
births in Paris from 1745 to 1770: in this period 241,945 females and
251,527 males were born, so

ȳ =
241, 945

241, 945 + 251, 527
= 0.4902912, n = 493, 472.

Assuming as a prior θ ∼ Beta(1, 1) (uniform distribution on [0, 1]) the
posterior is a Beta(241, 946; 251, 528)
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Models Normal: N

Model for gaussian data

Assume that observations come from a gaussian distribution (variance may
be known or unknown)

Y1, . . . ,Yn ∼ iidN (µ, σ2) conditionally to parameter(s) value(s)

we distinguish three cases
I µ parameter, σ2 known;
I µ known, σ2 parameter;
I µ, σ2 parameters;

the likelihood L (= L(µ) or L(µ, σ2)) is

L ∝
n∏

i=1

1√
2πσ

exp

[
−(yi − µ)2

2σ2

]
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Models N , µ

Gaussian model; σ2 known I

Likelihood:

L(µ) ∝
n∏

i=1

1√
2πσ

exp

[
−(yi − µ)2

2σ2

]
∝ exp

[
− n

2σ2
(ȳ − µ)2

]
Assume a gaussian prior on µ,

µ ∼ N (µ0, σ
2
0)

The posterior distribution is then

π(µ|y) ∝ L(µ)π(µ)
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Models N , µ

Gaussian model; σ2 known II

π(µ|y) ∝ exp
[
− n

2σ2
(ȳ − µ)2

]
exp

[
− 1

2σ2
0

(µ− µ0)2

]
∝ exp

[
− n

2σ2
µ2 − 1

2σ2
0

µ2 +
µȳn

σ2
+
µµ0

σ2
0

]
∝ exp

[
−1

2

(
n

σ2
+

1

σ2
0

)
µ2 + µ

(
n

σ2
ȳ +

1

σ2
0

µ0

)]

∝ exp

− 1

2
(

n
σ2 + 1

σ2
0

)−1

µ2 − 2µ

n
σ2 ȳ + 1

σ2
0
µ0

n
σ2 + 1

σ2
0




∝ exp

− 1

2
(

n
σ2 + 1

σ2
0

)−1

µ− n
σ2 ȳ + 1

σ2
0
µ0

n
σ2 + 1

σ2
0

2

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Models N , µ

Gaussian model; σ2 known III

π(µ|y) ∝ L(µ)π(µ)

∝ exp

(
− 1

2(σ∗)2
(µ− µ∗)2

) [
N (µ∗, (σ∗)2)

]
That is, we obtain a gaussian posterior distribution with parameters µ∗ and
(σ∗)2 which are functions of the prior distribution parameters and the data:

µ∗ =

n
σ2 ȳ + 1

σ2
0
µ0

n
σ2 + 1

σ2
0

=
µ0σ

2 + ȳnσ2
0

σ2 + nσ2
0

(σ∗)2 =

(
n

σ2
+

1

σ2
0

)−1

=
σ2σ2

0

σ2 + nσ2
0
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Models N , µ

Gaussian model; σ2 known IV

The posterior mean is a weighted average of the prior mean and the ML
estimate, where the weights are the inverse of their respective variances
(i.e. precisions)

µ∗ = µ∗n,σ0
=

n
σ2 ȳ + 1

σ2
0
µ0

n
σ2 + 1

σ2
0

=

1
V (ȳ) ȳ + 1

V (µ)µ0

1
V (ȳ) + 1

V (µ)

µ∗n,σ0
−→
n→∞

ȳ , in large samples the ML estimate dominates the prior

µ∗n,σ0
−→
σ0→0

µ0, the weight of the prior mean on the posterior is greater

for sharp priors.
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Models N , µ

Gaussian model; σ2 known V

Interestingly, the posterior mean can be written as

µ∗ = µ∗n,σ0
= µ0 + (ȳ − µ0)

nσ2
0

σ2 + nσ2
0

= ȳ − (ȳ − µ0)
σ2

σ2 + nσ2
0

i.e., the posterior mean is equal to the prior mean plus an adjustment that
is proportional to the difference between the sample mean and the prior
mean. Equivalently, the posterior mean is equal to the sample mean minus
an adjustment that is proportional to the difference between the sample
mean and the prior mean.
The inverse of the posterior variance, i.e. the posterior precision, is the
sum of the prior precision and the precision of ML estimator

(σ∗)2 = (σ∗n,σ0
)2 =

(
n

σ2
+

1

σ2
0

)−1

=

(
1

V (ȳ)
+

1

V (µ)

)−1

G. Carmeci (DEAMS) 40 / 83



Models N , µ

Gaussian model; σ2 known VI

σ∗n,σ0
−→
n→∞

0, in large samples the posterior will be more and

moreconcentrated (around the ML estimate).

σ∗n,σ0
−→
σ0→0

0, given the sample, the sharper the prior the less dispersed

the posterior (around the prior mean!!)

The effects of varying the prior and the number of observations are best
seen in the following pictures (notice that there is a mistake in the pictures
legend!!!)

G. Carmeci (DEAMS) 41 / 83



Models N , µ

Effect of prior
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Models N , µ

Effect of likelihood

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

µµ0 == 0; σσ0
2 == 10; n=10; σσ2 == 1

µµ

−1 0 1 2 3

0.
0

1.
0

2.
0

3.
0

µµ0 == 0; σσ0
2 == 10; n=50; σσ2 == 1

µµ

−2 −1 0 1 2 3

0
1

2
3

4

µµ0 == 0; σσ0
2 == 10; n=100; σσ2 == 1

µµ

−2 −1 0 1 2 3

0
2

4
6

8
12

µµ0 == 0; σσ0
2 == 10; n=1000; σσ2 == 1

µµG. Carmeci (DEAMS) 43 / 83



Models N , µ

Note 1: noninformative prior distribution

The Normal distribution is only one possible distribution for µ, any other
distribution with support the real line is suitable. An extreme alternative is
a constant prior, which is interesting for the results that are obtained.

Let π(µ) ∝ constant (it’s an improper prior, because it is not a
distribution)

The posterior is

π(µ|y) ∝ L(µ)π(µ)

∝ exp
[
− n

2σ2
(ȳ − µ)2

]
that is

I the posterior is µ ∼ N (ȳ , σ
2

n )
I the posterior mean is equal to the ML estimate
I the result of the frequentist approach: ȳ ∼ N (µ, σ

2

n )
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Models N , µ

Note 2: updates I

Let, a priori, µ ∼ N (µ0, σ
2
0)

Given an observation y1 ∼ N (µ, σ2) the posterior is

(µ|y1) ∼ N (µ1, σ
2
1)

where µ1 =

µ0
σ2

0
+

y1
σ2

1

σ2
0

+ 1
σ2

and σ2
1 = 1

1

σ2
0

+ 1
σ2

A second observation y2 ∼ N (µ, σ2) becomes available, we can
update the posterior using π(µ|y1) as the prior distribution

π(µ|y1, y2) ∝ π(µ|y1)f (y2|µ)

so
(µ|y1, y2) ∼ N (µ2, σ

2
2)

where µ2 =

µ1
σ2

1
+

y2
σ2

1

σ2
1

+ 1
σ2

and σ2
2 = 1

1

σ2
1

+ 1
σ2
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Models N , µ

Note 2: updates II

Notice that

σ2
2 =

1
1
σ2

1
+ 1

σ2

=
1

1
σ2

0
+ 1

σ2 + 1
σ2

=
1

1
σ2

0
+ 2

σ2

µ2 =

µ0

σ2
0

+ y1+y2

σ2

1
σ2

0
+ 2

σ2

That is, the same posterior is obtained either updating the
information in two steps as above starting from the prior N (µ0, σ

2
0) or

updating it directly using the likelihood of the pair (y1, y2).
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Models N , µ

Note 2: updates III

Sequential updates: Let f (y |θ) be the model and π(θ) the prior, the
posterior is then

π(θ|y) ∝ π(θ)L(θ; y)

If a further observation x , independent of y and distributed according to
f (x |θ), becomes available, the posterior can be written as

π(θ|y , x) ∝ π(θ)L(θ; y , x)

Given that x and y conditional on θ are independent we can write

π(θ|y , x) ∝ π(θ)L(θ; x)L(θ; y)

∝ π(θ|y)L(θ; x)

i.e. the posterior can be also obtained by combining the prior distribution
π(θ|y) and the likelihood for x .
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Models N , µ

Note 3: sufficient statistics I

Note that, given the prior distribution µ ∼ N (µ0, σ
2
0) the same posterior

distribution is obtained with one of the following information

n observations y1, . . . , yn IID from N (µ, σ2);

1 observation ȳ from a N (µ, σ2/n).

where the latter represents the sufficient statistics (together with n) for
the sample y1, . . . , yn. This is intuitive, the posterior depends on the

sample only through the likelihood, and the likelihood of the sufficient
statistics is equal to the likelihood of the whole sample.
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Models N , µ

Note 3: sufficient statistics II

Sufficient statistics: We can substitute the sample y with any sufficient
statistics t(y), we will obtain the same posterior distribution. If t(y) is
sufficient, then

L(θ; y) ∝ L(θ; t(y))

Factorization theorem: f (y |θ) = h(y)g(t(y); θ)

Hence

π(θ|y) ∝ π(θ)L(θ; y)

∝ π(θ)L(θ; t(y))

∝ π(θ|t(y))
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Models Interval estimate

Bayesian and classical interval estimation I

We have seen that the information in the posterior distribution can be
summarized by its posterior expectation and standard deviation;

These roughly correspond to the point estimate and its standard error
in classical inference (although the interpretation is a bit different!).

Given that θ is a random variable, it is natural to think at an
analogue of confidence intervals;

This analogue is called credibility interval.

there is a great difference in interpretation, where credibility interval
is a more natural object. According to some authors, most of non
statisticians actually interpret confidence intervals as if they were
credibility intervals.
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Models Interval estimate

Bayesian and classical interval estimation II

Classical interval estimate (confidence interval) An interval is associated
to the sample y such that with a confidence level 1− α, it contains the
true value of the parameter.
Interpretation: if N = 100 samples were observed and for each of them a
1− α confidence interval were obtained, on average 100(1− α) of them
would contain the true value of the parameter.

Bayesian interval estimate (credibility interval) An interval is associated
to the sample y such that it contains the true value of the parameter with
probability 1− α. Interpretation: straightforward and intuitive (we don’t
need to think to a large number of hypothetical samples).
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Models Interval estimate

Bayesian and classical interval estimation III

Let us compare the formal definitions

Def: confidence interval

A confidence interval for θ is a pair of statistics L(Y ),U(Y ) ∈ Θ such that

P(L(Y ) ≤ θ ≤ U(Y )) ≥ 1− α ∀θ

where the probability is with respect to the distribution of Y .

Def: credibility interval

A credibility interval for θ is a pair of statistics L(Y ),U(Y ) ∈ Θ such that

P(L(Y ) ≤ θ ≤ U(Y )) ≥ 1− α

where the probability is with respect to the distribution of θ.
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Models Interval estimate

Bayesian and classical interval estimation IV

Confidence interval:

(assume L−1,U−1 exist)

P(L(Y ) ≤ θ ≤ U(Y )) = P(U−1(θ) ≤ Y ≤ L−1(θ))

=

∫ L−1(θ)

U−1(θ)
p(y |θ)dy

Credibility interval:

P(L(Y ) ≤ θ ≤ U(Y )) =

∫ U(Y )

L(Y )
π(θ|y)dθ
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Models Interval estimate

Credibility intervals

Given a distribution for θ, π(θ|y) there is not a unique interval satisfying
the condition

P(L(Y ) ≤ θ ≤ U(Y )) =

∫ U

L
π(θ|y)dθ = 1− α

the easiest choice is to set L and U equal to the quantiles α/2 and
1− α/2 of π(θ|y), that is, such that∫ L

−∞
π(θ|y)dθ =

∫ +∞

U
π(θ|y)dθ = α/2

this interval satisfies the condition but is not in general the smallest one.
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Models Interval estimate

Credibility intervals: HPD (Highest Posterior Density) I

A better (meaning smaller) interval is defined as Highest Posterior
Density (HPD). The highest posterior density credibility region is a set
C ⊂ Θ such that

P(θ ∈ C ) = 1− α

and

π(θ1|y) > π(θ2|y)

if θ1 ∈ C and θ2 /∈ C
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Models Interval estimate

Credibility intervals: HPD (Highest Posterior Density) II

Given π(θ|y) the HPD interval C is obtained including the values of θ of
highest density

θθl θθu
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Models Interval estimate

Credibility intervals: HPD (Highest Posterior Density) III

unimodal symmetric posterior

C =
[
F−1(α/2),F−1(1− α/2)

]

θθl E((θθ)) θθu
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Models Interval estimate

Credibility intervals: HPD (Highest Posterior Density) IV

For example in the normal-normal model, since

π(θ|y) = N (µ∗, σ2∗)

The interval defined by the quantiles is centered on the mean and has
extremes

C =
[
µ∗ − σ∗Φ−1

(
1− α

2

)
, µ∗ + σ∗Φ−1

(
1− α

2

)]
(This is true both for the conjugate and the noninformative prior.) It’s

straightforward to show (think at the graph of the gaussian density), that
this interval is HPD too.

G. Carmeci (DEAMS) 58 / 83



Models Interval estimate

Credibility intervals: HPD (Highest Posterior Density) V

monotone posterior

C =
[
0,F−1(1− α)

]

0 θθu
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Models Interval estimate

Credibility intervals: HPD (Highest Posterior Density) VI

multimodal posterior
the HPD region is not necessarily an interval but can be the union of
disjoint intervals

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
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Models Interval estimate

Finding the HPD region

For a unimodal posterior (not necessarily symmetric) we may use an
algorithm to find the interval: start fromkm = 0, kM = maxθ π(θ|y) then
at step i

1 ki = (km + kM)/2

2 determine C = {θ|π(θ|y) > ki}
3 compute I =

∫
C π(θ|y)dθ

4 if I < 1− α km ← ki (shorter interval) return to 1
if I > 1− α kM ← ki (longer interval), return to 1
if I = 1− α STOP, C is the solution
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Models N , σ2

Gaussian model; σ2 unknown I

Likelihood:

L(σ2) ∝
n∏

i=1

1√
2πσ

exp

[
− 1

2σ2
(yi − µ)2

]

∝ (σ2)−n/2 exp

[
− n

2σ2

n∑
i=1

(yi − µ)2

]
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Models N , σ2

Gaussian model; σ2 unknown II

Assume an inverse gamma prior on σ2,

π(σ2) ∝ (σ2)−γ−1e−δ/σ
2

denoted as

σ2 ∼ IGamma(γ, δ)

with support the positive real line, where γ > 0 is called the shape
parameter and δ > 0 the scale parameter. Notice that in this
parametrization ν = 2γ corresponds to the degrees of freedom of the
distribution. The mean of the r.v. is δ

γ−1 for γ > 1 and the variance is
δ2

(γ−1)2(γ−2)
for γ > 2 (See pdf graph)
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Models N , σ2

Gaussian model; σ2 unknown III

Assume an inverse gamma prior on σ2,

π(σ2) ∝ (σ2)−γ−1e−δ/σ
2

The posterior distribution is then

π(σ2|y) ∝ L(σ2)π(σ2)

π(σ2|y) ∝ (σ2)−n/2 exp

[
− n

2σ2

n∑
i=1

(yi − µ)2

]
(σ2)−γ−1e−δ/σ

2

∝ (σ2)−n/2−γ−1 exp

[
− 1

σ2

[
n

2

n∑
i=1

(yi − µ)2 + δ

]]

that is, an inverse gamma with parameters γ + n/2 and
n
2

∑n
i=1(yi − µ)2 + δ.
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Models N , σ2

Gaussian model; σ2 unknown IV

It might be convenient to reparameterize the model in terms of the
precision τ = 1/σ2, so the likelihood is

L(τ) ∝ (τ)n/2 exp

[
−n

2
τ

n∑
i=1

(yi − µ)2

]

The conjugate prior assumption is then τ ∼ Gamma(γ, δ) i.e.

π(τ) ∝ τγ−1e−δτ

with support the positive real line, where γ > 0 is called the shape
parameter and δ > 0 the inverse scale parameter or rate parameter .
Notice that in this parametrization ν = 2γ corresponds to the degrees of
freedom of the distribution. The mean of the r.v. is γ

δ and the variance is
γ
δ2
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Models N , σ2

Gaussian model; σ2 unknown V

An alternative common parameterization of the Gamma distribution used
in MATLAB and R is the following: τ ∼ Gamma(k , θ) where

π(τ) ∝ τk−1e−
τ
θ

with support the positive real line, where k > 0 is called the shape
parameter and θ > 0 the scale parameter. Notice that in this
parameterization ν = 2γ corresponds to the degrees of freedom of the
distribution. So, k = γ and θ = 1

δ . The mean of the r.v. is kθ and the
variance is kθ2.
(See pdf graph)
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Models N , σ2

Gaussian model; σ2 unknown VI

The relationship between the Gamma(k, θ) and the IGamma(γ, δ) is the
following:

if x ∼ Gamma(k , θ), i.e.

p(x) ∝ xk−1e−
x
θ

then y = 1
x ∼ IGamma(k, 1

θ ), i.e.

p(y) ∝ y−k−1e−
1
θ
y
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Models N , σ2

Gaussian model; σ2 unknown VII

Notice that the result above implies that using the first parameterization
of the gamma, Gamma(γ, δ) i.e.

p(x) ∝ xγ−1e−δx

y = 1
x ∼ IGamma(γ, δ), i.e.

p(y) ∝ y−γ−1e−
δ
y
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Models N , σ2

Gaussian model; σ2 unknown VIII

So, using the first parameterization τ ∼ Gamma(γ, δ), the posterior results
to be Gamma(n/2 + γ, n2

∑n
i=1(yi − µ)2 + δ)

π(τ |y) ∝ τn/2 exp

[
−n

2
τ

n∑
i=1

(yi − µ)2

]
τγ−1e−δτ

∝ τn/2+γ−1 exp

[
−τ

(
n

2

n∑
i=1

(yi − µ)2 + δ

)]
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Models N , µ, σ2

Two-parameters models

Suppose that a model depends upon two parameters θ1, θ2

p(y |θ1, θ2)

then the prior is a bivariate distribution π(θ1, θ2) and the posterior is a
bivariate distribution as well

π(θ1, θ2|y) ∝ p(y |θ1, θ2)π(θ1, θ2)

Often one of the parameters, say θ2 is a nuisance parameter, in which case
we may be interested in the marginal posterior for θ1, which is obtained as

π(θ1|y) =

∫
π(θ1, θ2|y)dθ2 ∝

∫
p(y |θ1, θ2)π(θ1, θ2)dθ2
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Models N , µ, σ2

Gaussian model: µ, σ2 unknown, likelihood I
The likelihood is

L(µ, σ2) ∝
n∏

i=1

1√
2πσ

exp

[
− 1

2σ2
(yi − µ)2

]

∝ (σ2)−n/2 exp

− 1

2σ2

∑
j

(yj − µ)2


∝ (σ2)−n/2 exp

− 1

2σ2

∑
j

(yj − ȳ + ȳ − µ)2


∝ (σ2)−n/2 exp

[
− 1

2σ2

(
(n − 1)s2 + n(ȳ − µ)2

)]
where the last row is a consequence of∑

j

(yj − ȳ + ȳ − µ)2 =
∑
j

(yj − ȳ)2

︸ ︷︷ ︸
=(n−1)s2

+n(ȳ − µ)2 + 2(ȳ − µ)
∑
j

(yj − ȳ)

︸ ︷︷ ︸
=0
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Models N , µ, σ2

Gaussian model: µ, σ2 unknown, likelihood II

It is convenient to reparametrize the model writing τ = 1/σ2, so the
likelihood is

L(µ, τ) ∝ τn/2 exp
[
−τ

2

(
(n − 1)s2 + n(ȳ − µ)2

)]

the parameter τ is the precision.
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Models N , µ, σ2

Gaussian model: σ2 unknown, prior

Since there are two parameters, the prior distribution must clearly be
bivariate we can use the normal-gamma distribution, that is

µ|τ ∼ N (α, 1
ξτ )

τ ∼ Gamma(γ, δ)

so

π(µ, τ) = π(µ|τ)π(τ)

∝ (ξτ)1/2 exp

[
−ξτ

2
(µ− α)2

]
τγ−1 exp [−δτ ]

∝ ξ1/2τγ−1/2 exp

[
−τ
(
ξ

2
(µ− α)2 + δ

)]
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Models N , µ, σ2

Gaussian: µ, σ2 unknown, a posteriori I

π(µ, τ |y) ∝ L(µ, τ)π(µ, τ)

∝ τn/2 exp
[
−τ

2

(
(n − 1)s2 + n(ȳ − µ)2

)]
×

× ξ1/2τγ−1/2 exp

[
−τ
(
ξ

2
(µ− α)2 + δ

)]
∝ τ

n
2

+γ− 1
2 exp

[
−τ

2
(n(ȳ − µ)2 + ξ(µ− α)2)

]
×

× exp

[
−(n − 1)τ

2
s2 − δτ

]
∝ τ

n
2

+γ− 1
2 exp

[
−τ

2
(n + ξ)

(
µ− nȳ + ξα

n + ξ

)2
]
×

× exp

[
−τ
(

(n − 1)

2
s2 + δ +

nξ

2(n + ξ)

)]
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Models N , µ, σ2

Gaussian: µ, σ2 unknown, a posteriori II

π(µ, τ |y) ∝ τ
n
2

+γ− 1
2 exp

[
−τ

2
(n + ξ)

(
µ− nȳ + ξα

n + ξ

)2
]
×

× exp

[
−τ
(

(n − 1)

2
s2 + δ +

nξ

2(n + ξ)

)]
∝ τγ

∗− 1
2 exp

[
−τ

2
ξ∗ (µ− α∗)2

]
exp [−τδ∗]

the posterior is then a normal-gamma with parameters α∗ = nȳ+ξα
n+ξ ;

ξ∗ = n + ξ
δ∗ = (n−1)

2 s2 + δ + nξ
2(n+ξ) ; γ∗ = γ + n

2
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Models N , µ, σ2

Gaussian: µ, σ2 unknown, a posteriori III

One can draw conclusions directly from the bivariate posterior distribution
(for instance, a posterior credibility region may be obtained for the pair);
however, if we are only interested in the mean µ the following results are
relevant:

conditionally to a value for the precision τ ,

π(µ|τ, y) = N
(
α∗,

1

ξ∗τ

)
Marginally π(µ|y) is a Student’s t distribution with degrees of
freedom 2γ∗ = 2γ + n and mean α∗ = nȳ+ξα

n+ξ
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Prediction

Prediction I

Given

a model for y , p(y |θ);

a posterior for θ, π(θ|y).

Suppose you want to predict a future value of y (or any transformation
g(y)), let’s call it ynew, consider

p(ynew, θ|y) = p(ynew|θ, y)π(θ|y)

For exchangeable observations (i.e. independent conditional on θ), this
becomes

p(ynew, θ|y) = p(ynew|θ)π(θ|y)

Prediction of ynew is based on the so called predictive density,

p(ynew|y) =

∫
p(ynew, θ|y)dθ
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Prediction

Prediction II

As a simple example consider a gaussian model with known variance

model y , p(y |θ) = N (θ, σ2), σ2 known;

posterior for θ, π(θ|y) = N (µ∗, (σ2)∗).

then, using the theorem above

ynew|y ∼ N (µ∗, σ2 + (σ2)∗)

which has an easy interpretation: predicting ynew, the uncertainty due to
the parameter, (σ2)∗ adds to the uncertainty due to the model, σ2.
It is interesting to rewrite the above formula as

p(ynew|y) =

∫
p(ynew|θ, y)π(θ|y)dθ

the distribution of ynew is then the mixture of the conditional distributions
of ynew given θ, using as mixing distribution the posterior of θ.
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MVN

Multivariate normal distribution

Let y ∈ Rd be a random vector and assume

y |µ,Σ ∼ N (µ,Σ),

then its pdf is given by

p(y |µ,Σ) = (2π)−d/2|Σ|−1/2 exp

[
−1

2
(y − µ)TΣ−1(y − µ)

]
where µ is the (vector) mean and Σ the covariance matrix (whereas Σ−1 is
called the precision matrix).
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MVt

Multivariate Student’s t distribution

Let y ∈ Rd be a random vector and assume

y |µ,Σ, ν ∼ t(µ,Σ, ν),

then its pdf is given by

p(y |µ,Σ, ν) =
Γ
(
ν+d

2

)
Γ
(
ν
2

) π−d/2ν
ν
2 |Σ|−1/2

[
ν + (y − µ)TΣ−1(y − µ)

]− ν+d
2

where µ ∈ Rd is the mean, for ν > 1, Σ is a PDS dxd matrix called scale
matrix, and ν > 0 represents its degrees of freedom. Notice that
Var(y) = ν

ν−2 Σ, for ν > 2.

G. Carmeci (DEAMS) 83 / 83


	Preliminaries on probability calculus
	Bayes' theorem
	Bayes' theorem: continuous variables
	Classical and Bayesian inference
	An important detail, which probability?
	de Finetti's representation theorem

	Models
	Beta-Binomial
	Normal-normal
	Normal-normal, known variance
	Interval estimate
	Normal-normal, known mean, unknown variance
	Normal-normal, two unknowns

	Prediction
	Multivariate normal
	Multivariate t

